
Previously, it has been assumed that the chemical of interest is conservative. Now, 
we introduce the possibility of the diffusing, dispersing, advecting chemical also 
undergoing chemical reaction. The manner in which first-order reactions enter the 
mass-balance equation in 1, 2 and 3-dimensional systems is clearly demonstrated 
here. Three important environmental reactions, namely (i) dissolution from a bed, 
(ii) air-water exchange and (iii) partitioning to a solid are all examined in detail. 

Sample problems test the user's ability to incorporate reaction into their solutions for 
cloud concentration, and also to predict the rate of air-water exchange for a variety 
of chemicals in a variety of flows. 
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9. Reactions and Exchanges

9.1 Reaction-Advection-Diffusion Solutions
In this chapter we consider how chemical reactions enter the mass-balance equation as 
distributed source and sink terms, ±S. 

∂C ∂C ∂C ∂C ∂ ∂C ∂ ∂C ∂ ∂C 
+ u + v + w  = D + D + D ± Sx y z∂t ∂x ∂y ∂z ∂x ∂x ∂y ∂y ∂z ∂z 

Many reactions are modeled as first-order processes for which the rate of loss or gain is 
proportional to the existing concentration to the first power, i.e. S = kC, where k[T-1] is 
called the rate constant. Radioactive decay is a first-order process, with rate constant k = 
ln2/λ, where λ is the half-life.  Biodegradation, the break-down of principally organic 
chemicals by microbial activity, can be represented as a first-order reaction, as can 
photodegradation by UV radiation. While the above processes act on chemicals within 
the fluid domain, processes that remove or add chemicals across the domain boundaries 
are also sources and sinks. For example, dissolution from a solid boundary is a source to 
the fluid domain, and sorption onto a solid boundary is a sink.  Similarly, exchange 
across an air-water interface can act as either a source or sink for the fluid domain.  If the 
fluid is well-mixed, these exchanges are modeled through the distributed source/sink term 
S. If the domain is not well-mixed, then these exchange are modeled through specific 
boundary conditions set for C or ∂C/∂n, where n is the dimension perpendicular to the 
interface. Both cases - when the fluid domain is and is not well-mixed - are considered in 
this chapter. However, before discussing bondary exchange processes, we consider the 
effect of a generic first-order reaction on instantaneous and continuous point sources. 

In the absence of advection and diffusion, the equation of mass conservation reduces to      

∂C
(1) = ±kC ,

∂t 

where the sign + or - indicates a source or a sink, respectively.  Given an initial 
concentration, CO, the concentration will grow or decay as 

(2) C(t) = COexp(±kt). 

Because the reaction is first-order, i.e. linear in C, we may integrate (1) over the fluid 
domain and directly arrive at  

∂M
(3) = ±kM ,

∂t 

and 

(4) M(t) = Moexp(±kt). 



2 

If the reaction were of higher order, e.g. ∂C/∂t = K2C2, the integral of (1) would not give 
(3). What is convenient about the linear reaction is that (3) and (4) describe the total 
mass in a system, even as that mass advects and disperses.  For example, consider an 
instantaneous release of mass M at the point (xo, yo, zo) in an unbounded domain with 
uniform currents, (u, v, w), and homogeneous diffusion coefficients, (Dx, Dy, Dz). The 
concentration field without reaction was given in equation 6 of Chapter 5, and is repeated 
here for convenience.  

3-D, Instantaneous, Point Release at (xo, yo, zo) with no reaction 

(5)C(x,y,z, t) = 
( 4π t )3/2

M 
exp

 
-

(x − x0 − ut)2 

-
(y − y0 − vt)2 

-
(z − z0 − wt)2 

 
D xDyDz  4D t 4D t 4Dzt x y

If the chemical undergoes a first-order reaction, then the total mass, M, must follow (4).  
Using (4) in (5), we arrive at the concentration field observed with a first-order reaction: 

3-D, Instantaneous, Point Release at (xo, yo, zo) with First-Order Reaction, kC 

Moexp(±kt)  (x − x0 − ut)2 (y − y0 − vt)2 (z − z0 − wt)2  
(6) C(x,y,z, t) =

( 4π t )3/2 - -  
DxDyDz 

exp 
-

4Dxt 4Dyt 4Dzt  

Similarly, for two- and one-dimensional systems of length-scale Ly and Lz 

2-D, Instantaneous, Point Release at (xo, yo) with First-Order Reaction, kC 

 (x - xo - ut)2 (y - yo - vt)2  
(7) C(x,y, t) = 

Moexp(±kt) 
exp 

 
-

4DxtLz  4π t DxDy  
-

4Dyt  . 

1-D, Instantaneous, Point Release at xo with First-Order Reaction, kC 

  
(8) C(x, t) = 

M oexp(±kt) 
exp − 

(x - xo - ut)2 
  .4πDxt  4Dxt LyLz 

To find the concentration field downstream of a reacting, continuous, point source, we 
follow the derivation in Chapter 6 for non-reacting plumes, and incorporate (7) and (8).  
After steady state has been reached, and for Pe >>1, 
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3-D, Steady, Continuous Release at (xo, yo, zo) with First-Order Reaction, kC 

(
 x -x
 o )

exp 






-







2 2 x k (y -u(y ) z -u(z )
 −
xo )




exp 
 

&m(9) = z) y, C(x, ±
o o-

4Dy (
 o )
 4D
z (
 x -x
 )
4π DD ux -x 
oy z 

2-D, Steady, Continuous Release at (xo, yo) with First-Order Reaction, kC 



 


 


 

 


 

−− uxxuxx 
o 

oo 

exp
)(4D

exp
/)(L yyz πD 4 

2& /um y -u(y ) (x k )±
 −
 




x(10) = y) C(x, o-

1-D, Steady, Continuous Release at xo with First-Order Reaction, kC 

±

k(x
−
x
o )


 


 

&m(11) = C(x) 
L uL 

exp 
y z u 

9.2 Dissolving Species 

Dissolution from a Boundary with Turbulent Flow or Rapid System Mixing. 
If a boundary in a fluid system contains a chemical that is soluble in the fluid, then the 
boundary is a source of that chemical through dissolution.  In systems that are stirred by 
turbulence, the dissolution flux is controlled by the rate of transport across the laminar 
sub-layer on the solid boundary.  Recall that transport across the sub-layer proceeds at the 
rate of molecular diffusion, which is slower than turbulent diffusion by several orders of 
magnitude.  The figure below depicts the concentration profile that evolves at the 
boundary of a well-mixed system.  The concentration directly at the boundary, C(z = 0) = 
Ceq, is set by chemical equilibrium.  That is, at the boundary we assume the dissolved 
phase is in equilibrium with the solid phase.   The rate at which mass is supplied from the 
boundary to the fluid is set by the rate at which mass diffuses across the laminar sub-
layer. That is, transport across the laminar sub-layer is the limiting step.  This flux is 
described by Fick‘s Law. 

C
−


δ 
Ceq 
s 

&(12) [MTm 1- δ] across Flux = s =
 D -
 m A

∂
∂C -D = 

z m A
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Here, A is the area of the dissolving boundary and Dm is the molecular diffusion 
coefficient of the dissolving substance.  To describe how the dissolution flux impacts the 
concentration in the bulk fluid, C, we consider the equation of mass conservation.  

z 

dissolving substrate 

C 

δs 

z > δs, turbulent diffusion, mass is well-mixed 

z < δs, molecular diffusion only 

Ceq 
Figure 1.  Concentration profile above a dissolving boundary with flux limited by transport 
across the laminar sub-layer (δs) 

∂C ∂C ∂C ∂C ∂ ∂C ∂ ∂C ∂ ∂C
(13) + u + v + w  = D + Dy + D ± Sx z∂t ∂x ∂y ∂z ∂x ∂x ∂y ∂y ∂z ∂z 

Here, C is the concentration in the bulk fluid at z > δs. Let's consider a closed system of 
volume, V, in which the bed contains a soluble chemical.  The system is stirred but has 
no mean currents, so that u = v = w = 0.  We assume that the system is sufficiently stirred 
that the concentration is uniform, except within the laminar-sublayer, i.e. ∂/∂y = ∂/∂x = 
∂/∂z = 0 in the bulk of the fluid domain.  Conservation of mass for the bulk fluid is then  

∂C
(14) = +S,

∂t 

If we multiply (14) by the system volume, V, we can replace the source term, SV, by the 
diffusive flux given in (12). 

(15) V 
∂C 

 =  - DmA
C − Ceq 

.
∂t δs 

Re-arranging, we find the evolution of the bulk-fluid concentration, 

∂C (= -

 
DmA 

 
(C − Ceq)= -k  C  − Ceq).

∂t Vδs 
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where k = DmA / Vδs is the dissolution rate constant.  Thus, for a well-mixed fluid 
domain, a boundary source can be treated as if distributed over the entire volume, i.e. 
through S, where 

(16) S = -


D mA 

 
(C − Ceq)= -k  C  − Ceq)(

Vδs 

With initial condition,C(t=0) = 0, 

(17) C =  Ceq (1 - e-kt ) 

When C << Ceq, then the source in (16) is constant, and C increases linearly, 

∂C
(18)  = kCeq ,

∂t

Alternatively, if Ceq  = 0, e.g. an absorbing boundary, then C decreases exponentially, as 
given by (1) and (2). 

A 

Ceq 

C 

-Kt) 

System Volume, V 
Dissolving Boundary Area, A  

time, t 
dC/dt=KCeq, when C < 

C = Ceq (1-e

Figure 2. Evolution of concentration with boundary source. 

Example: Dissolution from Gypsum Bed 
A 100-m section of the stream bed is composed of gypsum from which calcium leaches 
into the water. The flow speed is U = 20 cm/s, the channel depth is h = 50 cm, and the 
channel width is b = 100 cm.  Estimate the calcium concentration in the water at the end 
of the gypsum reach. Assume that the stream has no calcium before encountering the 
gypsum.  At equilibrium with the solid phase, the calcium concentration in the water is 

2 -1600gm-3. Assume a calcium molecular diffusivity of D = 10-9m s . 

Answer. 
First, check if the flow is turbulent.  From Chapter 7, the flow is turbulent if the Reynolds 
number based on the hydraulic radius, RH, is above 3000. Here, RH = hb/(2h+b) = 25cm. 
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Therefore, Re = (20cms-1 x 25cm)/(0.01 cm2s-1) = 50,000. So, the channel flow is 
turbulent, and we expect that the concentration will be well-mixed over the cross-section, 
i.e. ∂C/∂z = ∂C/∂y = 0. If the Peclet (Pe) number is >>1, we can neglect longitudinal 
dispersion relative to advection. We estimate longitudinal dispersion as KX = 5.9u*h, 
using the approximate relation u* = 0.1U.  For reach length L = 100 m, the Peclet 
number is Pe = UL/Kx = UL/(0.59Uh) ≈ 330 >>1. Finally, we assume steady-state 
conditions, ∂C/∂t = 0. Conservation of mass then simplifies to u ∂C/∂x = S. If 
throughout the reach C << Ceq, we can use (18) to describe the calcium source, i.e. S = 
kCeq, such that, 

∂C
(19) u = kCeq .

∂x 

Defining x = 0 at the beginning of the gypsum, C (x=0) = 0, as given, and 

(20) C(x) = (k Ceq / U ) x. 

To evaluate the rate constant k = DmA/(V δs), we must estimate δs. With u* ≈ 0.1U, δs = 
5ν/u* = 0.025 cm = 2.5x10-4m.  The ratio of volume, V, to bed area, A, is the depth h.  

-2 -1k = Dm/(h δs) = (10-9 m s-1)/(0.5m x 2.5 x 10-4m) = 8 x10-6 s . 

From (20), the concentration at x = 100m is then (8 x10-6 s-1)(600gm-3)(100m)/(0.2ms-1) 
= 2.4 gm-3<< 600, confirming our assumption C << Ceq. 

Dissolution from a Boundary with Laminar Flow or Slow System Mixing 
If mixing conditions are weak, the concentration field outside the laminar sub-layer will 
not be uniform, and the gradient terms, e.g. ∂C/∂z, will not drop out of the transport 
equation as occurred in the well-mixed system described above.  Furthermore, if the 
entire fluid domain is laminar, there is no discrete laminar sub-layer.  In these cases the 
flux is controlled by the rate of diffusion throughout the domain.  The boundary source is 
accounted for by the diffusive flux term, e.g. DZ ∂2C/∂z2, rather than being represented 
through the distributed source term, S, as was done in the well-mixed system above.  
Here S = 0. 

Consider again a discrete volume of fluid, V, in contact with a dissolving boundary 
area, A. At the boundary the concentration is set by chemical equilibrium, such that 
C(z=0) = Ceq. If the source is never depleted, Ceq is constant over time.  In addition, if 
the bed has uniform chemical composition, then Ceq ≠ f(x,y), and we expect C ≠ f(x,y) 
throughout the fluid. For simplicity we neglect advection (u = v = w = 0).  The bed 
source is accounted for by the boundary condition, C(z=0) = Ceq.  The conservation of 
mass equation, 

∂C ∂2C
(21) = D  

∂z2 ,
∂t 
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 with the boundary conditions; C = 0, for all z, at t < 0 
C = Ceq at z = 0 for t  ≥ 0; 

has the solution 

 z  
 .(22) C(z, t) = Ceq erfc 

 2 Dt   

The complementary error function (erfc) was described in Chapter 6.  The evolution of 
C(z) given by (22) is depicted below.  As time progresses, the mass-containing region 
near the boundary grows. By convention we define the limits of this concentration 
boundary layer, z = δc, at the height for which C/Ceq = 0.005. From (22), and the erfc 
table, this occurs at z/(2√(Dt)) = 2, or 

Concentration Boundary Layer above a Constant Concentration Source 

(23) δc = 4  Dt . 

In the graph below the boundary layer height is indicated for t = 800 s.  It is useful to note 
that the mean concentration within the concentration boundary layer is  

z=δ c  z  
(24) C  =

Ceq 
∫ erfc dz ≈ 0.3Ceq . 

 2  Dt δ c z=0 

z[cm] 
12 

10 

8 

6 

4 

2 

0 

δ 

(z=0) 

z= c 

t = 50 sec 

t = 800 sec 
t = 200 sec 

C=0.3 C

0 0.005 0.2 0.4 0.6 0.8 1 

C / Ceq 
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Figure 3. Development of concentration boundary layer above constant concentration boundary.  
The concentration at the boundary is in equilibrium with the solid phase, C(z=0) = Ceq. 

Selecting a Dissolution Model 
If the flow field is laminar, there is no laminar sub-layer, and only the second model will 
apply. If the flow is not laminar, then scale-analysis will determine which of the above 
models fits a given system. One must compare the time-scale for transport across the 
laminar sub-layer, Tδs, to the time-scale for transport over the fluid domain outside the 
laminar sub-layer, TL, where L is the domain length-scale perpendicular to the dissolving 
boundary (=h, in this case). In the laminar sub-layer transport is controlled by molecular 
diffusion, D.  Above the laminar sub-layer transport is controlled by turbulent diffusion, 
Dt. If h >> δs, the ratio Tδs/TL is 

δs
2 / D  time to diffuse across δ s(25) 

Tδs = = .
TL h2 / Dt time to mix across h 

If Tδs/TL >> 1, chemical is delivered to the bulk fluid very slowly compared to the rate at 
which it is mixed to uniform concentration within the bulk fluid.  Under this condition the 
concentration is uniform outside the laminar sub-layer, and the first model will apply 
(Figure 1). Alternatively, if Tδs/TL << 1, the chemical is delivered relatively quickly 
from the dissolving substrate and through the laminar sub-layer, but once in the bulk fluid 
it takes a long time to mix over depth.  In this case, concentration in the bulk fluid is not 
uniform, but follows an erfc distribution, as shown in Figure 3.   

z 

δs 

z 

δs 

C(z)=Ceq erfc[ ]z 
2 

Tδs >> TL Tδs << TL 

C Ceq Ceq 

Figure 4. Distribution of concentration near a dissolving boundary for conditions with slow 
transport across the laminar sub-layer (Tδs >> TL) and conditions with rapid transport across the 
laminar sub-layer (Tδs << TL). 
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9.3 Exchange Across an Air-Water Interface 

Volatile chemicals may partition themselves between water and air phases.  At 
equilibrium, the ratio of these phases is described by a partitioning coefficient called 
Henry‘s Law Constant. Specifically, Henry‘s Law Constant, H, is defined as 

(26) H = 
equilibrium concentration in air [mass/volume air] 

.
equilibrium concentration in water[mass / voume water]

Thin-Film Model for Air-Water Exchange 
The thin-film model is based on the assumption that a laminar sub-layer exists on both 
sides of the air-water interface.  This assumption relies on the following physical ideas 
and approximations.  Because the density difference across the air - water interface is so 
large, it is approximately true that the turbulence structures in both fluids see the interface 
as a rigid boundary not as a flexible membrane.  This means that on both the air-side and 
the water-side, the scales of the turbulence diminish approaching the interface, just as if 
approaching a solid boundary.  At small distances from the interface there is a region for 
which the allowable turbulence scale is too weak to overcome viscous forces, such that 
no turbulence can exist in this region and the flow is laminar.  This laminar sub-layer 
exists on both sides of the interface.  For a chemical to move from the air into the water, 
or vice versa, it must pass through both an air-side and a water-side laminar sub-layer.  If 
we assume that the transport through these layers controls the overall flux, we can 
estimate the net mass exchange.  

outside laminar sub-layers
turbulent diffusion rapidly
mixes concentration 
to uniform condition 

z=0 
z= +δa 

z = -δw 

inside laminar sub-layers
only molecular diffusion 

Ca 

Cw 

Csa 
Csw 

Csa 
CswH= 

Figure 5. The Thin-Film Model describes the exchange of volatile species across the air-water 
interface under conditions for which transport is limited by diffusion across the laminar sub-
layers.  At the surface (z = 0) the aqueous phase (Csw) is in equilibrium with the concentration in 
air (Csa), such that Csw = Csa/H, where H is the Henry‘s Law constant. 
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Consider a volume of water and air in contact over area A.  As depicted in Figure 5, a 
laminar sub-layer exists on both the water side (δ w) and the air side (δ a) of the interface.  
Outside the laminar sub-layers turbulent diffusion is sufficient to make the concentrations 
in the water (Cw) and in the air (Ca) uniform.  Within the laminar sub-layers only 
molecular diffusion is operating, so under steady conditions the concentration profile 
must be linear (as is true for any diffusive process with constant diffusivity).  Finally, we 
assume that chemical equilibrium exists at the interface (z = 0), such that the dissolved 
phase concentration at the surface (Csw) is in equilibrium with the air phase 
concentration at the surface (Csa).  Specifically, Csw = Csa/H, where H is the Henry‘s 
Law constant. As a final constraint, if we assume that there are no sources or sinks of 
chemical within the laminar sub-layers, then conservation of mass tells us that the flux 
through the water-side boundary layer must equal the flux through the air-side boundary 
layer. This constraint gives us, 

 
(27) m& = − A D 




∂ C 
 = − A D 




∂ C 
 ,a w 

 ∂ z z = 0  a	  ∂ z z = 0  w


flux through δ a  flux through δ w 


where Da and Dw represent the molecular diffusion in air and water.  Using the end-point 
concentrations to define the gradients in (27), 

(28) − Da A 
(Ca − Csa) 

− DwA 
(Csw − Cw)

= 	 .
δ a	 δ w 

Noting that Csw = Csa/H, we solve for Csa in (28) and use this value in (27) to find, 

Flux Across Air-Water Interface based on the Thin Film Model 

(29) 	 m& = ( H Ca -Cw ) A 
δw δa

. 
+

D D H w a 

We can define two limits of (29).  If δ w/Dw >> δ a/(H Da), the second term in the 
denominator of (29) may be dropped, and we arrive at 

(30) Water œSide Control [typically, H >> 0.01]: m& D = A ( Ca/H -Cw ) .w δ w 
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This limit is referred to as Water-Side Control, because the water-side boundary layer 
controls the flux through Dw and δw. The air side conditions, both δa and Da, have no 
influence over the flux given in (30). At the other limit, δw/Dw << δa/(H Da), the first 
term in the denominator of (29) is dropped, and we arrive at, 

(31) Air œSide Control [typically, H << 0.01]: m& D = A ( Ca -HCw ) .a δa 

In this limit the flux depends only on the air side conditions, through δa and Da, with no 
dependence on the water side conditions, specifically Dw and δw. The following table 
indicates that δw/Dw is typically larger than δa/Da by a factor of 100. Then for δw/Dw >> 
δa/(H Da), H >> (δa/Da)/(δw/Dw) = 0.01. That is, the flux of a chemical with H >> 0.01 
is water-side controlled.  The flux of a chemical with H << 0.01 is air-side controlled. 

Table 1. Typical Orders of Magnitude for Molecular Diffusion and Sub-Layer Thickness 
 D[cm2s-1] δ[cm] 

no wind 
δ[cm] 

high wind 
δ/D [s cm-1] 

no wind 
δ/D [s cm-1] 
high wind 

water-side 10-5 10-2 10-3 1000 100 
air-side 10-1 1 0.1 10 1 

Example.  Flux of TCE from lake to atmosphere. 
A lake of depth h = 10m and surface area, A, is polluted with the solvent TCE at a 
uniform concentration, Cw = 1 ppb [µg/l].  TCE is volatile so that it is slowly removed 
from the lake by a flux to the atmosphere.  The Henry‘s Law constant for TCE is H = 0.4.  
Assume that strong, steady winds keep the lake well-mixed and rapidly remove the TCE 
that enters the atmosphere.  Estimate the time for the TCE concentration in the lake to be 
reduced to 0.05 ppb. 

Answer. Since we assume that the lake is well-mixed, ∂C/∂x = ∂C/∂y = ∂C/∂z = 0. We 
will also assume there are no currents (u = v = w = 0).  If we assume that there are no 
inflows or outflows of water volume, then the only sink for TCE is the atmosphere.  With 
H = 0.4 >> 0.01, the flux of TCE is controlled by the water-side laminar sub-layer and 
can be modeled with (30).  The evolution of chemical in the lake is then described by the 
following conservation of mass equation: 

(32) 
∂M ∂Cw 

−  DwA
( Cw - Ca/H )

=  Ah  = 
∂t ∂t δw 

Note that although the flux from the lake to the atmosphere is positive, i.e. directed 
upward, the flux results in a loss from the lake volume, and so appears as a sink in (32).  
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If steady winds carry away all TCE that enters the atmosphere, the air concentration 
remains at zero, Ca = 0.  Then, (32) reduces to, 

(33) 
∂Cw 

= − 
Dw Cw .

∂t  hδw 

This is a first-order reaction, with rate constant 

(34) k = (Dw / h δw). 


With initial concentration Cw = Cwo, the concentration in the lake evolves as, 


 
(35) Cw(t) =  Cwo exp − 

Dw t = Cwo exp(-kt) .  
h δw 

z=0 

Ca = 0 

Cw 

z 

Csw=Csa/H = 0 

z = -δw 

TCE Flux 

Figure 6. The flux of TCE from lake to atmosphere is controlled by the water-side laminar sub-
layer.  The air-side laminar sub-layer is negligible so that Csa = Ca.  Furthermore, since Csw = 
Csa/H, Csw = 0 as well. 

2 -1For windy conditions (Table 1), k = (10-5cm s-1)/(0.001cm x 1000cm) = 10-5 s . The 
time required for Cw to reach 0.05 ppb, or 0.05 Cwo is t = 3/k = 3 x 105 s = 3.4 days. 
Given this time-scale, we will now assess the assumption that the concentration within 
the body of the lake remains uniform.  For this to be true, the time-scale for vertical 
transport in the lake must be much shorter than the time-scale of the flux (Tflux = 3.4 
days). If this is not so, then TCE will be depleted from the surface waters more rapidly 
than it is supplied from the lower waters through vertical mixing, and vertical gradients in 
concentration will develop in the lake.  In fact, the vertical mixing time-scale, Tmix, would 
need to be at least an order of magnitude smaller than Tflux for the vertical transport 
within the lake to not limit the flux to the atmosphere.  It is unlikely that a lake of 10-m 
depth would consistently mix over depth with time-scale Tmix ≤ 0.34 days. So, we expect 
that the loss of TCE to the atmosphere will be somewhat limited by the rate of vertical 
transport within the lake.  With this in mind, the estimate T flux = 3.4 days is a lower limit 
for the time required to removed 95% of the TCE from the entire lake. 
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Surface Renewal Model for Air-Water Exchange 
For the thin film model the laminar sub-layers in the air and water maintain their fluid 
identity over time, i.e. the fluid within these layers is assumed to be stagnant relative to 
the rest of the fluid domain.  While this model is reasonable when the turbulence in the 
bulk of the fluid is weak, the stagnant film assumption breaks down under vigorous 
turbulence.  Firstly, as the strength of the turbulence increases, the laminar sub-layer is 
diminished, and at some point becomes negligible.  Secondly, vigorous turbulent eddies 
can carry parcels of fluid from the bulk fluid directly to the interface, breaking through 
the laminar sub-layer.  When new patches of fluid arrive at the air-water interface they 
have the concentration of the bulk fluid.  After they arrive at the interface, the patch 
immediately begins to move toward equilibrium with the concentration on the other side 
of the interface.  Once the patch has reached equilibrium, flux across the interface in the 
area of the patch will cease.  With this model the net flux across the interface depends on 
the frequency with which the layer of water adjacent to the interface is renewed.   

As an example, we'll consider oxygen, whose flux is water-side limited (HO2 = 26), so 
that we need only consider surface renewal on the water side.  Let's say that, on average, 
the layer of water adjacent to the surface is completely renewed in a time-scale Trenewal. 
In addition, when a new patch of fluid arrives at the surface, it requires a time-scale Teq to 
equilibrate with the atmosphere.  Two scenarios are possible.  If Trenewal < Teq, then the 
fluid adjacent to the interface will never reach equilibrium.  If Trenewal > Teq, then the fluid 
adjacent to the interface regularly reaches equilibrium, and when it does flux across the 
interface stops. These two cases are compared in Figure 7.  Since the flux increases 
linearly with the concentration difference (Cpatch œ Ceq), the greatest flux occurs when the 
average value of this difference is maximized.  As shown in Figure 7, short Trenewal, 
associated with vigorous turbulence, maintains the greatest concentration difference and 
thus the greatest flux across the interface.  

Teq 

Trenewal 

t 

Ceq 

Cw 

Cpatch1 

Cw 

Trenewal 
Cpatch2 

Cpatch 

Figure 7. For case 1 (blue curve) the renewal time scale is longer than the equilibrium time-scale.  
For case 2 (orange curve) the renewal time scale is much shorter than the equilibrium time-scale.  
Greater flux is achieved in case 2, because the average concentration gradient across the interface 
(Cpatch œ Ceq) is larger. 
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To estimate the flux based on the surface renewal model, consider a single patch of fluid 
brought to the surface at time t = 0 and contacting area A of the interface.  Before 
touching the surface (t<0) the concentration in the patch is Cw.  As soon as the patch 
touches the surface, the fluid directly at the interface (z = 0) immediately equilibrates 
with the atmosphere, such that for t ≥ 0, C(z = 0) = Ceq = Csa/H. This constant 
concentration boundary condition is similar to that below (21). Adapting the solution 
given in (22) for the case described here, letting z be positive downward for convenience, 
and remembering that for water-side control Csa = Ca, the concentration in the patch is 

 Ca   z
(36) C(z, t) =  − Cw erfc 

 
 2  Dwt  

 .H 

Cw 

Z 

Cpatch 
Ca/ H 

increasing 
time 

Figure 8. Diffusion of mass into a new patch brought to the surface at t = 0.  Before patch arrives 
at surface (t < 0), C = Cw throughout the patch.  For t ≥ 0 the concentration at the patch-air 
interface (z = 0) is at equilibrium with the air, Ca/H. 

Flux into this patch will proceed until a new patch replaces it at t = Trenewal. At that time 
the concentration front will have penetrated to z = δ c =4√DwTrenewal. The total mass that 
enters the patch in time Trenewal can be estimated using (23) and (24). 

 Ca 
(37) M ≈  C A δ c = 0.3  − Cw A4  DwTrenewalH 

The net flux is then m& =M / Trenewal, or 

(38) m  Ca 
− Cw

 
Dw Surface Renewal Model, Water-Side Control

TH 
& ≈ A 


renewal


Consistent with Figure 7, the flux increases as Trenewal decreases. 
It is interesting to compare this flux with that predicted by the thin film model.   

m& D = A ( Ca/H -Cw ) Thin-Film Model, Water-Side Controlw δ w 
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Both models suggest that the flux is linearly dependent on the difference between the 
water concentration (Cw) and the equilibrium concentration (Ca/H).  Also, both models 
suggest that the flux is dependent on flow conditions through the parameters Trenewal and 
δw. These parameters decrease with increasing levels of turbulence, so both models 
predict an increase in flux with increasing turbulence strength.  However, the models 
indicate different dependence on molecular diffusion.  Field observations suggest a range 
of dependence, Dw

n, with n = 0.5 to 1. That the empirical exponent falls between those 
indicated by the models suggests that the flux is dependent on some combination of the 
two models.  In general the surface renewal model is considered more appropriate for 
swiftly moving water (or turbulent flow), such as rivers, and the thin-film model is 
considered more appropriate for stagnant or quiet waters, such as lakes, and of course 
laminar flow conditins.  Finally, if the concentration in the atmosphere is negligible, Ca ≈ 
0, then both the Thin-Film and Surface Renewal Models reduce to first-order reactions, 
∂Cw/∂t = k Cw, with the following rate constants, 

Thin-Film Model, Water-Side Control, Ca = 0, h = water depth 

w(39) k [s-1] = 
D 

h δw 

Surface Renewal Model, Water-Side Control, Ca = 0, h = water depth 

D w Trenewal(40) k [s-1] = .
h 

To apply (39) or (40) one must estimate the physical parameter δw or Trenewal. Prediction 
of either parameter can be difficult in the field, requiring a careful characterization of 
turbulence structure, which depends on flow speed, bed roughness, channel non-
uniformity, and the presence and strength of waves.  However, since these parameters are 
associated with the physical aspects of the flow, they must be the same for all chemicals.  
So, if one knows the exchange rate for one chemical that is water-side controlled, and 
thus dependent on δw or Trenewal, then one can use (39) or (40) to estimate it for a 
different chemical in the same system and under the same flow conditions. For example, 
if I know the exchange rate for chemical B, kB, with molecular diffusion, DwB, then I can 
estimate the exchange rate for chemical C, kC, with molecular diffusion, DwC. 

(41)	 Thin-Film Model, Water-Side Control: 
kB = 

DwB 

kC D wC 

(42) Surface Renewal Model, Water-Side Control:  
kB = 

DwB 

k
. 

C DwC 
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A similar analogy will hold between two chemicals that are both air-side controlled, with 
all physical parameters then referring to the air-side, i.e. Da, Trenewal, δa. 

9.4 Partitioning to a Solid
In the previous section we considered how chemical partitioning between air and water 
phases affects transport.  In this section we consider how partitioning between solid and 
water phases, a process called sorption and desorption, affects transport.  There are two 
types of sorption. In adsorption the chemical sticks to the surface of the solid.  In 
absorption, the chemical enters into the matrix of the solid, i.e. diffusing into the solid 
volume.  The fraction of chemical that will sorb onto the solid phase is described by a 
partitioning coefficient, Kd. Like the Henry's Law constant, the solid/water phase 
partitioning coefficient describes the ratio of concentrations in each phase in equilibrium. 

(43) 	K d  = 
concentration associated with solid [mass chemical/mass solid] 

concentration in water[mass / volume water] 

Kd is typically reported in the units, mg / mg - solid .
mg / liter 

In general, if a chemical can partition to a stationary solid phase, such as the soil matrix 
in groundwater flow or the channel walls in surface flow, then its transport will be slowed 
relative to chemicals that do not partition to the boundary.  This is true for both advective 
and dispersive transport.  To demonstrate this, consider sub-surface flow through soil 
directed along the x-axis.  For simplicity, we assume uniform conditions in the cross-
stream direction, i.e. ∂/∂y = ∂/∂z = 0. We define a control volume of length dx and 
cross-sectional area A, as shown in Figure 9.  The soil has porosity, n, and the mean pore 
velocity is uP. The conservation of mass for this control volume is, 

∂M	     
(44) 	 = [upCwAn]1

 - [upCwAn]2
 + -K x 

∂Cw An

 

1
-  -K x 

∂Cw An ,
∂t	  ∂x  ∂x  2 

advection in advection out  dispersion at 1   dispersion at 2 

with KX the dispersion coefficient.  Note that only the water-phase concentration, CW, is 
included in the flux terms of (44), because only mass in the water-phase is advected and 
dispersed by the fluid motion. The solid-phase concentration, CS, is immobile.  If the 
time-scale for the chemical to partition between the two phases is negligible, then we 
may assume that the chemical is everywhere and always at equilibrium, so that 

(45) 	 K d 


 mg / mg - solid  

 
= 

Cs 

 mg / liter  Cw 
. 
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1 2 
dx 

Figure 9. Boundaries at 1 and 2 define a one-dimensional, sub-surface control volume with cross-
sectional area A. The soil matrix is shown in brown and the groundwater in blue.  The chemical 
mass is partitioned between the water phase (red dots) and the solid phase (pink dots).  At 
equilibrium the ratio of concentrations in the solid phase (Cs) and water phase (Cw) is given by 
the partition coefficient, Kd = Cs/Cw. 

If Cw and ∂Cw/∂x are a continuous function in x, we can approximate, CW2 = CW1 + 
(∂CW/∂x) dx, and ∂CW/∂x|2 = ∂CW/∂x|1 + (∂2CW/∂x2) dx. Then, (44) becomes, 

∂M ∂2Cw(46) =  - upAn 
∂Cw dx + KxAn 

∂x2 dx . 
∂t ∂x 

The total mass, M, includes both the solid and water phase components.  Defining the 
bulk density of the soil matrix as ρB = mass of solid matrix per unit volume, V = Adx, 
then the total mass in the control volume can be written,  

(47) M = CW n V + ρBV CS. 

We define a total concentration, 

(48) C = M / V. 

Combining (45), (47) and (48) we can write 

C
(49) Cw = 

)
.

(n + ρBK d 

Using (49) in (46), and assuming that the porosity, n, and bulk density, ρB, are not 
functions of x, then 

 ∂2C∂M  n
(50) = V 

∂C 
 =  - upA 

 n 
 ∂C 

dx + KxA 
 
 
n +  ρBKd  

 
∂x2 dx. 

∂t ∂t  n +  ρBK d  ∂x  
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Eliminating V = A dx from both sides, we are left with, 

∂C ∂C ∂2C
(51) 

∂t
 =  - fu

∂x
 +  fK x ∂x2 ,p 

in which f represents the fraction of total mass that is in the water phase.  Because only 
this mass is mobile, f is called the mobile fraction, and f is defined in (50) as, 

n
(52) Mobile Fraction, f = . 

n +  ρBKd 

The inverse of the mobile fraction is called the retardation factor, R = f-1. Using this 
nomenclature, (51) is written as, 

∂C 
= -

up ∂C K x ∂
2C

(53) 
∂t R ∂x

 + 
R ∂x2 . 

From either (51) or (53) one quickly recognizes the impact of partitioning to transport.  
Specifically, both the velocity (uP) and the dispersion (KX) are modified by the 
coefficient f = R-1. If f = 1, all chemical is in the water phase, and we recover the one-
dimensional transport equation for non-partitioning species.  If f < 1, i.e. some fraction of 
the mass is associated with the immobile solid phase, the net advection and the net 
dispersion is reduced by the factor f. This effect is best demonstrated by comparing the 
transport of two chemicals, one which partitions and one which  does not. For an 
instantaneous release of mass M at x = 0, the concentration field downstream is, 

Chemical 1: Partitioning [f < 1] 

M
C1(x, t) = exp(-(x - fupt)

2 4fKxt) .
A 4πfKxt 

Chemical 2: Non-Partitioning [f = 1] 

M
C2(x, t) = exp(-(x - upt)2 4K xt)A 4πKxt 

Remember that C1 and C2 represent a total concentration, C, as defined in (48).  In each 
case, the concentration in the water phase is given by (49), or simply Cw = (f/n) C. The 
spatial distribution of C is shown for each release in Figure 10.  At time t after the 
release, the partitioning chemical has traveled less distance, x1 < x2, and has undergone 
less longitudinal spreading, σ1< σ2, then the chemical that does not partition.  
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C 

σ=(2Kxt)1/2 

C2

C1 

4 σ

σ=(2fKxt)1/2 

4 σ 
x 

x = fupt x = u tp

Figure 10. The same mass, M, of two different chemicals is released instantaneously into a one-
dimensional groundwater system.  The chemicals are released at x = 0.  The soil porosity, n = 0.4.  
Chemical 1 does partition to solid phase.  Chemical 2 does not partition to solid phase.  The 
mobile fraction of chemical 1 is f = 0.5.   The figure shows the distribution of total concentration, 
C1 and C2, at time t after the release.  The partitioning chemical (C1) has traveled less distance 
and has spread (σ) over a smaller longitudinal extent then the non-partitioning chemical (C2).  

As a final point, let us examine the assumption that the dissolved and sorbed phases are 
always in equilibrium.  Consider a chemical cloud migrating through the subsurface.  The 
length scale of the cloud in the streamwise direction is 4σ, e.g. as in Figure 10.  If the 
mean pore velocity is uP, the time-scale for the cloud to advect one cloud length is TU = 
4σ/uP. TU represents the duration of time that any part of the soil matrix is exposed to the 
chemical cloud.  Suppose the chemical can sorb to the soil matrix and does so with 
reaction rate, k[s-1]. If k-1 << TU, then the duration of exposure to each dissolved phase 
concentration will be long compared to the time-scale for sorption/desorption to occur, 
and the sorbed phase can easily remain in equilibrium with the local dissolved phase 
concentration.  Under these conditions, the retardation model described above will apply.  
If, however, k-1 >> TU, the time-scale for sorption/desorption to occur is long compared 
to the duration of dissolved phase exposure, and the sorbed phase will not be in 
equilibrium with the dissolved phase concentration.  Sorbed chemical will remain sorbed 
(and thus stationary) long after the dissolved phase cloud has passed.  Because the sorbed 
phase is delayed relative to the dissolved phase, slow sorption processes (k-1 >> TU) 
increase the longitudinal dispersion of the cloud, as depicted in Figure 5 of Chapter 8.  
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VALUES OF THE ERROR FUNCTION, erf(x), 

AND COMPLEMENTARY ERROR FUNCTION, erfc(x), 


FOR POSITIVE VALUES OF x. 


x erf(x) erfc(x) x erf(x) erfc(x) 
0 0 1.0 1.1 0.880205 0.119795 
0.05 0.056372 0.943628 1.2 0.910314 0.089686 
0.1 0.112463 0.887537 1.3 0.934008 0.065992 
0.15 0.167996 0.832004 1.4 0.952285 0.047715 
0.2 0.222703 0.777297 1.5 0.966105 0.033895 
0.25 0.276326 0.723674 1.6 0.976348 0.023652 
0.3 0.328627 0.671373 1.7 0.983790 0.016210 
0.35 0.379382 0.620618 1.8 0.989091 0.010909 
0.4 0.428392 0.571608 1.9 0.992790 0.007210 
0.45 0.475482 0.524518 2.0 0.995322 0.004678 
0.5 0.520500 0.479500 2.1 0.997021 0.002979 
0.55 0.563323 0.436677 2.2 0.998137 0.001863 
0.6 0.603856 0.396144 2.3 0.998857 0.001143 
0.65 0.642029 0.357971 2.4 0.999311 0.000689 
0.7 0.677801 0.322199 2.5 0.999593 0.000407 
0.75 0.711156 0.288844 2.6 0.999764 0.000236 
0.8 0.742101 0.257899 2.7 0.999866 0.000134 
0.85 0.770668 0.229332 2.8 0.999925 0.000075 
0.9 0.796908 0.203092 2.9 0.999959 0.000041 
0.95 0.820891 0.179109 3.0 0.999978 0.000022 
1.0 0.842701 0.157299 


