
Chapter 15 

Static Applications with Incomplete 

Information 

This chapter is devoted to economic applications with incomplete information. They 

are meant to illustrate the common techniques in computing Bayesian Nash equilibria 

in static games of incomplete information. There are four applications. The first ap

plication is Cournot duopoly, where I illustrate how to computes the Bayesian Nash 

equilibria when there is a continuum of actions but finitely many types. The next two 

applications are the first-price auction and double auction. In these applications, there 

are a continuum of actions and a continuum of types. In that case, it is not easy to 

compute all equilibria, and one often considers equilibria with certain functional forms. 

Here, the focus will be on (i) symmetric, linear equilibrium, (ii) symmetric but not nec

essarily linear equilibrium, and (iii) linear but not necessarily symmetric equilibrium. I 

will explain what symmetry and linearity means when we come there. Finally, I will 

consider coordination games with incomplete information. With complete information, 

these games often has multiple equilibria. When there is enough incomplete information, 

multiple equilibria disappears. I will illustrate this using "monotone" equilibria, in which 

there is a cutoff value such that players play one action below the cutoff and another 

action above the cutoff. My technical objective in the last example is to illustrate how 

to compute monotone equilibria (when they exist). 

273 
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15.1 Cournot Duopoly with incomplete information 

Consider a Cournot duopoly with inverse-demand function 

P (Q) =  a− Q 

where Q = q1 + q2. The marginal cost of Firm 1 is c = 0, and this is common knowledge. 

Firm 2’s marginal cost c2 is its own private information. It can take values of 

cH with probability θ, and  

cL with probability 1 − θ. 

Each firm maximizes its expected profit. 

Here, Firm 1 has just one type, and Firm 2 has two types: cH and cL. Hence, a 

strategy of Firm 1 is a real number q1, while a strategy of Firm 2 is two real numbers 

q2 (cH ) and q2 (cL), one for when the cost is cH and one for when the cost is cL. 

∗ ∗ ∗Bayesian Nash Equilibrium A Bayesian Nash equilibrium is a triplet (q1 , q2 (cH ) , q2 (cL)) 

of real numbers, where q1 
∗ is the production level of Firm 1, q2 

∗ (cH ) is the production 

level of type cH of Firm 2, and q2 
∗ (cL) is the production level of type cL of Firm 2. In 

equilibrium each type plays a best response. First consider the high-cost type cH of 

Firm 2. In equilibrium, that type knows that Firm 1 produces q1 
∗ . Hence, its production 

level, q2
∗(cH ), solves the maximization problem 

max(P − cH )q2 = max  [a− q1 
∗ − q2 − cH ] q2. 

q2 q2 

Hence, 

∗ a− q1 
∗ − cH 

q2 (cH ) =  (15.1)
2 

Now consider the low-cost type cL of Firm 2. In equilibrium, that type also knows that 

Firm 1 produces q1 
∗ . Hence, its production level, q2 

∗(cL), solves the maximization problem 

max [a− q1 
∗ − q2 − cL] q2. 

q2 

Hence, ∗ 
∗ a− q1 − cL 
q2(cL) =  . (15.2)

2 
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The important point here is that both types consider the same q1
∗, as  that  is  the  strategy  

of Firm 1, whose type is known by both types of Firm 2. Now consider Firm 1. It has 

one type. Firm 1 knows the strategy of Firm 2, but since it does not know which type 

of Firm 2 it faces, it does not know the production level of Firm 2. In Firm 1’s view, 

the production level of Firm 2 is q2 
∗(cH ) with probability θ and q2 

∗(cL) with probability 

1− θ. Hence, the expected profit of Firm 1 from production level q1 is 

∗ ∗ ∗ U1 (q1, q  ) =  θ [a− q1 − q (cH )] q1 + (1− θ) [a− q1 − q (cL)] q12 2 2 

= {a− q1 − [θq2
∗ (cH ) + (1− θ)q2

∗ (cL)]} q1. 

The equality is due to the fact that the production level q2 of Firm 2 enters the payoff 

[a− q1 − q2] q1 = [a− q1] q1 − q1q2 of Firm 1 linearly. The term 

E [q2] = θq2 
∗ (cH ) + (1− θ)q2 

∗ (cL) 

is the expected production level of Firm 2. Hence, the expected profit of Firm 1 just his 

profit from expected production level: 

U (q1, q2 
∗ ) = (a− q1 − E [q2]) q1. 

Its strategy q1 
∗ solves the maximization problem 

maxU (q1, q2 
∗ ) . 

q1 

In this particular case, it is a best response to the expected production level: 

a− E [q2] a− [θq2 
∗(cH ) + (1− θ)q2 

∗(cL)] 
q1 

∗ = = . (15.3)
2 2 

It is important to note that the equilibrium action is a best response to expected 

strategy of the other player when and only when the action of the other players affect 

the payoff of the player linearly, as in this case.1 In particular, when the other players’ 

actions have a non-linear effect on the payoff of a player, his action may not be a best 

response to expected action of the others. It is a common mistake to take a player’s 

action as a best response to the expected action of others; you must avoid it. 

To compute the Bayesian Nash equilibrium, one simply needs to solve the three linear 
∗ ∗ ∗equations (15.1), (15.2), and (15.3) for q1 , q2 (cL), q2 (cH ). Write  

1To be more precise, when ∂Ui/∂qi is linear in qj . 
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⎛ ⎞ ⎡ ⎤−1 ⎛ ⎞ 
q1 

∗ 2 θ 1 − θ a ⎜ ⎟ ⎢ ⎥ ⎜ ⎟ ⎜ ∗ ⎟ ⎢ ⎥ ⎜ ⎟q2 (cH ) = 1 2  0  a− cH , ⎝ ⎠ ⎣ ⎦ ⎝ ⎠ 
q2

∗(cL) 1 0 2  a− cL 

yielding 

a− 2cH (1 − θ)(cH − cL) 
q2

∗ (cH ) =  + 
3 6 

a− 2cL θ(cH − cL) 
q2

∗ (cL) =  − 
3 6
 

a+ θcH + (1  − θ)cL
 
q1 

∗ = . 
3 

15.2 First-price Auction 

There is an object to be sold. Two bidders want to buy it through an auction. Simul

taneously, each bidder i submits a bid bi ≥ 0. Then, the highest bidder wins the object 

and pays her bid. If they bid the same number, then the winner is determined by a 

coin toss. The value of the object for bidder i is vi, which is privately known by bidder 

i. That  is,  vi is  the type of bidder  i. Assume that v1 and v2 are "independently and 

identically distributed" with uniform distribution over [0, 1].  This precisely  means that  

knowing her own value vi, bidder  i believes that the other bidder’s value vj is distributed 

with uniform distribution over [0, 1],  and  the type space  of  each  player  is  [0, 1]. Recall 

that the beliefs of a player about the other player’s types may depend on the player’s 

own type. Independence assumes that it doesn’t. 

Formally, the Bayesian game is as follows. Actions are bi, coming from the action 

spaces [0,∞); types  are  vi, coming from the type spaces [0, 1]; beliefs are uniform distri

butions over [0, 1] for each type, and the utility functions are given by ⎧ ⎪ ⎪ vi − bi if bi > bj , ⎨ 
vi−biui(b1, b2, v1, v2) =  if bi = bj , ⎪ 2 ⎪ ⎩ 0 if bi < bj . 

In a Bayesian Nash equilibrium, each type vi maximizes the expected payoff 

1 
E [ui(b1, b2, v1, v2)|vi] = (vi − bi) Pr{bi > bj (vj )} + (vi − bi) Pr{bi = bj (vj )} (15.4)

2
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over bi. 

Next, we will compute the Bayesian Nash equilibria. First, we consider a special equi

librium. The technique we will use here is a common technique in computing Bayesian 

Nash equilibria, and pay close attentions to the steps. 

15.2.1 Symmetric, linear equilibrium 

This section is devoted to the computation of a symmetric, linear equilibrium. Symmet

ric means that equilibrium action bi (vi) of each type vi is given by 

bi (vi) = b (vi) 

for some function b from type space to action space, where b is  the same function for  all  

players. Linear means that b is an affine function of vi, i.e., 

bi (vi) = a + cvi. 

To compute symmetric, linear equilibrium, one follows the following steps. 

Step 1 Assume a symmetric linear equilibrium: 

b ∗ 
1 (v1) =  a + cv1 

b ∗ 
2 (v2) =  a + cv2 

for all types v1 and v2 for some constants a and c, that will be determined later. The 

important thing here is the constants do not depend on the players or their types. 

Step 2 Compute the best reply function of each type. Fix some type vi. To  compute  

her best reply, first note that c >  0.2 Then, for any fixed value bi, 

Pr{bi = b ∗ 
j (vj )} = 0, (15.5) 

as bj is strictly increasing in vj by Step 1. It is also true that a ≤ bi (vi) ≤ vi. [You need 

to figure this out!] Hence, 

2If c = 0, both bidders bid a independent of their type. Then, bidding 0 is a better response for a 

type vi < a; a type  vi > a also has an incentive to deviate by increasing her bid slightly. 
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vi 

bi 

a 

Figure 15.1: Payoff as a function of bid in first-price auction 

vj 

c 

vj(bi) 

 ∗ 
 

E ui(bi, bj , v1, v2)|vi = (vi − bi) Pr{bi ≥ a+ cvj }
bi − a 

= (vi − bi) Pr{vj ≤ }
c 

bi − a 
= (vi − bi) · . 

c 

Here, the first equality is obtained simply by substituting (15.5) to (15.4). The second 

equality is simple algebra, and the third equality is due to the fact that vj is distributed 

by uniform distribution on [0, 1]. [If you are taking this course, the last step must be 

obvious to you!] 

For a graphical derivation, consider Figure 15.1. The payoff of i is vi − bi when 

vj ≤ vj (bi) = (bi − a) /c and is zero otherwise. Hence, his expected payoff is the 
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integral3  vj (bi) 

(vi − bi) dvj . 
0 

This is the area of the rectangle that is between 0 and vj (b) horizontally and between 

bi and vi vertically: (vi − bi) vj (bi). 

To compute the best reply, we must maximize the last expression over bi. Taking  the  

derivative and setting equal to zero yields 

vi + a 
bi = . (15.6)

2 

Graphically, as plotted in Figure 15.1, when bi is increased by an amount of Δ, vj (bi) 

increases by an amount of Δ/c. To the expected payoff, this adds a rectangle of size 

(vi − bi − Δ)Δ/c, which is approximately (vi − bi)Δ/c when Δ is small, and substact a 

rectangle of size vj (bi)Δ. At the optimum these two must be equal: 

(vi − bi)Δ/c = vj (bi)Δ, 

yielding (15.6) above. 

Remark 15.1 Note that we took an integral to compute the expected payoff and took a 

derivative to compute the best response. Since the derivative is an inverse of integral, this 

involves unnecessary calculations in general. In this particular example, the calculations 

were simple. In general those unnecessary calculations may be the hardest step. Hence, 

it is advisable that one leaves the integral as is and use Leibnitz rule4 to differentiate it 

to obtain the first-order condition. Indeed, the graphical derivation above does this. 

3If vj were not uniformly distributed on [0, 1], then it would have been the integral

 vj (bi) 

(vi − bi) f (vj ) dvj = (vi − bi) F (vj (bi)) 
0 

where f and F is the probability density and cumulative distribution functions of vj , respectively. 
4Leibnitz Rule: 

  U(x,y) U(x,y)∂ ∂U ∂L ∂ 
f (x, y, t) dt = · f (x, y, U (x, y)) − · f (x, y, L (x, y)) + f (x, y, t) dt. 

∂x ∂x ∂x ∂xt=L(x,y) t=L(x,y) 
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Step 3 Verify that best -reply functions are indeed affine, i.e., bi is of the form 

bi = a + cvi. Indeed, we rewrite (15.6) as 

1 a 
bi = vi + . (15.7)

2 2 

Check that both 1/2 and a/2 are constant, i.e., they do not depend on vi, and  they  are  

same for both players. 

Step 4 Compute the constants a and c. To do this, observe that in order to have 

an equilibrium, the best reply bi in (15.6) must be equal to b∗ 
i (vi) for each vi. That  is,  

1 a 
vi + = cvi + a. 
2 2 

must be an identity, i.e. it must remain true for all values of vi. Hence, the coefficient 

of vi must  be  equal in both sides:  
1 

c = . 
2 

The intercept must be same in both sides, too: 

a 
a = . 

2 

Thus, 

a = 0. 

This yields the symmetric, linear Bayesian Nash equilibrium: 

1 
bi (vi) =  vi. 

2 

15.2.2 Any symmetric equilibrium 

I now compute a symmetric Bayesian Nash equilibrium without assuming that b is linear. 

Assume that b is strictly increasing and differentiable. 

Step 1 Assume a Bayesian Nash equilibrium of the form 

b ∗ 
1 (v1) =  b (v1) 

b ∗ 
2 (v2) =  b (v2) 

for some increasing, differentiable function b.
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Step 2 Compute the best reply of each type, or compute the first-order condition 

that must be satisfied by the best reply. To this end, compute that, given that the other 

player j is playing according to equilibrium, the expected payoff of playing bi for type 

vi is 

 ∗ 
 

E ui bi, bj , v1, v2 |vi = (vi − bi) Pr{bi ≥ b(vj )} 
= (vi − bi) Pr{vj ≤ b−1 (bi)} 
= (vi − bi)b

−1 (bi) , 

where b−1 is the inverse of b. Here, the first equality holds because b is strictly increasing; 

the second equality is obtained by again using the fact that b is increasing, and the last 

equality is by the  fact  that  vj is uniformly distributed on [0, 1]. The first-order condition 

is obtained by taking the partial derivative of the last expression with respect to bi and 

setting it equal to zero. Then, the first-order condition is  
∗ ∗ db

−1   −b−1 (bi (vi)) + (vi − bi ) = 0.  dbi bi=b∗(vi)i 

Using the formula on the derivative of the inverse function, this can be written as  
−b−1 (b ∗ ∗ 1   

i (vi)) + (vi − bi (vi)) = 0. (15.8)  b (v) b(v)=b∗(v)i 

Step 3 Identify the best reply with the equilibrium action, towards computing the 

equilibrium action. That is, set 

bi 
∗ (vi) = b (vi) . 

Substituting this in (15.8), obtain 

1 −vi + (vi − b (vi)) = 0. (15.9)
b (vi) 

Most of the time the differential equation does not have a closed-form solution. In 

that case, one suffices with analyzing the differential equation. Luckily, in this case the 

differential equation can be solved, easily. By simple algebra, we rewrite the differential 

equation as 

b (vi) vi + b (vi) = vi. 
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Hence, 
d [b (vi) vi] 

= vi. 
dvi 

Therefore, 

b (vi) vi = vi 
2/2 + const, 

for some constant const. Since the equality also holds vi = 0,  it must be that  const = 0. 

Therefore, 

b (vi) = vi/2. 

In this case, we were lucky. In general, one obtains a differential equation as in (15.9), 

but the equation is not easily solvable in general. Make sure that you understand the 

steps until finding the differential equation well. 

15.2.3 General Case 

I have so far assumed that the types are uniformly distributed. Assume now instead 

that the types are independently and identically distributed with a probability density 

function f and cumulative distribution function F . (In  the  case  of  uniform,  f is 1 and 

F is identity on [0, 1].) To compute the symmetric equilibria in increasing differentiable 

strategies, observe that the expected payoff in Step 2 is 

E ui bi, b  ∗ 
j , v1, v2 |vi = (vi − bi) Pr{vj ≤ b−1 (bi)} = (vi − bi)F b−1 (bi) . 

The first-order condition for best reply is then 

db−1 

−F b−1 (b ∗ (vi)) + (vi − b ∗ (vi))f b−1 (b ∗ (vi)) = 0.i i i dbi bi=b∗(vi)i 

Using the formula on the derivative of the inverse function, this can be written as 

−F b−1 (b ∗ 
i (vi)) + (vi − b ∗ 

i (vi))f b−1 (b ∗ 
i (vi))

1 
= 0. 

b (v) b(v)=b∗(v)i 

In Step 3, towards identifying the best reply with the equilibrium action, one substututes 

the equality b∗ 
i (vi) = b (vi) in this equation and obtains 

1 −F (vi) + (vi − b (vi))f (vi) = 0. 
b (vi) 



 

  

283 15.3. DOUBLE AUCTION 

Arranging the terms, one can write this as a usual differential equation: 

b (vi)F (vi) + b (vi) f (vi) = vif (vi) . 

The same trick in the case of uniform distribution applies more generally. One can 

write the above differential equation as 

d 
[b (vi)F (vi)] = vif (vi) . 

dvi 

By integrating both sides, one then obtains the solution ( vi 
0 vf (v) dv 

b (vi) =  . 
F (vi) 

One can further simplify this solution by integrating the right hand side by parts: ( ( vi vi viF (vi)− 
0 F (v) dv 

0 F (v) dv 
b (vi) =  = vi − . 

F (vi) F (vi) (
That  is,  in equilibrium  a bidder shades her  bid down by an amount of  

0 
vi F (v) dv /F (vi) . 

15.3 Double Auction 

In many trading mechanisms, both buyers and the sellers submit bids (although the 

price submitted by the seller is often referred to as "ask" rather than "bid"). Such 

mechanisms are called double auction, where the name emphasizes that both sides of 

the market are competing. This section is devoted to the case when there is only one 

buyer and one seller. (This case is clearly about bilateral bargaining, rather than general 

auctions.) 

Consider a Seller, who owns an object, and a Buyer. They want to trade the object 

through the following mechanism. Simultaneously, Seller names ps and Buyer names pb. 

• If pb < ps, then there is no trade; 

• if pb ≥ ps, then they trade at price 

pb + ps 
p = . 

2 
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The value of the object for Seller is vs and for Buyer is vb.  Each player knows  her own  

valuation privately. Assume that vs and vb are independently and identically distributed 

with uniform distribution on [0, 1]. [Recall from the first-price auction what this means.] 

Then, the payoffs are  
vb − pb+ps 

2 if pb ≥ ps 
ub =

0 otherwise  
pb+ps 

2 − vs if pb ≥ ps 
us =

0 otherwise 

We will now compute Bayesian Nash equilibria. In an equilibrium, one must compute 

a price  ps (vs) for each type vs of the seller and a price pb (vb) for each type vb of the 

buyer. In a Bayesian Nash equilibrium, pb (vb) solves the maximization problem   
pb + ps(vs) 

max E vb − : pb ≥ ps(vs) , 
pb 2 

and ps (vs) solves the maximization problem   
ps + pb(vb) 

max E − vs : pb(vb) ≥ ps , 
ps 2 

where E [x : A] is the "integral" of x on set A. ( Note that E [x : A] =  E [x|A] Pr (A), 
where E [x|A] is the conditional expectation of x given A.  Make sure that you  know  all  

these terms!!!) 

In this game, there are many Bayesian Nash equilibria. For example, one equilibrium 

is given by  
X if vb ≥ X 

pb =
0 otherwise 

, 

 
X if vs ≤ X 

ps =
1 otherwise 

for some any fixed number X ∈ [0, 1]. We will now consider the Bayesian Nash equilib

rium with linear strategies. 

15.3.1 Equilibrium with linear strategies 

Consider an equilibrium where the strategies are affine functions of valuation, but they 

are not necessarily symmetric. 
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Step 1 Assume that there is an equilibrium with linear strategies: 

pb (vb) =  ab + cbvb 

ps (vs) =  as + csvs 

for some constants ab, cb, as, and  cs. Assume also that cb > 0 and cs > 0. [Notice that a 

and c may be different for buyer and the seller.] 

Step 2 Compute the best responses for all types. To do this, first note that 

pb − as 
pb ≥ ps (vs) = as + csvs ⇐⇒ vs ≤ (15.10) 

cs 
and 

ps − ab 
ps ≤ pb (vb) = ab + cbvb ⇐⇒ vb ≥ . (15.11) 

cb 
To compute the best reply for a type vb, one first computes his expected payoff from his 

bid (leaving in an untegral form). As shown in Figure 15.2, the payoff of the buyer is 

pb + ps(vs) 
vb − 

2 

when vs ≤ vs (pb) = (pb − as) /cs and the payoff is zero otherwise. Hence, the expected 

payoff is 

pb + ps(vs)
E [ub (pb, ps, vb, vs) | vb] =  E vb − : pb ≥ ps(vs)

2 
pb−as 
cs pb + ps(vs) 

= vb − dvs. 
20 

By substituting ps (vs) = as + csvs in this expression, obtain 
pb−as 
cs pb + a + csv

E [ub (pb, ps, vb, vs) | vb] =  vb − s s 
dvs. 

20 

Visually, this is the area of the trapezoid that lies beween 0 and vs (pb) horizontally and 

between the price (ps + pb) /2 and vb vertically.5 

5The area is   
pb − as 3pb + as

E [ub (pb, ps, vb, vs) | vb] =  vb − , 
cs 4

but it is not needed for the final result. 
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a 

pb 

vb 

c 

vsvs(pb) 

Figure 15.2: Payoff of of a buyer in double auction as his bid changes 

To compute the best reply, take the derivative of the last expression with respect to 

pb and set it equal to zero: 

pb−as 
cs∂ ∂ pb + as + csvs

0 =  E [ub (pb, ps, vb, vs) |vb] =  vb − dvs
∂pb ∂pb 0 2 

pb−as 
csvb − pb 1 

= − dvs 
cs 20 

vb − pb 1 pb − as 
= − . 

cs 2 cs 

Solving for pb, obtain  

pb = 
2 
3 
vb + 

1 
3 
as. (15.12) 

Graphically, a Δ amount of increase in pb has two impacts on the expected payoff. 

First it causes a  Δ/cs amount of increase in vs (pb), adding the shaded rectangular area 

of size (vb − pb)Δ/cs in Figure 15.2. It also increases the price by an amount of Δ/2, 

subtracting the shaded trapezoidal area of approximate size vs (b)Δ/2. At  the  optimum  

the two amounts must be equal, yielding the above equality. 

http:b)�/2.At
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Now compute the best reply of a type vs. As in before, his expected payoff of playing 

ps in equilibrium is 

ps + pb(vb)
E [us (pb, ps, vb, vs) |vs] =  E − vs : pb(vb) ≥ ps

2 
1 ps + ab + cbvb 

= − vs dvb, 
ps−ab 2 
cb 

where the last equality is by (15.11) and pb (vb) =  ab + cbvb. Once  again,  in  order  to  

compute the best reply, take the derivative of the last expression with respect to ps and 

set it equal  to  zero:6 

1 1 1 1 ps − ab 1 − (ps − vs) +  dvb = 1− − (ps − vs) = 0. 
cb ps−ab 2 2 cb cb 

cb 

Once again, a Δ increase in ps leads to a Δ/2 increase in the price, resulting in a gain   
1− ps−abof Δ/2. It  also  leads  to  a  Δ/cb decrease in the types of buyers who trade, 

cb

leading to a loss of (ps − vs)Δ/cb.  At the  optimum,  the gain and  the loss must be equal,  

yielding the above equality. Solving for ps,  one  can then obtain  

2 ab + cb 
ps = vs + . (15.13)

3 3 

Step 3 Verify that best replies are of the form that is assumed in Step 1. Inspecting 

(15.12) and (15.13), one concludes that this is indeed the case. The important point 

here is to check that in (15.12) the coefficient 2/3 and the intercept 
3
1 as are constants, 

independent of vb. Similarly for the coefficient and the intercept in (15.13). 

Step 4 Compute the constants. To do this, we identify the coefficients and the 

intercepts in the best replies with the relevant constants in the functional form in Step 

1. Firstly, by (15.12) and pb (vb) = pb, we must have the  identity  

1 2 
ab + cbvb = as + vb. 

3 3 
6One uses Leibnitz rule. The derivative of upper bound is zero, contributing zero to the derivative. 

The derivative of the lower bound is 1/cs, and this is multiplied by the expression in the integral at the 

lower bound, which is simply ps − vs. (Note that at the lower bound pb = ps, and hence the price is 

simply ps.) Finally, one adds the integral of the derivative of the expression inside the integral, which 

is simply 1/2. 

http:of�/2.It
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That is, 
1 

ab = as (15.14)
3 

and 
2 

cb = . (15.15)
3 

Similarly, by (15.13) and ps (vs) = ps, we must have the  identity  

ab + cb 2 
as + csvs = + vs. 

3 3 

That is, 
ab + cb 

as = (15.16)
3 

and 
2 

cs = . (15.17)
3 

Solving (15.14), (15.15), (15.16), and (15.17), we obtain ab = 1/12 and as = 1/4. 

Therefore, the linear Bayesian Nash equilibrium is given by 

2 1 
pb(vb) =  vb + (15.18)

3 12 
2 1 

ps(vs) =
3 
vs +

4 
. (15.19) 

In this equilibrium, the parties trade iff 

pb (vb) ≥ ps (vs) 

i.e., 
2 1 2 1 
3 
vb + 

12 
≥ 
3 
vs + 

4
, 

which can be written as 

3 1 1 3 1 1 
vb − vs ≥ 

2 4 
− 
12 

= 
2 6 

= 
4 
. 

Whenever vb > vc there is a positive gain form trader. When the gain from trade is 

lower than 1/4, the parties leave this gain from trade on the table. This is because of 

the incomplete information. The parties do not know that there is a positive gain from 

trade. Even if they tried to find ingenious mechanisms to elicit the values, buyer would 

have an incentive to understate vb and seller would have an incentive to overstate vs, 

and some gains from trade would not be realized. 
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15.4 Investment in a Joint Project 

In real life, the success of a project often requires investment by several independent 

parties. In an firm, production function exhibit synergies between the capital invest

ment and the labor. A successful product development requires input from both the 

R&D department, who will develop the new prototype, and the marketing department, 

who will do market research and advertisement. In a more macro level, we need both 

entrepreneurs investing in new business ideas and the "workers" investing in their human 

capital (when they are students). 

In all these examples, the return from investment for one party is increasing in the 

investment level by the other. For example, if R&D does not put effort in developing a 

good product, the market research and advertisement will be all waste. Likewise if the 

marketing department does not do a good job, R&D will not be useful, they will either 

develop the wrong product (failure in the market research) or the product will not sell 

because of bad advertisement. Similarly, as a student, in order to invest in your human 

capital (by studying rather than partying), you should anticipate that there will be jobs 

that will pay for your human capital, and in order for investing in skill oriented jobs, the 

entrepreneur should anticipate that there will be skilled people they can hire. The firms 

or the countries in which such investments take place proper while the others remain 

poor. 

I will know illustrate some of the issues related to this coordination problem on a 

simple example. There are two players, 1 and 2, and a potential project. Each player 

may either invest in the project or not invest. If they both invest in the project, it will 

succeed; otherwise it will fail costing money to the party who invest (if there is any 

investment). The payoffs are as follows:Consider the payoff matrix 

Invest Not Invest 

Invest
 

Not Invest
 

θ, θ θ − 1, 0 

0, θ  − 1 0, 0 

Player 1 chooses between rows, and Player 2 chooses between columns. Here, the payoffs 

from not investing is normalized to zero. If a player invests, his payoff depends on the 

other player’s action. If the other player also invests, the project succeeds, and both 

players get θ. If the other player does not invest, the project fails, and the investing 
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player incurs a cost, totalling a net benefit of θ − 1.7 The important thing here is the 

return from investment is 1 utile more if the other party also invests. 

Now suppose that θ is common knowledge. Consider first the case θ <  0. In  that  

case, the return from investment is so low that Invest is strictly dominated by Not Invest. 

(I am sure you can imagine a case in which even if you learn everything the school is 

offering and get the best job, it is still not worth studying.) Each player chooses not 

to invest. Now consider the other extreme case: θ >  1. In that case, the return from 

investment is so high that Invest strictly dominates Not Invest, and both parties invest 

regardless of their expectations about the other. (For example, studying may be such a 

fun that you  would study  the material even if you  thought that it will  not help you  get  

any job.) These are two extreme, uninteresting cases. 

Now consider the more interesting and less extreme case of 0 < θ < 1. In  that  case,  

there are two equilibria in pure strategies and one equilibrium in mixed strategies. In 

the good equilibrium, anticipating that the other player invests, each player invests in 

the project, and each gets the positive payoff of θ. In the bad equilibrium, each player 

correctly anticipates that the other party will not invest, so that neither of them invest, 

yielding zero payoff for both players. 

It is tempting to explain the differences between developed and underdeveloped coun

tries that have similar resources or the successful and unsuccessful companies by such a 

multiple equilibria story. Indeed, it has been done so by many researchers. We will next 

consider the case with incomplete information and see that there are serious problems 

with such explanations. 

Now assume that players do not know θ, but each of them gets an arbitrarily precise 

noisy signal about θ. In particular, each player i observes 

xi = θ + ηi, (15.20) 

where ηi is a noise term, uniformly distributed on [−ε, ε] and ε ∈ (0, 1) is a scalar 

that measures the level of uncertainty players face. Assume also that θ is distributed 

uniformly on a large interval [−L,L] where L » 1 +  ε. Finally, assume that (θ, η1, η2) 

are independently distributed. We take the payoff matrix, which depends on the players’ 

7This payoff structure corresponds to investing in a project that yields 1 if the project succeeds and 

0 if it fails. A player has to incur a cost c when he invests in the project. Writing θ = 1− c for the net 

return from the project, we obtain the payoff structure above. 
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types x1 and x2, as  

Invest Not Invest 

Invest 

Not Invest 

x1, x2 x1 − 1, 0 

0, x2 − 1 0, 0 

That is, the players do not know how much the other party values the investment, 

but they know that the valuations are positively correlated. This is because they are 

both estimates about the same thing. For example, if Player 1 finds out that investment 

is highly valuable, i.e., x1 is high, then he will believe that Player 2 will also find out 

that the investment is valuable, i.e., x2 is high. Because of the noise terms, he will 

not know however what x2 is. In particular, for x1 ∈ [0, 1], he will find that the other 

player’s signal is higher than his own with probability 1/2 and lower than his own with 

probability 1/2: 

Pr (xj < xi|xi) = Pr (xj > xi|xi) = 1/2. (15.21) 

This is implied by the fact that θ is uniformly distributed and we are away from the 

corners L and −L. [If you are mathematically inclined, you should prove this.] 

We will now look for the symmetric Bayesian Nash equilibria in monotone (i.e. weakly 

increasing) strategies. A monotone strategy si here is a strategy with a cutoff value x̂i 
such that player invests if and only if his signal exceeds the cutoff: 

Invest if xi ≥ x̂i, 
si (xi) =  

Not Invest if xi < x̂i. 

Any symmetric Bayesian Nash equilibrium s ∗ in monotone strategies has a cutoff value 

x̂ such that 

∗ Invest x,if xi ≥ ˆ
si (xi) =  

Not Invest if xi < x̂. 

Here, symmetry means that the cutoff value x̂ is  the same for  both  players.  In  order to  

identify such a strategy profile all we need to do is to determine a cutoff value. 

We will now find the cutoff values x̂ that yields a Bayesian Nash equilibrium. Notice 

that the payoff from investment is 

Ui (Invest, sj |xi) = Pr (sj (xj ) = Invest|xi) xi + Pr (sj (xj ) = Not  Invest|xi) (xi − 1) 

= xi − Pr (sj (xj ) = Not  Invest|xi) . 
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The payoff from Not invest is simply zero. Hence, a player invests as a best reply if 

and only if his signal is at least as high as the probability that the other player is 

not investing, i.e., xi ≥ Pr (sj (xj ) =  Not  Invest|xi). Therefore s ∗ is a Bayesian Nash 

equilibrium iff 

(∀xi ≥ x̂) xi ≥ Pr s ∗ 
j (xj ) =  Not  Invest|xi = Pr (xj < x̂|xi) 

(∀xi < x̂) xi ≤ Pr s ∗ (xj ) =  Not  Invest|xi = Pr (xj < x̂|xi) .j 

Proof. Consider xi ≥ x̂. According to s ∗ , i Invests at xi, with expected payoff of 

xi − Pr s ∗ (xj ) =  Not  Invest|xi = xi − Pr (xj < x̂|xi). In a Bayesian Nash equilibrium j 

he has no incentive to deviate to Not Invest, i.e., xi − Pr (xj < x̂|xi) ≥ 0, or  equivalently  

xi ≥ Pr (xj < x̂|xi). Similarly, when xi < x̂, according to s ∗, player  i does Not Invest, 

getting 0, and hence he has no incentive to deviate to Invest and get xi − Pr (xj < x̂|xi) 
iff xi < Pr (xj < x̂|xi). 
Now observe that if xi ≥ 1, then  xi ≥ 1 ≥ Pr (xj < x̂|xi), and hence si 

∗ (xi) =  Invest. 

On the other hand, if xi < 0, then  xi < 0 ≤ Pr (xj < x̂|xi), and hence s ∗ (xi) =  Not  i 

Invest. Therefore,  x̂ ∈ [0, 1]. 

Most importantly, at the cutoff value the player must be indifferent between investing 

and not investing: 

x̂ = Pr (xj < x̂|x̂) . (15.22) 

Intuitively, when xi is slightly lower than x̂ we have xi ≤ Pr (xj < x̂|xi), and  when  xi
 

is slightly higher than x̂ we have xi ≥ Pr (xj < x̂|xi).  Because of continuity we must 
  

have equality at xi = x̂. Below, for those who want to see a rigorous proof, I make this
 

argument more formally.
 

Proof. Since x̂ ∈ [0, 1], there are types xi > x̂, and all such types invest. Hence there
 

is a sequence of types xi → x̂ with xi > x̂. Since each xi invests, xi ≥ Pr (xj < x̂|xi).
 
Moreover, Pr (xj < x̂|xi) is continuous in xi. Hence,  x̂ = lim xi ≥ lim Pr (xj < x̂|xi) = 
  

Pr (xj < x̂|x̂). Similarly, there are types xi < x̂, who do not invests, and considering such
 

types approaching x̂, we  conclude  that  x̂ = lim xi ≤ lim Pr (xj < x̂|xi) = Pr (xj < x̂|x̂).
 
Combining these two we obtain the equality.
 

Equation (15.22) shows that there is a unique symmetric Bayesian Nash equilibrium 

in monotone strategies. 
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Proposition 15.1 There is a unique symmetric Bayesian Nash equilibrium in monotone 

strategies: 

Invest if xi ≥ 1/2, 
s ∗ (xi) =i 

Not Invest if xi < 1/2. 

Proof. By (15.22), we have x̂ = Pr (xj < x̂|x̂). But by (15.21), Pr (xj < x̂|x̂) = 1/2. 

Therefore, 

x̂ = Pr (xj < x̂|x̂) = 1/2. 

We have shown that there is a unique symmetric Bayesian Nash equilibrium in 

monotone strategies. It is beyond the scope of this course, but this also implies that 

the symmetric Bayesian Nash equilibrium is the only rationalizable strategy (with the 

exception of what to play at the cutoff 1/2).8 That is the game with incomplete informa

tion has a unique solution, as opposed to the multiple equilibria in the case of complete 

information. 

The unique solution has intuitive properties. Firstly, the investment becomes more 

likely when it is more valuable. This is because, as we increase θ, the probability 

Pr (xi ≥ 1/2|θ) also increases. (That probability is (θ + ε − 1/2) /ε when it is in the 

interior (0, 1).) That is, the outcome is determined by the underlying payoff parameters 

in an intuitive way. Secondly, the cutoff value 1/2 is also intuitive. Suppose that ε is 
∼ ∼very small so that x1 = x2 = θ.  Let  us  say that Invest is risk dominant if it is a best  

reply to the belief that the other player invests with probability 1/2 and does not invest 

with probability 1/2. Such beliefs are meant to be completely uninformative. Note 

that Invest is risk dominant if and only is xi ≥ 1/2. That is, the players play the risk 

dominant action under incomplete information. 

8For mathematically inclined students: This is because the game is supermodular: (i) the return 

to investment increases with the investment of the other party and with one’s own type xi, and (ii) 

the beliefs are increasing in the sense that Pr (xj ≥ a|xi) is weakly increasing in xi. In that case, the 

rationalizable strategies are bounded by symmetric Bayesian Nash equilibria in monotone strategies. 

Clearly, when the latter is unique, there must be a unique rationalizable strategy. 
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15.5 Exercises with Solution 

1. [Final, 2007, early exam] A consumer needs 1 unit of a good.	 There are n firms 

who can supply the good. The cost of producing the good for firm i is ci, which  

is privately known by i, and  (c1, c2, . . . , cn) are independently and uniformly dis

tributed on [0, 1]. Simultaneously, each firm i sets a price pi, and  the  consumer  

buys from the firm with the lowest price. (If k >  1 firms charge the lowest price, 

he buys from one of those firms randomly, each selling with probability 1/k.) The 

payoff of i is pi − ci if it sells and 0 otherwise. 

(a) Write this as a Bayesian game. 

Answer: 

•	 The set of players: N = {1, . . . , n}, the set of firms; 
•	 the set of types of i: Ti = [0, 1], the set of possible costs ci; 
•	 the set of actions of i: Ai = [0,∞), the set of possible prices pi; 
•	 the utility of i: 

1 (pi − ci) if pi ≤ pj for all j|{j:pj =pi}|ui (p1, . . . , pn; c1, . . . , cn) =  
0	 otherwise 

•	 the beliefs: conditional on ci, (cj )j=i iid with uniform distribution on #
[0, 1]. 

(b) Compute a symmetric, linear Bayesian Nash equilibrium.	 What happens as 

n→∞? Briefly interpret. 

Answer: See part (c) 

(c) Find all symmetric Bayesian Nash equilibrium in strictly increasing and dif

ferentiable strategies.
 

[Hint: Given any ¯ the probability that ≥ c̄ for all j  i is
c ∈ (0, 1), cj = 

(1 − c̄)n−1.] 

Answer: We are looking for an equilibrium in which each player i plays 

p, which is an increasing differentiable function that maps ci to p (ci). Now,  
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given that the other players play p, the expected utility of firm i from charging 

pi at cost ci is 

Ui (pi, ci) = Pr (p (cj) > pi for all j = i) (pi − ci) 

= Pr  cj > p
−1 (pi) for all j = i (pi − ci) 

= 1 − p −1 (pi) 
n−1 

(pi − ci) . 

To see the last equality, note that for all j = i, Pr (cj > p−1 (pi)) = (1 − p−1 (pi)). 

Since the types are independently distributed, we must multiply these prob

abilities over j–n − 1 times. The first order condition is 

∂Ui n−1 n−2 1 
= 1 − p −1 (pi) −(n − 1) 1 − p −1 (pi) (pi − ci)· = 0. 

∂pi p (c) p(c)=pi 

This equation must be satisfied at pi = p (ci): 

(1 − ci)
n−1 − (n − 1) (1 − ci)

n−2 (p (ci) − ci)
1 

= 0. 
p (ci) 

One can  rewrite this as a differential equation:  

(1 − ci)
n−1 p (ci) − (n − 1) (1 − ci)

n−2 p (ci) =  −ci (n − 1) (1 − ci)
n−2 . 

(If you obtain this differential equation, you will get 8 out of 10.) To solve it, 

notice that the left-hand side is 

d 
(1 − ci)

n−1 p (ci) . 
dci 

Therefore, 

(1 − ci)
n−1 p (ci) =  −ci (n − 1) (1 − ci)

n−2 dci + const
 

n − 1 n − 1
 
= (1 − ci)

n−1 − (1 − ci)
n + const, 

n − 1 n 

which is obtained by changing variable to v = 1  − c. To have the equality at 

ci = 1, constant must be zero. Therefore, 

n − 1 1 n − 1 
p (ci) = 1  − (1 − ci) =  + ci. 

n n n 

This is also the symmetric linear BNE in part (b). Here, with incomplete 

information, the equilibrium price is a weighted average of the lowest cost 



    

  

    

  

� 
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and the highest possible cost. This price can be high. However, as n → ∞, 
p (ci) → ci, and the firm with the lowest cost sells the good at its marginal 

cost, as in the competitive equilibrium. 

Remark 15.2 The problem here can be viewed as a procurement auction, in which 

the lowest bidder wins. This is closely related to the problem in which n buyers 

with privately known values bid in a first-price auction. 

2. [Final 2002] Two partners simultaneously invest in a project, where the level of 

investment can be any non-negative real number. If partner i invests xi and the 

other partner j invests xj , then the payoff of partners i is 

θixixj − xi 3 . 

Here, θi is privately known by partner i, and the other partner believes that θi is 

uniformly distributed on [0, 1]. All these are common knowledge. Find a symmetric 

Bayesian Nash equilibrium in which the investment of partner i is in the form of √ 
xi = a + b θi. 

Solution: In this problem, all symmetric Bayesian Nash equilibria turn out to 

be of the above form; the question hints the form. I construct a Bayesian Nash √ ∗ ∗ ∗equilibrium (x1, x2), which  will  be  in  the  form  of  xi (θi) = a+ b θi. The expected 

payoff of i from investment xi is 

∗ 3 ∗ 3U (xi; θi) = E θixixj − x = θixiE xj − xi i . 

Of course, x ∗ 
i (θi) satisfies the first-order condition 

∗ ∗ 20 = ∂U (xi; θi) /∂xi| = θiE x − 3 (xi (θi))∗ ,x (θi) j
i 

i.e.,  
E x ∗ � 

x ∗ 
i (θi) =  θiE x ∗ 

j /3 = 3 
j 

θi. 

√ 
That is, a = 0, and the equilibrium is in the form of x ∗ 

i (θi) = b θi where  
E x ∗ 

j
b = . 

3 



�
  � �
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But x ∗ 
j = b θj , hence [ ] [ ]

E x ∗ = E b θj = bE θj = 2b/3.j 

Substituting this in the previous equation we obtain 

E x ∗ 
j 2b/3 2b 

b2 = = = . 
3 3 9 

There are two solutions for this equality, each yielding a distinct Bayesian Nash 

equilibrium. The first solution is 

b = 2/9, 

yielding Bayesian Nash equilibrium 

2 
xi 

∗ (θi) =  θi. 
9 

The second solution is b = 0, yielding the Bayesian Nash equilibrium in which each 

player invests 0 regradless of his type. 

3. [Midterm 2, 2001] Consider the following first-price, sealed-bid auction where an 

indivisible good is sold. There are n ≥ 2 buyers indexed by i = 1, 2, . . . , n. 

Simultaneously, each buyer i submits a bid bi ≥ 0. The agent who submits the 

highest bid wins. If there are k >  1 players submitting the highest bid, then the 

winner is determined randomly among these players – each has probability 1/k of 

winning. The winner i gets the object and pays his bid bi, obtaining payoff vi − bi, 

while the other buyers get 0, where v1, . . . , vn are independently and identically 

distributed with probability density function f where 

3x2 x ∈ [0, 1]
f (x) =  

0 otherwise. 

(a) Compute the symmetric, linear Bayesian Nash equilibrium.
 

Answer: We look for an equilibrium of the form
 

bi = a+ cvi 
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where c >  0. Then, the expected payoff from bidding bi with type vi is 

U (bi; vi) = (vi − bi) Pr (bi > a  + cvj ∀j = i)  
= (vi − bi) Pr (bi > a  + cvj ) 

j #=i  bi − a 
= (vi − bi) Pr vj < 

c 
j #=i 

bi − a 3  
= (vi − bi)

c 
j #=i 

3(n−1) 
= (vi − bi) bi − a 

c 

for bi ∈ [a, a + c]. The first order condition is 

∂U (bi; vi) 
∂bi 

= − 
bi − a 
c 

3(n−1) 
+ 3 (n − 1) 1 

c 
(vi − bi) bi − a 

c 

3(n−1)−1 

= 0;  

i.e., 

− 
bi − a 

+ 3 (n − 1) 1 (vi − bi) = 0;  
c c 

i.e., 

bi = 
a + 3 (n − 1) vi 
3 (n − 1) + 1 . 

Since this is an identity, we must have 

a 
a = ,

3 (n − 1) + 1

i.e., a = 0, and  
3 (n − 1) 

c = . 
3 (n − 1) + 1 

(b) What happens as n →∞? 
Answer:	 As n →∞, 

bi → vi. 

In the limit, each bidder bids his valuation, and the seller extracts all the 

gains from trade.
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[Hint: Since v1, v2, . . . , vn is independently distributed, for any w1, w2, . . . , wk, we  

have 

Pr(v1 ≤ w1, v2 ≤ w2, . . . , vk ≤ wk) = Pr(v1 ≤ w1) Pr(v2 ≤ w2) . . .Pr(vk ≤ wk).] 

4. [Midterm 2, 2002] Consider a game between two software developers, who sell 

operating systems (OS) for personal computers. (There are also a PC maker and 

the consumers, but their strategies are already fixed.) Each software developer 

i, simultaneously offers “bribe” bi to the PC maker. (The bribes are in the form 

of contracts.) Looking at the offered bribes b1 and b2, the PC maker accepts the 

highest bribe (and tosses a coin between them if they happen to be equal), and he 

rejects the other. If a firm’s offer is rejected, it goes out of business, and gets 0. 

Let i∗ denote the software developer whose bribe is accepted. Then, i∗ pays the 

bribe bi∗ , and the PC maker develops its PC compatible only with the operating 

system of i∗ . Then in the next stage, i∗ becomes the monopolist in the market for 

operating systems. In this market the inverse demand function is given by 

P = 1  − Q, 

where P is the price of OS and Q is the demand for OS. The marginal cost of 

producing the operating system for each software developer i is ci. The  costs  c1 

and c2 are independently and identically distributed with the uniform distribution 

on [0, 1], i.e., ⎧ ⎪ ⎪ 0 if c < 0 ⎨ 
Pr (ci ≤ c) =  c if c ∈ [0, 1] ⎪ ⎪ ⎩ 1 otherwise. 

The software developer i knows its own marginal costs, but the other firm does not 

know. Each firm tries to maximize its own expected profit. Everything described 

so far is common knowledge. 

(a) What quantity a software developer i would produce if it becomes monopolist? 

What would be its profit?
 

Solution: Quantity is
 
1 − ci 

qi = 
2 
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and the profit is 
1− ci 

2 

vi = . 
2 

(b) Compute a symmetric Bayesian Nash equilibrium in which each firm’s bribe 

is in the form of bi = α + γ (1− ci)
2 . 

Solution: We have a first price auction where the valuation of buyer i, who  

is the software developer i, is  vi = (1− ci)
2 /4. His payoff from paying bribe 

bi is 

Ui (bi; ci) = (vi − bi) Pr (bj < bi) , 

where 

Pr (bj < bi) = Pr  α + γ (1− cj )
2 < bi = Pr  (1− cj )

2 < (bi − α) /γ 

= Pr 1− cj < (bi − α) /γ = Pr  cj > 1− (bi − α) /γ [ ]
= 1− Pr cj ≤ 1− (bi − α) /γ = 1− 1− (bi − α) /γ

= (bi − α) /γ. 

Hence, 

Ui (bi; ci) = (vi − bi) (bi − α) /γ. 

But maximizing Ui (bi; ci) is the same as maximizing 

γUi (bi; ci)
2 = (vi − bi)

2 (bi − α) . 

The first order condition yields 

2 (bi − vi) (bi − α) + (bi − vi)
2 = 0, 

i.e., 

2 (bi − α) + (bi − vi) = 0, 

i.e., 
1 2 1 2 

bi = vi + α = (1− ci)
2 + α. 

3 3 12 3 
Therefore, 

1 2 
γ = and α = α =⇒ α = 0,

12 3 
yielding 

1 1 
bi = vi = (1− ci)

2 . 
3 12

(Check that the second derivative is 2 (3bi − 2vi) = −2vi < 0.) 
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(c) Considering that the demand for PCs and the demand of OSs must be the 

same, should PC maker accept the highest bribe? (Assume that PC maker 

also tries to maximize its own profit. Explain your answer.) 

Answer: A low-cost monopolist will charge a lower price, increasing the 

profit for the PC maker. Since low-cost software developers pay higher 

bribes, it is in the PC maker’s interest to accept the higher bribe. In that 

case, he will get higher bribe now and higher profits later. 

15.6 Exercises 

1. [Midterm 2 Make Up, 2011] There are n players in a town. Simultaneously each 

player i contributes xi to a public  project,  yielding a public good  of  amount  

y = x1 + · · ·+ xn, 

where xi is any real number. The payoff of each player i is 

ui = y 
2 − cix γi 

where γ >  2 is a known parameter and the cost parameter ci ∈ {1, 2} of player i 
is his private information. The costs (c1, . . . , cn) are independently and identically 

distributed where the probability of ci = 1 is 1/2 for each player i. 

(a) Write this formally as a Bayesian game. 

(b) Find a Bayesian Nash equilibrium of this game.	 Verify that the strategy 

profile you identified is indeed a Bayesian Nash equilibrium. (If you solve this 

part for n = 2 and γ = 3, you will get 75% of the credit.) 

2. [Homework 4, 2004] There are n people, who want to produce a common public 

good through voluntary contributions. Simultaneously, every player i contributes 

xi.	 The amount of public good produced is 

y = x1 + x2 + · · ·xn. 

The payoff of each player i is 

ui = θiy − y 2 − xi, 
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where θi is a parameter privately known by player i, and  θ1, θ2, . . . , θn are indepen

dently and identically distributed with uniform distribution on [1, 2]. Assume that 

xi can be positive or negative. Compute a symmetric Bayesian Nash equilibrium. 

[Hint: symmetric means that xi (θi) = xj (θj ) when θi = θj . The equilibrium will 

be linear, in the form of xi (θi) = aθi + b.] 

3. [Homework 5, 2005] Consider a two player game with payoff matrix 

L R 

X
 

Y
 

Z
 

3, θ  0, 0 

2, 2θ 2, θ  

0, 0 3,−θ 
where θ ∈ {−1, 1} is a parameter known by Player 2. Player 1 believes that θ = −1 
with probability 1/2 and θ = 1 with probability 1/2. Everything above is common 

knowledge. 

(a) Write this game formally as a Bayesian game. 

(b) Compute the Bayesian Nash equilibrium of this game. 

(c) What would be the Nash equilibria in pure strategies (i) if it were common 

knowledge that θ = −1, or (ii) if it were common knowledge that θ = 1? 

4. [Homework 5, 2005] In a college there are n students. They are simultaneously 

sending data over the college’s data network. Let xi ≥ 0 be  the size data sent by  

student i. Each  student  i chooses xi himself or herself. The speed of network is 

inversely proportional to the total size of the data, so that it takes xiτ (x1, . . . , xn) 

minutes to send the message where 

τ (x1, . . . , xn) = x1 + · · ·+ xn. 

The payoff of student i is 

θixi − xiτ (x1, . . . , xn) , 

where θi ∈ {1, 2} is a payoff parameter of player i, privately known by himself or 

herself. For each j = i, independent of θj , player  j assigns probability 1/2 to θi = 1  

and probability 1/2 to θi = 2. Everything described so far is common knowledge. 
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(a) Write this game formally as a Bayesian game. 

(b) Compute the symmetric Bayesian Nash equilibrium of this game. 

Hint: symmetric means that xi (θi) = xj (θj ) when θi = θj . In  the  symmetric  

equilibrium one of the types will choose zero, i.e., for some θ ∈ {1, 2}, xi (θi) =  

0 whenever θi = θ. The expected value E [x1 + · · ·+ xn] of x1 + · · · + xn is 

E [x1] + · · ·+ E [xn]. 

5. [Midterm 2, 2001] Consider the following first-price, sealed-bid auction where an 

indivisible good is sold. There are n ≥ 2 buyers indexed by i = 1, 2, . . . , n. 

Simultaneously, each buyer i submits a bid bi ≥ 0. The agent who submits the 

highest bid wins. If there are k >  1 players submitting the highest bid, then the 

winner is determined randomly among these players – each has probability 1/k of 

winning. The winner i gets the object and pays his bid bi, obtaining payoff vi − bi, 
while the other buyers get 0, where v1, . . . , vn are independently and identically 

distributed with probability density function f where 

(α+ 1) xα x ∈ [0, 1]
f (x) =  

0 otherwise
 

for some α > 0.
 

(a) Compute the symmetric, linear Bayesian Nash equilibrium. 

(b) What happens as n → ∞, or  as  α → ∞?  Give an economic explanation  for  

each limit. 

[Hint: Since v1, v2, . . . , vn is independently distributed, for any w1, w2, . . . , wk, we  

have 

Pr(v1 ≤ w1, v2 ≤ w2, . . . , vk ≤ wk) = Pr(v1 ≤ w1) Pr(v2 ≤ w2) . . .Pr(vk ≤ wk).] 

6. [Midterm 2, 2001] Consider a game of public good provision in which two players 

simultaneously choose whether to contribute yielding payoff matrix 

1\2 Contribute Don’t 

Contribute 

Don’t 

1− c1,1− c2 1− c1, 1 
1, 1− c2 0,0 
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where the costs c1 and c2 are privately known by players 1 and 2, respectively. c1 

and c2 are independently and identically distributed with uniform distribution on 

[0, 2] (i.e., independent of his own cost, player 1 believes that c2 is distributed uni

form distribution on [0, 2] and vice verse). Compute a Bayesian Nash equilibrium 

of this game. 

7. [Final 2002 Make Up] We consider an “all-pay auction” between two bidders, who 

bid for an object. The value of the object for each bidder i is vi, where  v1 and v2 

are identically and independently distributed with uniform distribution on [0, 1]. 

Each bidder simultaneously bid bi; the bidder who bids the highest bid gets the 

object, and each bidder i pays his own bid bi. (If  b1 = b2, then each gets the object 

with probability 1/2.) The payoff of player i is ⎧ ⎪ ⎪ ⎨ vi − bi if bi > bj , 

ui = vi/2 − bi if bi = bj , ⎪ ⎪ ⎩ −bi if bi < bj . 

Find a symmetric Bayesian Nash equilibrium in the form of bi = a+ cvi 
2 . 

8. [Homework 6, 2006] (This question is also about a game that was played in the 

class.) There are n students in the class. We have a certificate, whose value for 

each student i is vi, where  vi is privately known by student i and (v1, . . . , vn) are 

independently and identically distributed with uniform distribution on [0, 100]. 

Simultaneously, each student i bids a real number bi. The player who bids the 

highest number "wins" the certificate; if there are more than one highest bids, then 

we determine the "winner" randomly among the highest bidders. The winner i gets 

the certificate and pays bi to the professor. [Hint: Pr (maxj=# i vj ≤ x) = (x/100)n−1 

for any x ∈ [0, 100].] 

(a) Find a symmetric, linear Bayesian Nash equilibrium, where bi (vi) =  a + cvi 

for some constants a and c. 

(b) What is the equilibrium payoff of a student with value vi? 

(c) Assume that n = 80. How much would a student with value vi be willing to 

pay (in terms of lost opportunities and pain of sitting in the class) in order 
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to play this game? What is the payoff difference between the luckiest student 

and the least lucky student? 

9. [Homework 6, 2006] In a state, there are two counties, A and B. The  state  is  to  

dump the waste in one of the two counties. For a county i, the cost of having the 

wasteland is ci, where  cA and cB are independently and uniformly distributed on 

[0, 1]. They decide where to dump the waste as follows. Simultaneously counties 

A and B bid bA and bB, respectively. The waste is dumped in the county i who 

bids lower, and the other county j pays bj to i. (We toss a coin if the bids are 

equal. The payoff of a county is the amount of money it has minus the cost–if it 

contains the wasteland.) 

(a) Write this as a Bayesian game. 

(b) Find all the symmetric equilibria where the bid is a strictly increasing dif

ferentiable function of  the  cost.  [If  you can  find a differential equation that  

characterizes the symmetric equilibria, you will get 80% of this part.] 

10. [Final, 2006] Alice and Bob have inherited a factory from their parents. The value 

of the factory is vA for Alice and vB for Bob, where vA and vB are independently 

and uniformly distributed over [0, 1], and each of them knows his or her own value. 

Simultaneously, Alice and Bob bid bA and bB , respectively, and the highest bidder 

wins the factory and pays the other sibling’s bid. (If the bids are equal, we toss a 

coin to determine the winner.) 

(a) (5pts) Write this game as a Bayesian game. 

(b) (10 pts) Find a symmetric, linear Bayesian Nash equilibrium of this game. 

(c) (10pts) Find all symmetric Bayesian Nash equilibria of this game in strictly 

increasing differentiable strategies. 

11. [Final 2007] There are	 n ≥ 2 siblings, who have inherited a factory from their 

parents. The value of the factory is vi for sibling i, where  (v1, . . . , vn) are inde

pendently and uniformly distributed over [0, 1], and each of them knows his or her 

own value. Simultaneously, each i bids bi, and the highest bidder wins the factory 

and pays his own bid to his siblings, who share it equally among themselves. (If 
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the bids are equal, the winner is determined by a lottery with equal probabilities 

on the highest bidders.) Note that if i wins, i gets vi − bi and any other j gets 

bi/ (n − 1). 

(a)  (5 points)  Write this as a Bayesian  game.  

(b) (10 points) Compute a symmetric, linear Bayesian Nash equilibrium.	 What 

happens as n →∞? Briefly interpret. 

(c) (10 points) Find all symmetric Bayesian Nash equilibrium in strictly increas

ing and differentiable strategies. 

12. [Homework 6, 2006] There is a house on the market.	 There are n ≥ 2 buyers. 

The value of the house for buyer i is vi (measured in million dollars) where v1, 

v2, . . . ,  vn are independently and identically distributed with uniform distribution 

on [0, 1]. The house is to be sold via first-price auction. This question explores 

whether various "incentives" can be effective in improving participation. 

(a) Suppose that seller gives a discount to the winner, so that winner pays only λbi 

for some λ ∈ (0, 1), where  bi is his own bid. Compute the symmetric Bayesian 

Nash equilibrium. (Throughout the question, you can assume linearity if you 

want.) Compute the expected revenue of the seller in that equilibrium. 

(b) Suppose that seller gives a prize α >  0 to the winner. Compute the symmetric 

Bayesian Nash equilibrium. Compute the expected revenue of the seller in 

that equilibrium. 

(c) Consider three different scenarios: 

• the seller does not give any incentive; 

• the seller gives 20% discount (λ = 0.8); 

• the seller gives $100,000 to the winner. 
For each scenarios, determine how much a buyer with value vi is willing to pay 

in order to participate the auction. Briefly discuss whether such incentives 

can facilitate the sale of the house. 

13. [Homework 6, 2006] We have a penalty kicker and a goal keeper. Simultaneously, 

penalty kicker decides whether to send the ball to the Left or to the Right, and 
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the goal keeper decides whether to cover the Left or the Right. The payoffs are as 

follows (where the  first  entry is the  payoff of penalty  kicker):  

PK\GK Left Right 

Left x− 1, y + 1  x+ 1,−1 
Right 1, y − 1 −1, 1 

Here, x and y are independently and uniformly distributed on [−1, 1]; the  penalty  

kicker knows x, and  the goal keeper  knows  y. Find a Bayesian Nash equilibrium. 

14. [Final 2010] There are two identical objects and three potential buyers, named 

1, 2, and 3. Each buyer only needs one object and does not care which of the 

identical objects he gets. The value of the object for buyer i is vi where (v1, v2, v3) 

are independently and uniformly distributed on [0, 1]. The  objects  are  sold  to  two  

of the buyers through the following auction. Simultaneously, each buyer i submits 

a bid  bi, and the buyers who bid one of the two highest bids buy the object and 

pay their own bid. (The ties are broken by a coin toss.) That is, if bi > bj for 

some j, i gets an object and pays bi, obtaining the payoff of vi − bi; if  bi < bj for 

all j, the  payoff of  i is 0. 

(a)  (5 points)  Write this as a Bayesian  game.  

(b) (20 points) Compute a symmetric Bayesian Nash equilibrium of this game in 

increasing differentiable strategies. (You will receive 15 points if you derive 

the correct equations without solving them.) 

15. [Final 2010] A state government wants to construct a new road.	 There are n 

construction firms. In order to decrease the cost of delay in completion of the 

road, the government wants to divide the road into k < n  segments and construct 

the segments simultaneously using different firms. The cost of delay for the public 

is Cp = K/k for some constant K > 0. The cost of constructing a segment for firm 

i is ci/k where (c1, . . . , cn) are independently and uniformly distributed on [0, 1], 

where ci is privately known by firm i. The government hires the firms through the 

following procurement auction. 

k + 1st-price Procurement Auction Simultaneously, each firm i submits a bid 

bi and each of the firms with the lowest k bids wins one of the segments. Each 
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winning firm is paid the lowest k + 1st bid as the price for the construction 

of the segment. The ties are broken by a coin toss. 

The payoff of a winning firm is the price paid minus its cost of constructing a 

segment, and the payoff of a losing firm is 0. For example, if k = 2  and the bids 

are (0.1, 0.2, 0.3, 0.4), then firms 1 and 2 win and each is paid 0.3, resulting in 

payoff vector (0.3 − c1/2, 0.3 − c2/2, 0, 0). 

(a) (10 points) For a given fixed k, find a Bayesian Nash equilibrium of this game 

in which no firm bids below its cost. Verify that it is indeed a Bayesian Nash 

equilibrium. 

(b) (10 points) Assume that each winning firm is to pay β ∈ (0, 1) share of the 

price to the local mafia. (In the above example it pays 0.3β to the mafia 

and keep 0.3 (1  − β) for itself.) For a given fixed k, find  a  Bayesian  Nash  

equilibrium of this game in which no firm bids below its cost. Verify that it 

is indeed a Bayesian Nash equilibrium. 

(c) (5 points) Assuming that the government minimizes the sum of CP and the 

total price it pays for the construction, find the condition for the optimal k 

for the government in parts (a) and (c). Show that the optimal k in (c) is 

weakly lower than the optimal k in (a). Briefly interpret the result. [Hint: 

the expected value of the k + 1st lowest cost is (k + 1)  / (n+ 1).] 

16. [Final 2011] There are k identical objects and n potential buyers where n > k >  

1. Each buyer only needs one object and does not care which of the identical 

objects he gets. The value of the object for buyer i is vi where (v1, v2, . . . , vn) are 

independently and uniformly distributed on [0, 1]. The objects are sold to k of 

the buyers through the following auction. Simultaneously, each buyer i submits a 

bid bi, and the buyers who bid one of the k highest bids buy the object and pay 

their own bid. (The ties are broken by a coin toss.) That is, if bi > bj for at least 

n− k bidders j, then  i gets an object and pays bi, obtaining the payoff of vi − bi; 

if bi < bj for at least k bidders j, the  payoff  of  i is 0. 

(a)  (5 points)  Write this as a Bayesian  game.  
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(b) (20 points) Compute a symmetric Bayesian Nash equilibrium of this game in 

increasing differentiable strategies. (You will receive 15 points if you derive 

the correct equations without solving them.) 

Hint: Let (x1, . . . , xm) be independently and uniformly distributed on [0, 1] 

and let x(r) be rth highest xi among (x1, . . . , xm). Then, the probability 

density function of x(r) is 

fm,r (x) =  
m! 

(1 − x)r−1 x m−r . 
r! (m− r)! 

17. [Final 2011] Consider the following charity auction. There are two bidders, namely 

1 and 2. Each bidder i has a distinct favored charity. Simulatenously, each bidder 

i contributes bi to the auction. The highest bidder wins, and the sum b1 + b2 goes 

to the favored charity of the winner. The winner is determined by a coin toss in 

case of a tie. The payoff of the bidder i is 

θi (b1 + b2) − bγi if i wins 
ui (b1, b2, θi) =  −bγi otherwise, 

where γ > 1 is a known parameter, θi is privately known by player i, and  θ1 and θ2 

are independently and uniformly distributed on [0, 1]. Find a differential equation 

that must be satisfied by strategies in a symmetric Bayesian Nash equilibrium. 

(Assume that the equilibrium strategies are increasing and differentiable.) 

18. [Homework 5, 2011] Consider an n-player game in which each player i selects a 

search level si ∈ [0, 1] (simultaneously), receiving the payoff 

ui (s1, . . . , sn, θ1, . . . , θn) =  θis1 · · · sn − siγ /γ, 

where (θ1, . . . , θn) are independently and identically distributed on [0,∞). the  

expected value of each Here, γ >  1 is commonly known and θi is privately known 

by player i. (Denote the expected value of θi by θ̄ and the expected value of θαi by 

θ̄α for any α > 0.) 

(a) For γ = 2, find the symmetric linear Bayesian Nash equilibria. 

(b) For n = γ = 2, find the symmetric Bayesian Nash equilibria. 
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19. [Homework 5, 2011] Consider an	 n-player first price auction in which the value 

of the object auctioned is vi for player i, where  (v1, . . . , vn) are independently 

and identically distributed with CDF F where F (v) =  vα for some α >  0. The  

value of vi is privately known by player i. Compute a symmetric Bayesian Nash 

equilibrium. 

20. [Homework 5, 2011] Consider an auction with two buyers where the value of the 

object auctioned is vi for player i, where  (v1, v2) are independently and identically 

distributed with uniform distribution on [0, 1]. The  value  of  vi is privately known 

by player i. In the auction, the buyers simultaneously bid b1 and b2 and the highest 

bidder wins the object and pays the average bid (b1 + b2) /2 as the price. The ties 

are broken with a coin toss. Compute a symmetric Bayesian Nash equilibrium. 
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