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Introduction 

Many real-world applications 

Government procurement 

Treasury auctions 

Art and used-car auctions 

Online advertising 

Auctions for consumer goods 

Lots of academic research in auctions in the past few decades 

How to most efficiently allocate resources or raise revenue 

Well-defined market mechanisms and questions 

Nice opportunities to combine theory and empirics 

Recent surges in interest 

FCC spectrum auction 

Online advertising 

Structural estimation of bidder preferences 
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Independent Private Values (IPV) Model 

Bidders indexed by i = 1, . . . , n 

One object to be sold 

Each bidder observes a signal si ∈ [s, s̄]. si ∼ F , independently of s−i 

Private Values: v(si , s−i ) = v(si ). WLOG to set v(si ) = si 
Risk-Neutrality: Utility from winning and paying p is si − p. Utility from 
losing and paying pay p is −p. 
Private Information: Only observe your own signal 
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Second Price Sealed Bid Auction 

Each bidder secretly submits a bid. Highest bidder wins and pays second 
highest bid 

Proposition: In the second price sealed bid auction it is a weakly dominant to 
bid one’s values, b(si ) = si 

Proof: 
Consider a deviation to bi =6 si and let b̂ = maxj 6=i bj 

If b̂ > bi , si : lose under bi or si . No change in i ’s outcome 

If bi > b̂ > si : bi results in winning and paying more than the value 

If si > b̂ > bi : bi results in losing when would have gotten surplus 

If bi , si > b̂: win and pay b̂ under bi or si . No change in i ’s outcome 

In all six possible orderings, the deviation is weakly worse. 

Notes: 

Truthtelling is not the unique equilibrium strategy: e.g. i bids s̄  and all 
other bidders bid 0 

Truthful equilibrium is the unique symmetric Bayesian Nash equilibrium if 
F is continuous and has full support on [s, s̄] 
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Second Price Sealed Bid Auction 

n−1:nExpected revenue is the expected second-highest value, denoted s Z s̄  
n−1:n] =E [s xn(n − 1)F (x)n−2f (x)(1 − F (x))dx 

s 

For example, for si ∈ U[0, 1], F (x) = x for x ∈ [0, 1] and the expected 
revenue is Z 1 n − 1 

xn(n − 1)x n−2(1 − x)dx = 
n + 1 0 

The density calculation above is a an example of the density of the k-th order 
statistic: � � 

n − 1 
f k:n(x) = nf (x) F (x)k−1(1 − F (x))n−k 

k − 1 
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English Auction 

A game involving unrestricted sequential bids would be complicated to 
analyze so most models simplify to a “button auction”. 

Bidders keep their finger on a button as prices continuously increase. 
Dropout is permanent. 
Auction ends when one bidder remains. 

Propositon: A Perfect Bayesian Equilibrium of the button auction model is for 
all players to drop out at b(si ) = si . The highest value bidder wins and pays 
the second highest price. 

Proof: 
Players could potentially deviate to a complex strategy where the dropout 
point is a function of the full history of dropouts. But, if we consider the 
realized drop-out point bi given any realization of the opponent’s bids, the 
same argument for the second-price auction shows that the bidder is weakly 
worse off. 

Equivalence with second-price auction can be seen by thinking of the number 
submitted in a second price auction as dropout instructions to a proxy bidder. 

Experiments suggest that button-auction is strategically simpler than the 
second-price sealed bid version. 6/21 



First-Price Sealed Bid Auction 

A standard mechanism in procurement and other auctions is: 

Bidders submit bids b1, . . . , bn 

Highest bidder wins and pays his bid 

Clearly, bidders do not want to bid their value. This guarantees zero. 

Consider a symmetric equilibrium in strictly increasing strategies b∗(s) 

The payoff from bidding bi if others bid according to b∗(s) is 

Eui (bi , b−
∗ 
i ; si ) = (si − bi )Pr [b ∗ (sj ) ≤ bi , ∀j =6 i ] 

=⇒ b ∗ (si ) = argmaxbi (si − bi )F n−1(b∗−1(bi )) 

A trick for simplifying the analysis is to think about player i deviating to 
b∗(s 0). This implies 

si = argmax (si − b ∗ (s))F n−1(s)s 

The FOC for this maximization is 

0 = (si − b ∗ (si ))(n − 1)F n−2(si )f (si ) + F n−1(si ) · (−b∗0(si )) 
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First-Price Sealed Bid Auction 

The FOC for this maximization is 

0 = (si − b ∗ (si ))(n − 1)F n−2(si )f (si ) + F n−1(si ) · (−b∗0(si )) 

One thing we can do with the FOC is to get intuition for bid shading and 
structural estimation. 

Putting b∗(si ) alone on one side gives 

F n−1(si )b
∗0(si )

b ∗ (si ) = si − 
(n − 1)F n−2(si )f (si ) 

G (b∗(si )) 
= si − , 

g(b∗(si )) 

where G (x) is CDF of the highest of n − 1 bids drawn from b∗(s). 
Some implications of this formula are: 

Players will be more aggressive in shading bids when the probability of 
winning is large and the density of the highest opposing bid low. This is 
the monopoly-pricing tradeoff. 
We can nonparametrically estimate G (x) from data on opponents bids in 
repeated auctions. This formula then allows us to recover an estimate of 
each bidder’s value. 
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First-Price Sealed Bid Auction 

The FOC for this maximization is 

0 = (si − b ∗ (si ))(n − 1)F n−2(si )f (si ) + F n−1(si ) · (−b∗0(si )) 

We can also use this FOC to solve for the equilibrium. 

It can be rearranged as 

b ∗ (si )(n − 1)F n−2(si )f (si ) + b∗0(si )F n−1(si ) = si (n − 1)F n−2(si )f (si ) 

The LHS is an exact derivative. Integrating givesZ si 
b ∗ (si )F n−1(si ) = x(n − 1)F n−2(x)f (x)dx 

s 

Integrating this by parts (using u = x and dv = (n − 1)F n−2(x)f (x) we find R si F n−1(x)dx 
s

b ∗ (si ) = si − 
F n−1(si ) 

For example, when s ∼ U[0, 1] this givesR si n 
0 x

n−1dx si /n n − 1 
b ∗ (si ) = si − = si − = sin−1 n−1 s s n

i i 
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First-Price Sealed Bid Auction 

Another expression for the optimal bid helps to understand the auction 
revenue. 

Proposition: b∗(s) is the expected second highest value conditional on s being 
the highest value. 

Proof: 
The expression just after the integration step on the previous slide givesR si x(n − 1)F n−2(x)f (x)dx 

s
b ∗ (si ) = 

F n−1(si ) 

Recognizing the density in the numerator as that of an order statistic givesR si xf n−1:n−1(x)dx 
s

b ∗ (si ) = = E (s n−1:n−1|s n−1:n−1 < si )
F n−1(si ) 

Corollary: First and second price auctions yield the same expected revenue. 

Proof: 
Expected revenue in the first price auction is Esn:n [b∗(sn:n)]. The proposition 

n−1:n−1|sn−1:n−1 ≤ sn:n] = E [sn−1:n]gives that this is equal to Esn:n E [s 
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Revenue Equivalence Theorem 

Consider a more general auction mechanism. Bidders submit bids b1, . . . , bn. 
The good is allocated to bidder i with probability xi (b1, . . . , bn). Payments to 
the seller are ti (b1, . . . , bn). 

Theorem: In the symmetric IPV model, suppose that a general auction 
mechanism has an equilibrium b∗(si ) in which (i) the object is awarded to the 
bidder with the highest value and (ii) a bidder with valuation s obtains zero 
profits. Then in that equilibrium 
(a) The seller’s expected revenue is E (sn−1:n).R si(b) The expected utility of a type si bidder is F n−1(x)dx . 

s 

The “revenue equivalence” name reflects that an implication of (a) is that all 
such mechanisms raise the same revenue for the seller. 

The earlier revenue results on first- and second-price auctions are special 
cases. In each of those games the equilibrium bids b∗(si ) were monotonically 
increasing in si . When this happens the bidder with the highest value will win 
in equilibrium. 
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Revenue Equivalence Theorem 

Proof: Consider i ’s payoff in any equilibrium strategy profile bi (·), b−i (·): 

Eui (si ) = max Eui (bi , b−i (s−i ); si ) = max si Eb−i [xi (bi , b−i )]−Eb−i [ti (bi , b−i )] 
bi bi 

I The envelope theorem (bi maximizes the payoff given si and b−i ) implies 

dEui (si ) 
= Eb−i [xi (bi (si ), b−i (s−i ))] = F n−1(si )

dsi 

because the mechanism awards the object to the highest value bidder 
I Because Eui (s) = 0, we have the formula in (b):Z si 

F n−1Eui (si ) = (x)dx 
s 

I Rewrite the expected payment using as gross surplus minus utility: 

Es−i [ti (bi (si ), b−i (s−i )] = si F n−1(si ) − Eui (si )Z si 
= si F n−1(si ) − F n−1(x)dx 

s 

I Note that neither term depends on the auction mechanism and that the 
expression is the same as one of the two we derived earlier for the 
expected payment in the first price auction. Hence, it is equal to 

n−1:n−1|s n−1:n−1 n−1:n]E [s < si ]. Therefore the expected revenue is E [s 
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All Pay Auction 

In an all-pay auction bidders submit bids b1, . . . , bn, the high bidder is 
awarded the object, and all bidders pay what they bid. 

Whle rarely used as an auction, the model can also be used to capture 
situations like lobbying to be awarded a government contract and patent races 
in which firms expend resources. 

The revenue equivalence theorem gives us an easy way to derive equilibrium 
bidding. Utility is 

Eui (si ) = si F n−1(si ) − b ∗ (si )R siFor this to be equal to F n−1(x)dx we must have 
s Z si 

b ∗ (si ) = si F n−1(si ) − F n−1(x)dx 
s 

13/21 



Limitations of the Revenue Equivalence Theorem 

The Revenue Equivalence Theorem is a beautiful and important result, but it 
is limited in both 

1. The set of situations in which it applies. 
I Bidders are assumed to be risk neutral. 
I Private values only depend on a bidders own signal. 
I Values are independent. 

2. The set of mechanisms that it considers. 

Bidders could be risk-averse with utility u(si − pi ) if they win and pay pi and 
utility u(−pi ) if they lose and pay pi . The first-price auction raises more 
revenue than a second-price auction in this environment. 

0Private values are said to be “affiliated” if f (s−i |si )/f (s |si ) is increasing in−i 
0si whenever s−i > s−i . The second price auction has a higher expected 

revenue in this environment. 

A stark example of the limited set of mechanisms is the example of n = 1 with 
s ∼ U[0, 1]. This is the classic monopoly pricing problem with D(p) = 1 − p. 
The RET only considers mechanism that always transfer the good regardless 
of the bid (or consumer’s value). All such mechanisms produce zero revenue. 
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Optimal Reserve Prices 

In the monopoly model we know the seller must set a reserve price to extract 
revenue. In an auction one can think that competition lessens the need for a 
reserve price. But it is also less likely that all bidders will have values below 
the reserve price and this lessens the downside. 

To think about optimal reserve prices in an English auction we consider a 
relaxed problem in which the seller can choose the reserve price after it sees 

n−1:nwhere the second-to-last bidder has dropped out at s . 

n−1:n n:nNote that conditional on s the probability that s is greater than r (for 
1−F (r)r ≥ sn−1:n) is just 1−F (sn−1:n ) . So the expected profit from using reserve price 

1 r is 1−F (sn−1:n ) r(1 − F (r)). 

Suppose the monopoly profit function r(1 − F (r)) is single peaked with 
m n−1:n mmonoply price p . If s < p , then after it learns the second-highest 

n−1:n mvalue the optimal reserve is just the monopoly price. If s > p , then the 
n−1:noptimal reserve price is s . 

mSetting the reserve price for an English auction at p will achieve the ex post 
n−1:noptimal reserve price for any realization of s . Hence, this same reserve 

price is optimal for all n. 
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Optimal Reserve Price 

Comments 

Optimal reserve prices are positive even if seller’s value is zero 

Reserve prices reduce social welfare 

The above analysis ignores entry. In practice, bidders may not enter an 
auction with high reserve prices 

Bulow and Klemperer (1996) show that attracting one additional bidder 
is better than setting an optimal reserve price 

There may be a commitment problems in setting reserve prices. 
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Common Value Auctions 

In a more general setup signals could be correlated and bidders values need 
not depend only on their own values. A general model would be: 

Signals s1, . . . , sn have joint density f (·) 
Bidder i ’s expected value is v(si , s−i ) 

One special case is the pure common values model: 

The object has value of V to all bidders 

Signal si = V + εi where εi ⊥ εj 
Bidder’s expected value given all signals is v(si , s−i ) = E[V |si , s−i ] 

Bidders directly observe only their own signal, si 

In the common value there will be a “winner’s curse.” 

Winning the object reveals that other bidders had lower bids, indicating 
that all had lower signals. 

Hence, winning is “bad news” about i ’s valuation 

Rational players account for this in their bidding strategy so they are not 
disappointed to win 
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Multiunit Auctions 

Many prominent auctions involve multiple units or mulitiple goods: Treasury 
bills, IPOs, Spectrum, Electricity 

A simple base model would be a seller with K identical goods. 

Bidder incremental valuations are vik where k is the number of goods 
and vik+1 < vik 

Each bidder submits a demand curve di (p) or equivalently values for 
bundles of each size 

Multiple pricing rules are possible including discriminatory 
(“pay-your-bid”) , uniform pricing, and a Vickrey-style rule: a winner of 
k units pays the k highest losing bids of other bidders 

The designers of spectrum auctions have chosen somewhat complicated 
ascending-bid procedures. In part this reflects a desire to limit two common 
concerns: demand reduction and inefficient allocation. 
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Multiunit Auctions 

Consider uniform K +1st price sealed bid auction 

Observations 
I Truthful bidding is weakly dominant for bidder that wants only one unit 

i.e. a bidder with vi2 = 0 bids vi1 for 1 object 
I For bidder that values two units, the price of the first unit depends on the 

bid for the second, so second bid is shaded. This “demand reduction” can 
result in inefficient allocation and low revenues 

Example: 

1st unit 2nd unit 
Consumer 1 60 40 
Consumer 2 30 10 

I Proposition: With full information, in any equilibrium in strategies that 
are not weakly dominated, each bidder wins one unit. 

I Proof: Suppose bidder 1 gets both units. Price must be at least 30 and 
1’s surplus is at most 40. If 1 bids 10 for a second unit, then both 
consumers get one unit and 1’s surplus is 50. 

I The model has an equilibrium with zero revenue: 1 bids (60, 0) and 2 bids 
(30, 0) 
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Complementarities 

Standard auction designs can also lead to inefficiency when values are not 
additively separable. 

Examples 
I Electricity delivered to different places 
I Spectrum licenses 
I Emission reductions across time 

Example: Spectrum Licenses 

So.Cal. No.Cal Both 
Bidder 1 v1 0 v1 

Bidder 2 0 v2 v2 

Bidder 3 w1 w2 w1 + w2 + x 

where v1, v2 ∼ U[10, 20], and say w1 = w2 = x = 10 
I Proposition: Assume that goods are allocated via sequential English 

auctions. Player 3 wins if and only if v1 ≤ 15. This is inefficient if 
v1 + v2 > 30. 

I Proof: If Bidder 3 has won the first auction, then she bids 20 and always 
wins second stage. 3’s expected value of winning the first stage is 
30 − E (v2) = 15. Therefore, she wins first stage if v1 < 15. 

Designing package auctions is hard. Combinatorial bids are complex. 
20/21 



      
 

       

    
 

    
  

Hendricks and Porter, “An Empirical Study of an Auction with 
Asymmetric Information,” AER 1988. 
The US government auctions two types of offshore leases in US waters for oil 
drilling: 
• Wildcat tracts are 5000 acre plots that do not abut any previous drilling. Only 

about 35% end up producing any oil. 
• Drainage tracts are 2500 acre plots adjacent to previously drilled wildcat tracts. 

About 60% of auctioned drainage tracts have oil. 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ Image is in the public domain. 

https://ocw.mit.edu/help/faq-fair-use/


 

   

 

   

  

Hendricks and Porter, “An Empirical Study of an Auction” 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Here’s a map of tracts in the 
Gulf of Mexico near New 
Orleans and Mobile 

wildcat tract 

drainage tracts 

Some of the bidders on drainage tracts will 
be the current lessees of adjacent wildcat 
tracts. This creates the asymmetric info. 

https://ocw.mit.edu/help/faq-fair-use/


  
   

   

  
   

     
    

 
 

  

 Hendricks and Porter, “An Empirical Study of an Auction” 

Bidders submit sealed bids for a time-
limited right to drill. Winners also pay a 
small percentage royalty on any oil 
extracted. 
Hendricks and Porter note that 
participation is lower on drainage tracts 
despite the fact that the drainage tracts 
are more reliably productive and have 
higher values. 
Drainage profits end up much higher. 
H-P suggest that this could reflect that 
information asymmetries create a severe 
winner’s curse. 



 

      
  

 
   

 
  

   

Hendricks Porter: “An Empirical Study of an Auction” 

They present a simple model to explain the intuition and work out auxiliary 
predictions that one can examine to assess the model’s relevance. 
• A single drainage tract has value 𝑣𝑣 to neighbors and 𝑣𝑣 − 𝑐𝑐 to others. 
• 𝑁𝑁 uninformed bidders have signal 𝑧𝑧 such that 

𝑑𝑑 
𝐸𝐸 𝑣𝑣 − 𝑐𝑐 𝑧𝑧 ≥ 𝑅𝑅, 𝐸𝐸 𝑣𝑣 𝑧𝑧 > 0, Pr 𝑣𝑣 − 𝑐𝑐 < 𝑅𝑅 𝑧𝑧 > 0 

𝑑𝑑𝑧𝑧 

• First price sealed bid auction with reservation price 𝑅𝑅. 
• One informed neighbor sees 𝑧𝑧 and 𝑣𝑣. 

reflecting that it's easier to drill 
close to where you're already drilling information asymmetry 

reserve price 



 
     

      

   

   

     

   

     

Hendricks Porter: “An Empirical Study of an Auction” 
The game above clearly cannot have a pure strategy equilibrium: 

Proposition: There is no pure strategy BNE where the uninformed bidders don’t 
bid. 

∗ = �0 if 𝑣𝑣 < 𝑅𝑅 Proof: If they bid 0, then we would then have 𝑏𝑏𝐼𝐼 𝑣𝑣 𝑅𝑅 if 𝑣𝑣 ≥ 𝑅𝑅 

If this happens, the uninformed bidder can earn positive profits at 𝑅𝑅 + 𝜖𝜖. 

∗Proposition: There is no pure strategy BNE with 𝑏𝑏𝑢𝑢 𝑧𝑧 ≥ 𝑅𝑅 

∗ 
∗ = �𝑏𝑏𝑢𝑢 𝑧𝑧 + 𝜖𝜖 if 𝑣𝑣 > 𝑏𝑏𝑢𝑢∗ (𝑧𝑧)Proof: With a pure 𝑏𝑏𝑢𝑢∗ (𝑧𝑧) we would have 𝑏𝑏𝐼𝐼 𝑣𝑣, 𝑧𝑧 

0 otherwise 

Then the uninformed bidder wins only if 𝑣𝑣 ≤ 𝑏𝑏𝑢𝑢∗ (𝑧𝑧), so he gets negative profits. 



 

   

  
   

Hendricks Porter: “An Empirical Study of an Auction” 

Hendricks and Porter show that the model has a mixed equilibrium where: 

• The uninformed bidders mix over 0 , [𝑅𝑅, 𝑣𝑣] 
• The informed bidder bids as a function of his private information. 

0 if 𝑣𝑣 < 𝑅𝑅 
∗𝑏𝑏𝐼𝐼 𝑣𝑣, 𝑧𝑧 𝑅𝑅 = � if 𝑣𝑣 a little bigger than 𝑅𝑅 and 𝑧𝑧 not too high 

𝑓𝑓 𝑣𝑣, 𝑧𝑧 for some increasing f if 𝑣𝑣, 𝑧𝑧 bigger 



 
        

 

   

    
  

    

Hendricks Porter: “An Empirical Study of an Auction” 
A very nice feature of the paper is that this simple model yields several potentially 
testable predictions: 

∗ ∗1. Having 𝑏𝑏𝐼𝐼 = 0 is less common than 𝑏𝑏𝑢𝑢 = 0 

2. The informed bidder wins with probability ≥ 1 

2 
∗3. 𝐸𝐸 Π𝑢𝑢 = 0. Profits are negative if the informed bidder bids 0 and positive if 

the informed bidder bids at least 𝑅𝑅. 
∗4. 𝐸𝐸 Π𝐼𝐼 > 0 

5. For 𝑐𝑐 ≈ 0 the ex ante bid distributions of informed and uninformed bidders are 
identical 

6. 𝑏𝑏𝐼𝐼∗ is independent of 𝑁𝑁 

7. 𝑓𝑓(𝑣𝑣, 𝑧𝑧) increasing in 𝑧𝑧 and 𝑣𝑣. 



 
   

       
   

    

Hendricks Porter: “An Empirical Study of an Auction” 
The dataset has information on 114 drainage tracts auctioned between 1959 and 
1969. All are adjacent to a wildcat tract for which they have production data. When 
multiple neighbors exist, the neighbors can submit a joint bid. 
The data include bids of neighbors and non-neighbors and ex-post production. 



 

 
  
   

 

   

Hendricks Porter: “An Empirical Study of an Auction” 

Tests of Model Predictions: 
1. Neighbors bid 83% of the time; non-neighbors 68% 
2. Neighbors won 52% of tracts √ 

positive if neighbor enters 
3. ≈ 0 and � negative otherwise 

4. > 0 
5. To test symmetry, run regressions: 

𝑏𝑏𝐼𝐼⁄𝑅𝑅 = 𝑎𝑎0 + 𝑎𝑎1𝑉𝑉 + 𝑎𝑎2𝑉𝑉2 + 𝑎𝑎3Acreage + 𝑎𝑎4# Neighbors + 𝜖𝜖𝐼𝐼 √ 
𝑏𝑏𝑢𝑢⁄𝑅𝑅 = 𝑏𝑏0 + 𝑏𝑏1𝑉𝑉 + 𝑏𝑏2𝑉𝑉2 + 𝑏𝑏3Acreage + 𝑏𝑏4# Neighbors + 𝜖𝜖𝑢𝑢 

Can’t reject coefficient equality. 𝜖𝜖’s have similar variances. 
6. Find no effect in regression 
7. Bids increase in true value and wildcat value 

𝐸𝐸 Π𝑢𝑢 

𝐸𝐸 Π𝐼𝐼 



 

  

  

Hendricks Porter: “An Empirical Study of an Auction” 

evidence for point 
3) above. 

evidence for point 
1) above. 



On Wednesday Tobias will discuss structural empirical auction work. 

Papers that he’ll cover will include 

Guerre, Perrigne, and Vuong 
Athey, Levin, and Seira 

Next Monday I’ll be back with empirical papers on advertising prob-
ably including 

Milyo and Waldfogel 
Lewis and Reiley 
Aridor, Che, and Salz 
Shapiro 

See you then! 
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