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Auctions
Roadmap

1. Empirical techniques for Auctions.

— Laffont, Ossard, and Vuong (1995)
— Non-parametric identification.

— Guerre, Perrigne and Vuong (2001)
2. Athey, Levin, and Seira (2011)

3. Kong (2019)
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Auctions

Relevance
— Auctions are a type of monopoly market: auctioneer has monopoly power.
— =~ 10% of GDP contracted through auctions.
— Often direct policy implications. Government organizes purchases and allocation through auctions.

— The study of collusion in auctions has been quite fruitful.
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Auctions

Relevance
— Auctions are a type of monopoly market: auctioneer has monopoly power.
— =~ 10% of GDP contracted through auctions.
— Often direct policy implications. Government organizes purchases and allocation through auctions.

— The study of collusion in auctions has been quite fruitful.

Fertile ground for structural work
— Well defined rules and strategy sets. Players’ strategies are often observed.
— In many cases participants are sophisticated - a setting where game theory is likely to deliver good predictions.

— Want to recover the distribution of bidder valuations/costs.
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Single Unit Auctions



The symmetric IPV model — recap

Model Elements:

1. nbidders, indexed by /

2. Bidder i’s value is denoted V;

3. Privately observed signal S; summarizes bidder i’s information
4. Bid is denoted B;
5

. Convention: Upper-case letters refer to random variables, and lower-case letters refer to specific values

Statistical Dependence:

— Independent signals: S is distributed Fs = | Fg,

i=1
Private Values:
— Private values: E (V;|S;,S5_;) = E (V}|S;)
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The symmetric IPV model — FPA
Under symmetric strategies 3(v), bidder maximizes:

ma (vi—bi) - F(B~ (b))

First order condition:

(vi=B(vi)) - (n=1)- F(v))" 2 f(v;)

with boundary condition 3(v) = v.
Differential equation, b; = 3(v;), with solution (Riley and Samuelson 1981):

J'; F(x)"dx

B(Vfrn! F):Vi* F(V,')"71
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)
Under symmetric strategies 3(v), bidder maximizes:

max(v; — b;) - F(B~ (b))

i

First order condition:

(vi—B(vi)) - (n—=1) - F(v;))" % £(v) B F(v)"'=0,
with boundary condition 3(v) = v.
Reserve price solution:
_ _ i [Flae g
b= B (VI, n, pOY F) _ v I_—(v,-)nﬂ if v/ > 1%

0 otherwise
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Laffont, Ossard, and Vuong (1995)



The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Setup:
— n symmetric bidders with IPV valuations.

— Descending (Dutch) auction with reserve price po.

Estimation:

— Valuations log-normal: v; ~ F(-]0).

— Goal is to estimate 0 based on observed outcomes.

— Data from 81 auctions, 11 bidders.

Image by Liz West on Wikimedia C

ommons. CC BY
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Question: How can we estimate this?
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Question: How can we estimate this? One idea: use strategic equivalence to sealed bid, first-price
auction (Milgrom and Weber, 1982) and maximum likelihood.
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Question: How can we estimate this? One idea: use strategic equivalence to sealed bid, first-price
auction (Milgrom and Weber, 1982) and maximum likelihood.

We would want to evaluate:

L(b;0) = [ f(B'(b;;0) |0)
with

[% F(x|8)dx
Fvie)"

bizl{vi>p0}-(vi— )+1{v"<p°}-o
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Question: How can we estimate this? One idea: use strategic equivalence to sealed bid, first-price
auction (Milgrom and Weber, 1982) and maximum likelihood.

We would want to evaluate:

L(b;0) = [ f(B'(b;;0) |0)
with

[% F(x|8)dx
Fvie)"

b =1{v' > p°. (v" .

Issues with this approach:
— Computationally costly.

)+1{v"<p°}-o

— Only the winning bid is observed because of Dutch auction format.

— Support of the winning bid is [p°, E (max (X, p°))], where X is the largest order statistic in n — 1 draws from F.

This violates regularity conditions of ML.
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Another idea: match winning bid to simulated expectation. (McFadden (1989) and Pakes and Pollard
(1989)).

Eyooiop (B) =j B (Vimy P F) n- F(v | 0)"F(v | 0)dv

p°

= nro (v -F(v]0)™! fro F(x | 9)"1dx> f(v]0)dv.

PP p
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Another idea: match winning bid to simulated expectation. (McFadden (1989) and Pakes and Pollard
(1989)).

Eyooop (B) =j B (Vimy . P F) n- F(v | 0)"F(v | 0)dv

p°

= ” v-F(v = ” X = dlx v v
—nLO( F(v]0) LOF( | 0) d)f( | 0)dv.

Still cumbersome:
— Getvs = F ' (us | 0) where uy, ..., us i.i.d. from the U[0, 1]

— Compute V, = v, - F (v |0)" ' — f;f) F(x|6)""dx then average: ¢ >V,
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

One more clever idea: use the Revenue Equivalence Theorem.
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

One more clever idea: use the Revenue Equivalence Theorem.

Assume: risk-neutral IPV setting with atom-less signal support.

Revenue Equivalence Theorem (Vickrey 1961): Any auction mechanism which is (i) efficient in awarding
the object to the bidder with the highest signal; and (ii) leaves any bidder with the lowest signal with zero
surplus yields the same expected revenue for the seller, and results in a bidder with signal s making the

same expected payment.
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

One more clever idea: use the Revenue Equivalence Theorem.

Assume: risk-neutral IPV setting with atom-less signal support.
Revenue Equivalence Theorem (Vickrey 1961): Any auction mechanism which is (i) efficient in awarding
the object to the bidder with the highest signal; and (ii) leaves any bidder with the lowest signal with zero

surplus yields the same expected revenue for the seller, and results in a bidder with signal s making the
same expected payment.

Using RE of first and second-price auction, we know that:

Enalb® (v, p°)] = Ep10 [max (v, p°)]

1/32



The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

For each parameter guess 0 and each auction L.

— Draw v, ..., v/, simulated valuations from F(-|0)

Sort draws in ascending order.

— Set b"* as maximum of second-highest valuation and py.
Approximate revenue, E(b}" | ) Z b/*
Estimate 0 by NLLS:

L
Z E(b} | 0)).
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The symmetric IPV model — Laffont, Ossard, and Vuong (1995)

Comments:
— Not an approach that is widely used.

— RET does not apply to many cases of interest, for example auctions with entry or asymmetric bidders.

— Reliance on functional forms for the distribution of valuations.

— Much of the modern auction literature does not restrict distribution of valuations to one parametric
family (i.e. normal, exponential, etc). Literature places strong emphasis on formal identification results.
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Digression: Nonparametric Identification

“A model is identified if, given the implications of equilibrium behavior in a particular auction game, the
joint distribution of bidders’ utilities and signals is uniquely determined by the joint distribution of
observables.” (Athey and Haile, 2002)
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Digression: Nonparametric Identification

“A model is identified if, given the implications of equilibrium behavior in a particular auction game, the
joint distribution of bidders’ utilities and signals is uniquely determined by the joint distribution of
observables.” (Athey and Haile, 2002)

— Let m* be the true vector of functions and distributions.

— Let P(m) denote the joint distribution of observable variables under the assumption that the data is generated
under m.

m* is identified in M if and only if for all m € M, m % m*, P(m) # P(m*)
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Digression: Nonparametric Identification

“A model is identified if, given the implications of equilibrium behavior in a particular auction game, the
joint distribution of bidders’ utilities and signals is uniquely determined by the joint distribution of
observables.” (Athey and Haile, 2002)

— Let m* be the true vector of functions and distributions.

— Let P(m) denote the joint distribution of observable variables under the assumption that the data is generated
under m.

m* is identified in M if and only if for all m € M, m % m*, P(m) # P(m*)

— If M is a subset of a finite dimensional space, we say that the model M is parametric.
— If M is not a subset of a finite dimensional space, we say that M is:
— Semiparametric, if some of the functions, distributions lie inside a finite dimensional space.
— Nonparametric, if none of the functions, distributions lie inside a finite dimensional space.
— Notice, that we are not worried about finite sample variation. Identification asks: if we had infinite data, can we
recover the objects of interest?
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The symmetric IPV model — second price auction
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The symmetric IPV model — second price auction

Primitive of interest: distribution of values F. We observe the distribution of bids. Any ideas how to
approach this?
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The symmetric IPV model — second price auction

Primitive of interest: distribution of values F. We observe the distribution of bids. Any ideas how to
approach this?

— b; = B; (v;) = v; is a (weakly) dominant strategy — bid your valuation

— If all bids are observed:

— we have draws from F — done

What if only transaction prices are observed?
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The symmetric IPV model — second price auction and order statistics

Transaction price is the second-highest valuation in a second-price sealed-bid or English auction

— Let Gy be the distribution of the transaction price (data):
GW (V) = Fn71:n (V)
where the number of bidders n is known.
Relations of order statistics:
— Distribution of i-th order statistic from n draws,
n! Fv .
FunlV) = ot | ¢ 00 e,

(n—Nii—1J,

is increasing in F(v), hence invertible. See Arnold, Balakrishnan, and Nagaraja (1992).
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Guerre, Perrigne and Vuong (2001)



The IPV model — Guerre, Perrigne and Vuong (2001)

Main idea: re-arrange necessary first-order conditions as a functions of objects that are directly
recoverable in the data.

— Transform FOC as a function of distribution of bids (G), instead of valuations (F).
— Distribution can be recovered non-parametrically.

— In practice, works best if all bids are observed, but still identified if only winning bid is observed (Athey and Haile,
2002).
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The IPV model — Guerre, Perrigne and Vuong (2001)

Steps:
— Remember that before integrating, FOC yields:

f(v;)

B'(vi) =(vi—B(vi))-(n—1)- F(v)
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The IPV model — Guerre, Perrigne and Vuong (2001)

Steps:
— Remember that before integrating, FOC yields:

B'(vi) = (vi—B(v;)) - (n—1)-

— Key: due to monotonicity G(3(v;)) = G(b;) = F(v;), and hence:
glb)=f(vi)-B'(vi)™"
— Use expression to substitute equilibrium strategy:

G(b;)

Y= b T g By
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Guerre, Perrigne and Vuong (2001)

Alternative Derivation: Consider bidder i's response given that competitors play the eq. strategy {3:

— Strategy {3 results in opponent bid distribution G (b) = P (B(v) < b)

— Best response of a v;-type bidder:

max (v; — b) [G ()"

— First order condition:

—[G BN+ (vi— b)) (n—1[G (b)) 2 g(b;)=0

Re-arranging, we get bidder /’s value as a function of her bid

., GB)
T =1 g ()

Vi =

where G(b;) and g(b;) are observed.
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Guerre, Perrigne and Vuong (2001) — estimation steps

Approximate G (b) and g(b) from bidding data, e.g.:

(b= —— 5 3 1{by < b}
b blt
&b T nZZ ( )’

Use estimated of density and CDF to recover valuations:

G(b;)

WEE T gl

Finally, use kernel again to estimate f(v). Standard errors on outcomes are in practice Bootstrapped.
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Guerre, Perrigne and Vuong (2001) — discussion

Comments:

— Computational/estimation simplicity.

Alternative to solving for equilibria and matching the data.

— Does not rely on functional form restrictions.

GPV has been very influential in the way auction data is analyzed. Most of the auction literature is
non-parametric. Some examples:

— Multi-unit auctions (Hortacsu, 2002; Wolak, 2003).
— Dynamics (Jofre-Bonet and Pesendorfer, 2003).

— Test RET (Athey, Levin and Seira, 2008).

— Estimating damages of bidding rings (Asker 2010).

— Probably led to too many IPV applications. Testing for common values (Haile, Hong, Shum, 2003).
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Athey, Levin, and Seira (2011)



Athey, Levin, and Seira (2011)

Question: should we use a sealed bid or open
auction format?

Timber auctions, $100 billion industry.
30% of land publicly owned

Government auctions from ldaho-Montana border
and California.

U.S. Forest Service uses both open and sealed
bidding (sometimes randomly).

Open auctions are believed to foster collusion.

Image by the Bureau of Land Management O

and Washington. CC BY.

*

regon
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Athey, Levin, and Seira (2011) — model setup and predictions

Setup:

They consider open and sealed bid auctions T € {o, s}.
Two types of bidders: Loggers (L) and Mills (M).
Loggers take iid draws from F,(-), mills from Fy,(-).

Mills are assumed to be strong bidders, their valuations
stochastically dominate those of loggers’.

Bidders learn their valuation after paying the entry cost.

Search for equilibrium in type symmetric entry and bidding,
(pe,B:(+; n)) strategies.

Assume that for all n., np, 7t (ne, ny +1) > 75 (g, np).

In a collusive eq. only loggers collude.

Image is in the public domain.
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Athey, Levin, and Seira (2011) — model setup and predictions

Predictions:
— Unique type symmetric entry eq. with either p =0 or
pm =1
— In the open auction (relative to sealed) (i) loggers are less

likely to enter; (ii) mills are more likely to enter; (iii) it is less
likely a logger will win.

— Maskin Riley (2000), sealed bidding favors weaker bidders.

Image is in the public domain.
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Athey, Levin, and Seira (2011) — model setup and predictions

Predictions:

Unique type symmetric entry eq. with either p, =0 or
pm =1
In the open auction (relative to sealed) (i) loggers are less

likely to enter; (ii) mills are more likely to enter; (iii) it is less
likely a logger will win.

Maskin Riley (2000), sealed bidding favors weaker bidders.

For the open auction for any non-collusive type-symmetric
equilibrium there is a collusive equilibrium (only mills
collude) where (i) loggers are less likely to enter, (ii) mills are
more likely to enter, (iii) it is less likely a logger will win.

mage is in the public domain.



Athey, Levin, and Seira (2011) — effect of auction format
Y = «- SEALED + -X3 + Ny + ¢ and matching estimate

EFFECT OF AUCTION METHOD ON SALE OUTCOMES

1) (2) 3) (4) (5) (6)

Dependent variable: Ln(logger entry) Ln(mill entry) Loggers/entrants Logger wins Ln(price) Ln(price)*

A: Northern sales (W = 1071 sales)

Regression with no interactions between sealed and covariates

Sealed bid effect 0.089 -0.014 0.056 0.039 0.094 0.055
(0.036) (0.030) (0.016) (0.026) (0.038) (0.032)

Regression with interactions between sealed and covariates

Sealed bid effect on sample 0.097 -0.010 0.058 0.038 0.099 0.060
(0.036) (0.031) (0.016) (0.027) (0.039) (0.033)

Matching estimate®

Sealed bid effect on sample 0.100 0.018 0.052 0.034 0.118 0.091
(0.048) (0.053) (0.029) (0.039) (0.064) (0.055)

B: California sales (N = 707 sales)

Regression with no interactions between sealed and covariates

Sealed bid effect 0.101 -0.026 0.058 0.036 0.027 -0.026
(0.045) (0.038) (0.020) (0.036) (0.051) (0.040)

Regression with interactions between sealed and covariates

Sealed bid effect on sample 0.099 -0.022 0.056 0.035 0.026 -0.037
(0.044) (0.038) (0.020) (0.035) (0.050) (0.039)

Matching estimate®

Sealed bid effect on sample 0.106 -0.123 0.097 0.107 -0.038 0.005
(0.062) (0.067) (0.034) (0.051) (0.127) (0.087)
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Athey, Levin, and Seira (2011) — structural estimation

— Estimation is based on only sealed bid auctions via GPV.

— Parametrize the bid distribution as Weibull, test with Andrews (1997).

— Account for unobserved auction-specific heterogeneity, (Krasnokutskaya (2011), Li and Vuong (1998)).
— Estimate entry cost from optimal entry behavior.

— Generate predictions for both open and sealed bid auctions.
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Model performs very well at
predicting sealed auction
entry and bidding behavior.

Logger entry in open auction
also well predicted.

For California the competitive
model also predicts prices
and revenues in the open
auction well.

For open Northern auctions
both the competitive and the
collusive model are rejected.

Athey, Levin, and Seira (2011) — effect of auction format

ACTUAL OUTCOMES VERSUS OUTCOMES PREDICTED BY MODEL

(1) (2) (3)
Predicted
Predicted (bidding +
N Actual (bidding only) entry)
A: Northern sales
Sealed bid sales

Avg. bid 1,492 59.6 582 (14) 574 (1.3)
Avg. logger bid 1,096 50.8 48.7 (1.4) 474 (1.4)
Avg. mill bid 396 838 847 (27 8.2 (2.7
Avg. sale price ($/mbf) 339 69.4 699 (1.4) 704 (1.6)
Avg. revenue ($000s) 339 1114 108.1 (4) 109.9 (4.2)
% sales won by loggers 339 68.1 68.0 (0.90) 65.0 (0.01)
Avg. logger entry 339 3.23 3.23  (0.09)

0.1

Open auction sales

Avg. sale price (competition) 732 63.3 679 (1.8) 67.8 (2.1)
Avg. sale price (collusion) 732 63.3 44.2 (1.3) 441  (2.2)
Avg. revenue (competition) 732 1447 152.7 (6.8) 1548 (7.9)
Avg. revenue (collusion) 732 144.7 61.0 (2) 64.7  (5.0)
% sales won by loggers 732 59.0 56.0 (0.01) 54.4 (0.02)
Avg. logger entry 732 2.75 2.67 (0.17)
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Athey, Levin, and Seira (2011) — effect of auction format

— Model performs very well at

predicting sealed auction
B: California sales

entry and bidding behavior. Sealed bid sales

. . Avg. bid 1,630 73.6 747 (23) 742 (23)

— Logger entry in open auction Avg. logger bid 1,150 64.0 636 (2.1) 623 (2.4)
. Avg. mill bid 480 965 1012 (35) 1028 (3.8)

also well predicted. Avg. sale price ($/mb) 382 804 838 (21) 844 (24)

For California th titi Avg. revenue ($000s) 382 1031 1107 (3.8) 1119 (4.0)

— Fror Lalifornia the compettive % sales won by loggers 382 668 664 (1.2) 626 (1.3)
model also predicts prices Avg. logger entry 382 3.01 3.01 (0.07)

. Open auction sales

and revenues in the open Avg. sale price (competition) 325 851 87.2 (2.7) 86.7 (3.1)

. Avg. sale price (collusion) 325 85.1 46.1 (1.2) 51.0 (1.6)
auction well. Avg. revenue (competition) 325 227.0 244.7 (9.7) 2424 (10.9)

. Avg. revenue (collusion) 325 2270 932 (26) 1129 (5.6)

— For open Northern auctions % sales won by loggers 325 505 482 (L1) 436 (L8)
both the competitive and the Avg. logger entry 325 195 1.90 (0.13)

collusive model are rejected.

28/32



Comments

— Very complete and well done paper.
— Is this a private value setting?

— Can we attribute part of the effect to risk aversion?
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Kong (2019) — risk aversion in open and sealed bid auctions

— New Mexico, Permian Basin oil
extraction.

— In 2018 the Permian Basin was the
second most productive oil field in the
world.

— Lessees pay royalties, a rental rate, and in
the auction compete on a lump sump
bonus.

— New Mexico State Land Office (NMSLO)
uses both open (English) and sealed bid
auctions. Image by SkyTruth on flickr. License: CC BY-NC-SA.
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Kong (2019) — risk aversion in open and sealed bid auctions

Figure 2: Map of sections by auction format, estimation sample

— New Mexico, Permian Basin oil
extraction.

— In 2018 the Permian Basin was the
second most productive oil field in the
world.

— Lessees pay royalties, a rental rate, and in
the auction compete on a lump sump
bonus.

— New Mexico State Land Office (NMSLO)
uses both open (English) and sealed bid
auctions.

Courtesy of Yunmi Kong. Used with permission.
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Kong (2019) — risk aversion in open and sealed bid auctions

— Sealed-bid FPA generate higher revenue
than English auctions.

Table 4: Auction format and auction revenue, estimation sample

O] @
auction revenue auction revenue
auction format S 0.321%%% 0.305%%%
(0.073) (0.068)
lease prefix VB 0.174%*
(0.072)
In(production) 1970-auction date 0.003 0.002
(0.011) (0.010)
In(production) auction date-2014 0.069%** 0.025%*
(0.010) (0.011)
section drilled before 0.093 0.095
(0.074) (0.069)
In(gas futures) -0.112 -0.305
(0.226) (0.205)
In(WTT oil price) 0.497+* 0.721%%*
(0.208) (0.196)
same quarter BLM price/acre 0.185%* 0.242%%%
(0.074) (0.067)
last month price/acre 0.029 0.055
(0.093) (0.085)
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Kong (2019) — risk aversion in open and sealed bid auctions

— Sealed-bid FPA generate higher revenue
than English auctions.

— Many auctions with only one bidder.
Y Y Figure 3: Histogram of In(price), estimation sample

— If bidders in sealed-bid auctions knew n
they would have bid the reserve price
when n =1.

Fraction
.04 .06 .08
| |

.02
L

12
log 2009 dollars
o s

Prices are in 2009 dollars, deflated by the GDP implicit price deflator.

Courtesy of Yunmi Kong. Used with permission.
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Kong (2019) — risk aversion in open and sealed bid auctions

— Sealed-bid FPA generate higher revenue
than English auctions.

— Many auctions with only one bidder.
Y Y Figure 3: Histogram of In(price), estimation sample

— If bidders in sealed-bid auctions knew n
they would have bid the reserve price
when n =1.

.08
L

.06
L

— Under risk neutrality, First-price and
English auctions with or without
uncertainty about n are all be
revenue-equivalent (Harstad, Kagel and
Levin (1990)).

Fraction
.04

.02
L

— Bidders in first price auctions insure A
themselves by bidding higher. o s

Prices are in 2009 dollars, deflated by the GDP implicit price deflator.

Courtesy of Yunmi Kong. Used with permission.
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Kong (2019) — risk aversion in open and sealed bid auctions

— Sealed-bid FPA generate higher revenue
than English auctions.

— Many auctions with only one bidder.
Y Y Figure 3: Histogram of In(price), estimation sample

— If bidders in sealed-bid auctions knew n
they would have bid the reserve price
when n =1.

.08
L

.06
L

— Under risk neutrality, First-price and
English auctions with or without
uncertainty about n are all be
revenue-equivalent (Harstad, Kagel and
Levin (1990)).

Fraction
.04

.02
L

— Bidders in first price auctions insure ¢ 10 A " 1
themselves by bidding higher. o s

— Kong shows how open and sealed bid Prices are in 2009 dollars, deflated by the GDP implicit price deflator.
auctions together identify the Courtesy of Yunmi Kong. Used with permission.

distribution valuations and the level of
risk aversion. 31/32



Thank you and see you (hopefully) in
14.273 next semester!
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