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Auc„ons 
Roadmap 

1. Empirical techniques for Auc„ons.
− La•ont, Ossard, and Vuong (1995)
− Non-parametric iden„†ca„on.
− Guerre, Perrigne and Vuong (2001)

2. Athey, Levin, and Seira (2011)
3. Kong (2019)
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Fer„le ground for structural work
− Well de†ned rules and strategy sets. Players’ strategies are o›en observed.
− In many cases par„cipants are sophis„cated - a sefng where game theory is likely to deliver good predic„ons.
− Want to recover the distribu„on of bidder valua„ons/costs.

Auc„ons 
Relevance 

− Auc„ons are a type of monopoly market: auc„oneer has monopoly power.
− ≈ 10% of GDP contracted through auc„ons.
− O›en direct policy implica„ons. Government organizes purchases and alloca„on through auc„ons.
− The study of collusion in auc„ons has been quite frui−ul.

2 / 32 



Auc„ons 
Relevance 

− Auc„ons are a type of monopoly market: auc„oneer has monopoly power.
− ≈ 10% of GDP contracted through auc„ons.
− O›en direct policy implica„ons. Government organizes purchases and alloca„on through auc„ons.
− The study of collusion in auc„ons has been quite frui−ul.

Fer„le ground for structural work 

− Well de†ned rules and strategy sets. Players’ strategies are o›en observed.
− In many cases par„cipants are sophis„cated - a sefng where game theory is likely to deliver good predic„ons.
− Want to recover the distribu„on of bidder valua„ons/costs.

2 / 32 



Single Unit Auc„ons 



The symmetric IPV model — recap 

Model Elements: 
1. n bidders, indexed by i 

2. Bidder i ’s value is denoted Vi

3. Privately observed signal Si summarizes bidder i ’s informa„on 

4. Bid is denoted Bi

5. Conven„on: Upper-case le‰ers refer to random variables, and lower-case le‰ers refer to speci†c values 
Sta„s„cal Dependence: 

nQ
− Independent signals: S is distributed FS = 

i=1 FSi 

Private Values: 
− Private values: E (Vi |Si , S−i ) = E (Vi |Si ) 
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The symmetric IPV model — FPA 

Under symmetric strategies β(v), bidder maximizes: 
1 1max(vi − bi ) · F (β− (bi ))

n− 

bi

First order condi„on: 
1 1(vi − β(vi )) · (n − 1) · F (vi )

n−2 · f (vi ) − F (vi )
n− = 0,

β 0(vi ) 

with boundary condi„on β(v) = v . 
Di•eren„al equa„on, bi = β(vi ), with solu„on (Riley and Samuelson 1981): Rvi 1F (x)n− dx v

β(vi , n, F ) = vi − 
F (vi )n−1 
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The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 
Under symmetric strategies β(v), bidder maximizes: 

1 1max(vi − bi ) · F (β− (bi ))
n− 

bi

First order condi„on: 
1 

(vi − β(vi )) · (n − 1) · F (vi )
n−2 · f (vi ) − F (vi )

n−1 = 0,
β 0(vi ) 

with boundary condi„on β(v) = v . 
Reserve price solu„on: ⎧⎨ 

R i 
p0 F (x)n− dx i 0� � v i − 

1 if v > pn−1 = β v i , n, p 0, F = 

v

F (v i )⎩ 
bi 0 otherwise 
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La•ont, Ossard, and Vuong (1995) 



The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 

Setup: 
− n symmetric bidders with IPV valua„ons.
− Descending (Dutch) auc„on with reserve price p0.

Es„ma„on: 
− Valua„ons log-normal: vi ∼ F (·|θ).
− Goal is to es„mate θ based on observed outcomes.
− Data from 81 auc„ons, 11 bidders.

Image by Liz West on Wikimedia Commons. CC BY
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One idea: use strategic equivalence to sealed bid, †rst-priceauc„on (Milgrom and Weber, 1982) and maximum likelihood.
We would want to evaluate:

L(b; θ) = Y
f (β−1(bi ; θ) | θ)

with

bi = 1{v i > p0} ·
�
v i −

Rv i

p0 F (x | θ)n−1dx
F (v i | θ)n−1

�
+ 1{v i 6 p0} · 0

Issues with this approach:
− Computa„onally costly.
− Only the winning bid is observed because of Dutch auc„on format.
− Support of the winning bid is [po ,E (max (X , po))], where X is the largest order sta„s„c in n − 1 draws from F .This violates regularity condi„ons of ML.
− Paarsch (1992) for an in-depth discussion of possible solu„ons (piece-wise pseudo maximum likelihood).

The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 
Ques„on: How can we es„mate this? 
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S„ll cumbersome:
− Get vs = F−1 (us | θ) where u1, . . . , uS i.i.d. from the U[0, 1]
− Compute Ṽs = vs · F (vs | θ)

n−1
−
Rvs
p0 F (x | θ)n−1dx then average: 1

S

P
s Ṽs

The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 
Another idea: match winning bid to simulated expecta„on. (McFadden (1989) and Pakes and Pollard (1989)). 

Z∞ � � 
Ev(n)>p0 (bw ) = 

p0 
β v(n), n, p 0, F n · F (v | θ)n−1f (v | θ)dvZ∞ � Z∞ �

1 1 = n v · F (v | θ)n− − F (x | θ)n− dx f (v | θ)dv . 
p0 p0 
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Assume: risk-neutral IPV sefng with atom-less signal support.
Revenue Equivalence Theorem (Vickrey 1961): Any auc„on mechanism which is (i) e…cient in awardingthe object to the bidder with the highest signal; and (ii) leaves any bidder with the lowest signal with zerosurplus yields the same expected revenue for the seller, and results in a bidder with signal s making thesame expected payment.

Using RE of †rst and second-price auc„on, we know that:

En:n[b
∗ �v , p0�] = En−1:n

�max �v , p0��

The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 
One more clever idea: use the Revenue Equivalence Theorem. 
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The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 

For each parameter guess θ and each auc„on L. 
s s− Draw v1 , ..., vI , simulated valua„ons from F (·|θ)

− Sort draws in ascending order.
bw ,s− Set as maximum of second-highest valua„on and p0.l P 

− Approximate revenue, E(bw | θ) = 1 bw ,s
l S s l 

− Es„mate θ by NLLS:
L 

(bw 2. X1min l − E(blw | θ)) 
θ L 

I =1 
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The symmetric IPV model — La•ont, Ossard, and Vuong (1995) 

Comments: 
− Not an approach that is widely used.
− RET does not apply to many cases of interest, for example auc„ons with entry or asymmetric bidders.
− Reliance on func„onal forms for the distribu„on of valua„ons.

→Much of the modern auc„on literature does not restrict distribu„on of valua„ons to one parametricfamily (i.e. normal, exponen„al, etc). Literature places strong emphasis on formal iden„†ca„on results.
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− Letm? be the true vector of func„ons and distribu„ons.
− Let P(m) denote the joint distribu„on of observable variables under the assump„on that the data is generatedunderm.

De†ni„on of Iden„†ca„on
m? is iden„†ed in M if and only if for allm ∈ M ,m 6= m?, P(m) 6= P(m?)

− IfM is a subset of a †nite dimensional space, we say that the modelM is parametric.
− IfM is not a subset of a †nite dimensional space, we say thatM is:

− Semiparametric, if some of the func„ons, distribu„ons lie inside a †nite dimensional space.
− Nonparametric, if none of the func„ons, distribu„ons lie inside a †nite dimensional space.

− No„ce, that we are not worried about †nite sample varia„on. Iden„†ca„on asks: if we had in†nite data, can werecover the objects of interest?

Digression: Nonparametric Iden„†ca„on
“A model is iden„†ed if, given the implica„ons of equilibrium behavior in a par„cular auc„on game, thejoint distribu„on of bidders’ u„li„es and signals is uniquely determined by the joint distribu„on ofobservables.” (Athey and Haile, 2002) 
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Primi„ve of interest: distribu„on of values F . We observe the distribu„on of bids. Any ideas how toapproach this?

− bi = βi (vi ) = vi is a (weakly) dominant strategy→ bid your valua„on
− If all bids are observed:

− we have draws from F → done

What if only transac„on prices are observed?

The symmetric IPV model — second price auc„on 
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The symmetric IPV model — second price auc„on and order sta„s„cs 
Transac„on price is the second-highest valua„on in a second-price sealed-bid or English auc„on 

− Let GW be the distribu„on of the transac„on price (data):
GW (v) = Fn−1:n (v ) 

where the number of bidders n is known. 

Rela„ons of order sta„s„cs: 
− Distribu„on of i -th order sta„s„c from n draws, ZF (v)n! i−1Fi :n(v) = t (1 − t)n−i dt,

(n − i)!(i − 1)! 0 

is increasing in F (v), hence inver„ble. See Arnold, Balakrishnan, and Nagaraja (1992). 
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Guerre, Perrigne and Vuong (2001) 



The IPV model — Guerre, Perrigne and Vuong (2001) 

Main idea: re-arrange necessary †rst-order condi„ons as a func„ons of objects that are directlyrecoverable in the data. 
− Transform FOC as a func„on of distribu„on of bids (G), instead of valua„ons (F).
− Distribu„on can be recovered non-parametrically.
− In prac„ce, works best if all bids are observed, but s„ll iden„†ed if only winning bid is observed (Athey and Haile,2002).
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− Key: due to monotonicity G (β(vi )) = G (bi ) = F (vi ), and hence:
g(bi ) = f (vi ) · β 0(vi )−1

− Use expression to subs„tute equilibrium strategy:
vi = bi +

G (bi )

(n − 1) · g(bi )

The IPV model — Guerre, Perrigne and Vuong (2001) 
Steps: 
− Remember that before integra„ng, FOC yields:

f (vi )
β 0(vi ) = (vi − β(vi )) · (n − 1) · 

F (vi )
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Guerre, Perrigne and Vuong (2001) 
Alterna„ve Deriva„on: Consider bidder i ’s response given that compe„tors play the eq. strategy β: 
− Strategy β results in opponent bid distribu„on G (b) = P (β(v) 6 b) 

− Best response of a vi -type bidder: 
1max (vi − b) [G (b)]n− 

b 

− First order condi„on: 1 I −2 
i i i i− [G (b ∗ )]n− 

+ (vi − b ∗ ) (n − 1) [G (b ∗ )] g (b ∗ ) = 0 

Re-arranging, we get bidder i ’s value as a func„on of her bid 

G (b∗)i vi = b ∗ +i (n − 1) · g (b∗)i 

where G (bi ) and g(bi ) are observed. 
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Guerre, Perrigne and Vuong (2001) — es„ma„on steps 
Approximate Ĝ (b) and ĝ(b) from bidding data, e.g.: XX1 

Ĝ (b) = 1{bti 6 b}.
T · n 

t i XX �1 1 � b − bit 
ĝ(b) = K ,

T · n h h 
t i

Use es„mated of density and CDF to recover valua„ons: 
Ĝ (bi ) 

v̂i = bi + 
(n − 1) · ĝ(b)

Finally, use kernel again to es„mate f (v). Standard errors on outcomes are in prac„ce Bootstrapped. 
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Guerre, Perrigne and Vuong (2001) — discussion 

Comments: 
− Computa„onal/es„ma„on simplicity.
− Alterna„ve to solving for equilibria and matching the data.
− Does not rely on func„onal form restric„ons.
− GPV has been very in‡uen„al in the way auc„on data is analyzed. Most of the auc„on literature isnon-parametric. Some examples:

− Mul„-unit auc„ons (Hortacsu, 2002; Wolak, 2003).
− Dynamics (Jofre-Bonet and Pesendorfer, 2003).
− Test RET (Athey, Levin and Seira, 2008).
− Es„ma„ng damages of bidding rings (Asker 2010).

− Probably led to too many IPV applica„ons. Tes„ng for common values (Haile, Hong, Shum, 2003).
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Athey, Levin, and Seira (2011) 



Athey, Levin, and Seira (2011) 
Ques„on: should we use a sealed bid or open auc„on format? 

− Timber auc„ons, $100 billion industry.
− 30% of land publicly owned
− Government auc„ons from Idaho-Montana borderand California.
− U.S. Forest Service uses both open and sealedbidding (some„mes randomly).
− Open auc„ons are believed to foster collusion. Image by the Bureau of Land Management Oregon 

and Washington. CC BY. 
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Athey, Levin, and Seira (2011) — model setup and predic„ons 
Setup: 
− They consider open and sealed bid auc„ons τ ∈ {o, s}.
− Two types of bidders: Loggers (L) and Mills (M).
− Loggers take iid draws from FL(·), mills from FM (·).
− Mills are assumed to be strong bidders, their valua„ons

Image is in the public domain. 

stochas„cally dominate those of loggers’.
− Bidders learn their valua„on a›er paying the entry cost.
− Search for equilibrium in type symmetric entry and bidding,(pt ,βt (·; n)) strategies.
− Assume that for all nL, nM , πs

M (nL, nM + 1) > πs
L (nL, nM ).

− In a collusive eq. only loggers collude.
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− For the open auc„on for any non-collusive type-symmetricequilibrium there is a collusive equilibrium (only millscollude) where (i) loggers are less likely to enter, (ii) mills aremore likely to enter, (iii) it is less likely a logger will win.

Athey, Levin, and Seira (2011) — model setup and predic„ons 

Predic„ons: 
− Unique type symmetric entry eq. with either pL = 0 or

pM = 1.
− In the open auc„on (rela„ve to sealed) (i) loggers are lesslikely to enter; (ii) mills are more likely to enter; (iii) it is less

Image is in the public domain.

likely a logger will win.
− Maskin Riley (2000), sealed bidding favors weaker bidders.
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Athey, Levin, and Seira (2011) — e•ect of auc„on format 
Y = α · SEALED + ·X β + Nγ + ε and matching es„mate 

C
O

M
PA

R
IN

G
O

P
E

N
A

N
D

S
E

A
L

E
D

B
ID

A
U

C
T

IO
N

S
231

TABLE III
EFFECT OF AUCTION METHOD ON SALE OUTCOMES

Notes. Regression specifications include the same sale controls used in Table II (Forest Service reserve price and estimates of selling value, logging costs, manufacturing costs and
road costs, the contract length per unit volume, a species herfindal, the timber density, indicators for salvage or scale sale, monthly housing starts, indicators for volume categories,
and dummy variables for year, quarter, forest or forest district, and common species). Appendix Tables A1 and A2 report complete estimates for the regression specifications with no
interactions. Robust standard errors are reported. Additional notes: (a) Column (6) includes number of entering mills and loggers in addition to sale controls; (b) Matching estimate
is computed as in described in the text using closest four matches based on the estimated propensity score. Standard errors are computed following Abadie and Imbens (2006).

Downloaded from https://academic.oup.com/qje/article/126/1/207/1900787 by MIT Libraries user on 22 November 2022
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Athey, Levin, and Seira (2011) — structural es„ma„on 

− Es„ma„on is based on only sealed bid auc„ons via GPV.
− Parametrize the bid distribu„on as Weibull, test with Andrews (1997).
− Account for unobserved auc„on-speci†c heterogeneity, (Krasnokutskaya (2011), Li and Vuong (1998)).
− Es„mate entry cost from op„mal entry behavior.
− Generate predic„ons for both open and sealed bid auc„ons.
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Athey, Levin, and Seira (2011) — e•ect of auc„on format 

− Model performs very well atpredic„ng sealed auc„onentry and bidding behavior.
− Logger entry in open auc„onalso well predicted.
− For California the compe„„vemodel also predicts pricesand revenues in the openauc„on well.
− For open Northern auc„onsboth the compe„„ve and thecollusive model are rejected.

COMPARING OPEN AND SEALED BID AUCTIONS 249

step, however, provides a demanding test of the theory. We use
the model to predict the outcomes of the open auctions and com-
pare these predictions to the data. Here we are asking the model

TABLE V
ACTUAL OUTCOMES VERSUS OUTCOMES PREDICTED BY MODEL

Notes. Column (1) shows average outcomes for sale sealed bid or open sales in the region. Column (2)
shows predicted outcomes from the model for those same sales, conditional on the number of entering firms
observed in the data. Column (3) shows predicted outcomes based on the equilibrium model of entry and
bidding. All standard errors obtained by a parametric bootstrap.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/126/1/207/1900787 by M

IT Libraries user on 22 N
ovem

ber 2022

28 / 32 



Athey, Levin, and Seira (2011) — e•ect of auc„on format 

− Model performs very well atpredic„ng sealed auc„onentry and bidding behavior.
− Logger entry in open auc„onalso well predicted.
− For California the compe„„vemodel also predicts pricesand revenues in the openauc„on well.
− For open Northern auc„onsboth the compe„„ve and thecollusive model are rejected.

COMPARING OPEN AND SEALED BID AUCTIONS 249

step, however, provides a demanding test of the theory. We use
the model to predict the outcomes of the open auctions and com-
pare these predictions to the data. Here we are asking the model

TABLE V
ACTUAL OUTCOMES VERSUS OUTCOMES PREDICTED BY MODEL

Notes. Column (1) shows average outcomes for sale sealed bid or open sales in the region. Column (2)
shows predicted outcomes from the model for those same sales, conditional on the number of entering firms
observed in the data. Column (3) shows predicted outcomes based on the equilibrium model of entry and
bidding. All standard errors obtained by a parametric bootstrap.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/126/1/207/1900787 by M

IT Libraries user on 22 N
ovem

ber 2022

28 / 32 



Comments 

− Very complete and well done paper.
− Is this a private value sefng?
− Can we a‰ribute part of the e•ect to risk aversion?
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Kong (2019) — risk aversion in open and sealed bid auc„ons 

− New Mexico, Permian Basin oilextrac„on.
− In 2018 the Permian Basin was thesecond most produc„ve oil †eld in theworld.
− Lessees pay royal„es, a rental rate, and inthe auc„on compete on a lump sumpbonus.
− New Mexico State Land O…ce (NMSLO)uses both open (English) and sealed bidauc„ons. Image by SkyTruth on flickr. License: CC BY-NC-SA. 
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Figure 2: Map of sections by auction format, estimation sample
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Each colored square is a section. The larger polygons are counties.
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− Many auc„ons with only one bidder.
− If bidders in sealed-bid auc„ons knew nthey would have bid the reserve pricewhen n = 1.
− Under risk neutrality, First-price andEnglish auc„ons with or withoutuncertainty about n are all berevenue-equivalent (Harstad, Kagel andLevin (1990)).
− Bidders in †rst price auc„ons insurethemselves by bidding higher.
− Kong shows how open and sealed bidauc„ons together iden„fy thedistribu„on valua„ons and the level ofrisk aversion.

Kong (2019) — risk aversion in open and sealed bid auc„ons 
− Sealed-bid FPA generate higher revenuethan English auc„ons. Table 4: Auction format and auction revenue, estimation sample

(1) (2)
auction revenue auction revenue

auction format S 0.321*** 0.305***
(0.073) (0.068)

lease prefix VB 0.404*** 0.174**
(0.077) (0.072)

ln(production) 1970-auction date 0.003 0.002
(0.011) (0.010)

ln(production) auction date-2014 0.069*** 0.025**
(0.010) (0.011)

section drilled before 0.093 0.095
(0.074) (0.069)

ln(gas futures) -0.112 -0.305
(0.226) (0.205)

ln(WTI oil price) 0.497** 0.721***
(0.208) (0.196)

same quarter BLM price/acre 0.185** 0.242***
(0.074) (0.067)

last month price/acre 0.029 0.055
(0.093) (0.085)

heatmap index 0.953***
(0.070)

Constant Y Y
Year FE Y Y
Calendar-month FE Y Y
Observations 1189 1189
R2 0.177 0.287
Adjusted R2 0.156 0.268

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01
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− Under risk neutrality, First-price andEnglish auc„ons with or withoutuncertainty about n are all berevenue-equivalent (Harstad, Kagel andLevin (1990)).
− Bidders in †rst price auc„ons insurethemselves by bidding higher.
− Kong shows how open and sealed bidauc„ons together iden„fy thedistribu„on valua„ons and the level ofrisk aversion.

Kong (2019) — risk aversion in open and sealed bid auc„ons 
− Sealed-bid FPA generate higher revenuethan English auc„ons.
− Many auc„ons with only one bidder.
− If bidders in sealed-bid auc„ons knew nthey would have bid the reserve pricewhen n = 1.

Figure 3: Histogram of ln(price), estimation sample
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Prices are in 2009 dollars, deflated by the GDP implicit price deflator.

Table 5: Statistics by bidder subgroup, estimation sample
top core fringe

count of names 1 32 83
average number of entrants in a given S auction 0.84 1.63 0.41
average S entry rate 0.84 0.05 0.005
average S win rate conditional on bidding 0.40 0.38 0.32
subgroup’s share of S wins 0.35 0.54 0.11
subgroup’s share of O wins 0.30 0.58 0.13
p-value for test of null hypothesis that subgroup’s S share = O share 0.05 0.28 0.25
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Thank you and see you (hopefully) in14.273 next semester! 
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