1431 /14.310 Lecture 3



A couple of housekeep\wg notes:
Keep an eve ot bor the prablem sef.
Lecture votes o lectures | and 2 vow posted.
ToolaW random variables, distributions, \oint distributions

Tvesolaﬂ" examples, bistograms, kervel olmsi’fﬁ plots, data
sources and, Techniques For qathering (e. 4, WeDserap! vxﬁ)

\I\/eolmsolaﬂ‘ independence of vandom variables, conditional
distribvtions

Recitation: wmore on R, 77



Probabilit 3'”ramdom variables

Oken times, there is some vumerical characteristic of the
sample space Tt were interested in (.., the som on the
faces of two dice, the vumber of 3pt F%(s Steph erﬁ
makes i his vext six affempts, the umber of vegetarian
Toppings | 4t on my ravwlomlﬁ'selec’fed pizm). ere 1s
an imporfant and vsetul mathematical construet we exploit
Yo aval yze that vumerical characteristic, the random
variable.

A vandom variable is a real-valved fnction whose domain is

Yhe sample Space.



Probabilit n'”ramdom variables

probability random variable
P K
N Y
ZS [0,1] S LN
set of all subsets
of the sample space P(XeA) = ?{5: X(s) € AE

The ?\robabih’(ﬁ induces the distribution of X.



Probabilit 3'”ramdom variables

All of the Probabili’fﬁ examples weve seen would 4ive rise Yo
Type of random variable called discrete, one that can Yake
on ovxlﬂ a fivite or covvx’fabla infinite vumber of valves.

We can also consider a vatural qeneralization (or ditferent
Havor) of this construet, a vandom variable that can take
on any valve n some wterval, bownded or wnbounded, of the
real live. This is called a continvovs random variable.

We will mostiy deal with contivuous random variables, partly
becavse many discrete vandom variables can be aolzqva’feM
approximat ed with a contivwous random variable.



Probabilit 3'”ramdom variables

For discrete vandom variables, You' can offen start with a
verbal descripfion, caleate probabilities for each valve of
the random variable, and then write down a function or
draw a qraph deseribing those probublifies for different
valves ot the vandom variable. This is called a probability

fnction (PF).
We've alreadﬁ done the first part of this exercise for Two

’fm)es 0{ discrete vandom variables, hﬂperﬁeome’ﬂric and,
binomial. Let's complete the exercise.



ofe Caramelized Onions, Pickled Banana Peppers, Mushrooms, Green Olives: $1.50 | $3
Y 0 ‘ l ‘ T Arugula, Sopressata, Sausage, Bacon, Chicken *: $2.50 | $4
2 Farm Eggs = $3.5

Marinated White Anchovies *: $5/8

Hﬂpcrﬁeome’rric (?ilza it o?‘)ivxﬁ) random variable:

Let X be the wowber of vegetarian Yoppings | get on wy
piz2a it | dyaw the Area Four Toppings randomly (without

replacement ).

We can caleviate the Probabili’f tat X =0, 1, 2, and 50
\cor’dn, vp Yo the maximum o? 6 or n, whichever is smaller,
vsing The Formua trom last Yime:

(5) ()

(o)




ofe Caramelized Onions, Pickled Banana Peppers, Mushrooms, Green Olives: $1.50 | $3
Y 0 ‘ ‘ T Arugula, Sopressata, Sausage, Bacon, Chicken *: $2.50 | $4
2 Farm Eggs = $3.5

Marinated White Anchovies *: $5/8

Hﬁpcrﬁeome’rric (?ilza it oppi\r\ﬁ) random variable:

Let X be the wumber o¥ veﬁe’mriavx ’fonﬁs | 3@’( on my
piz2a it | dyaw the Area Four Toppings randomly (without

replacement ).

We can caleviate the Probabili’f tat X =0, 1, 2, and 50
\cor’dn, vp Yo the maximum o? 6 or n, whichever is smaller,

vsing The Formua trom last Yime: (/5
(x)(h—x)
Note that 0! is defined as 1. ( I\ )
N

Note that | chﬁed vp The votation a bit.



oo Caramelized Onions, Pickled Banana Peppers, Mushrooms, Green Olives: $1.50 | $3
Y 0 l Arugula, Sopressaia, Sausage, Bacon, Chicken *: $2.50 | $4
‘ ‘ n 2 Farm Eggs *- $3.5

Marinated White Anchovies *: $5/8

Note, Thovgl, That the probabilities will be a fwnction of ,
the wmber of Toppings.

For concreteness, let's choose n = 3.
P(X=0) = 6/%
POKA1) = 36/
POK=2) = 45/7
POK=3) = 12/%



oo Caramelized Onions, Pickled Banana Peppers, Mushrooms, Green Olives: $1.50 | $3
Y 0 l Arugula, Sopressaia, Sausage, Bacon, Chicken *: $2.50 | $4
‘ ‘ n 2 Farm Eggs *- $3.5

Marinated White Anchovies *: $5/8

Note, Thovgl, That the probabilities will be a fwnction of ,
the wmber of Toppings.

For concreteness, let's choose n = 3.
POX-0) = 6/ £
POKAI) = 36/ b T
POK=2) = 45/7
POK=3) = 12/% J




Marinated White Anchovies *: $5/8

Note, Thovgl, That the probabilities will be a fwnction of ,

oo Caramelized Onions, Pickled Banana Peppers, Mushrooms, Green Olives: $1.50 | $3
v- 0 l Arugula, Sopressaia, Sausage, Bacon, Chicken *: $2.50 | $4
‘ ‘ 3 2 Farm Eggs *- $3.5

the wumber of Toppings.
For concreteness, let's choose n = 3.

POX-0) = 6/ £

POCAI) = 36/ BT %

POK=2) = 45/%

POK=3) = 12/ J
| -
0 1 2 3

53 convention, when we 3mph PFs, we put vertical lines beveath each
pont on The graph. Also, each point is known as a “Poi\n’r mass.



oo Caramelized Onions, Pickled Banana Peppers, Mushrooms, Green Olives: $1.50 | $3
v- 0 l Arugula, Sopressaia, Sausage, Bacon, Chicken *: $2.50 | $4
‘ ‘ n 2 Farm Eggs *- $3.5

Marinated White Anchovies *: $5/8

More ﬂe\r\emﬂﬂ, We sy that X has a \\hﬂyerﬂeomefric distribution
with parameters N, K 4 n" denoted” X~ HINKn). I+ PF

\S

‘X/)(nr?{ = W(O,Y]+K“N)}+-~,mﬂ (.nlk)

The lperqeometric distribution deseribes the number of
“suecesses i n trials where wovie samyli\nﬂ without
replacement from a sample (r& size N whose itial probubility

o\c secess was K/N.



Probabili’fn

Bivomial (3pt F&) random variable:

Let X be the wowber of 3pt shots that Steph erﬂ makes
i The vext six shots he Takes.

We can calevlate the Probabili’f tat X =0, 1, 2, and s0
Forth, vp Yo the maximum o? 6 vsing the forma deseribed
last Yime:

B) " st



onbabili’fn

Plvm'w\ﬁ n, we 4ef,
P(X=0) = .03
PO = 15
POC=2) = .29
POK=3) = .30
POK=4) = 18
POX=5) = .06
POK=6) = .0l



onbabili’fn

Plvmmﬁ n, we 4ef,
P(X=0) = .03
PO = 15
POC=2) = .29
P(X=3) = 30
POK=4) = 18
POK=5) = .06
P(X=6) = .0l

o B




Probabili’fn

More SCV\CYa“!j, We. say that X has & binomial
distribution with parameters v 4 p,” denoted X ~ Bl p).
¥ PF s

h-X

f0O = (%) p (1-p) =01, M

The binomial distribvtion deseribes the vumber of “successes”
n n Trials where the trials are independent and, the
?robabili’fﬂ of svecess in each is p.



Probabili’fn

The binomial distribution is vseful and. comes up prety often.
When p = .5, the binomial PF is symmetric.

Binomial Distribution PDF
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Probabili’fn

The binomial distribution is vseful and. comes up pretiy often.
When p = .5, the binomial PF is symmetric.

Binomial Distribution PDF

0.3 - — n=3p=0.5
__ n=20p=0.5
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£ 0z
r
. - Starting Yo look. like another
0.1 ‘
distribution youve seen before
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n, see https://ocw.mit.edu/help/faq-fair-use/

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more informatio


https://ocw.mit.edu/help/faq-fair-use/

Probabilit 3'”ramdom variables

More \[ormallﬁ, the ;zmiza\b\hf%m (PF) of X, where X
is a discrete vandom variable, is the function \[X such that
For any veal vomber x, £(x) = POK=x).

The robabil'\:e bnction s properfies induced bﬁ ovr earlier

detivition ot a Probabili’fﬂ. In particdar,
0 ¢ Hlx) < |
Zidx) = |

P(.A) = P(XCA) = Z‘A{:X(’XQ



Probabilit n'”ramdom variables

For contivwous random variables, we mrelﬂ start with a verbal
description That we vse Yo calevlate probabilities.  Instend,
we are ’fm)icallﬂ 3iveV\ a %Mc’ﬁovx, called a lesjj'%, Yhat

describes the Probabili’f y That the random variable. is in
VAY10VS reﬁ'\ ons.  You've seen these. ' '

Standard Normal density function g 8 E
05

Alphis = 5, Bols = 2

plar)

20



Probabilit 3'”ramdom variables
The dmsjff_ﬁ, or ‘zm\zaﬁlﬂ%_olcmf%m (PDF) is the

continvous amlog Yo Yhe diserete PF in Moy ways. Well

talk abovt how ’ﬂneﬁ're similar and, ditterent, but first a
defivition.  Well, in fact, we define continvous vandom
variales in terms of this function.

A vandom variable X is continvovs it there exists a non-
neqative bnction \[X such that for any interval A ¢ R

POK e A) = [ fbdx



Probabilit n'”ramdom variables
The dmsjff_ﬁ, or MM%M%MM (PDF) is the

continvous amlog Yo Yhe diserete PF in Moy ways. Well

Yalk about how ’ﬂneﬁ're similar and, ditferent, but first a
defivition.  Well, in fact, we define continvous vandom
variales in terms of this function.

A vandom variable X is continvovs it there exists a non-
neqative bnction \fx such that for any interval A ¢ R

POK ¢ A) = [ ofGod

his is the PDF



Probabilit 3'”ramdom variables

Just like the PF, the PDF las properties induced 173 our
earlier defivition of a probuility. In particdar,

O ¢ {:X(JO
I {:)((.X> = |
PA) = Pla <= X = b) = [ phxddx

Note the valve of a PDF af a particdar x does ot have the
same inferpretation as a Probabili’fa. ln fact, POK=x) = O
For X it X is continvous.



Probabilit n'”ramdom variables

Just like the PF, the PDF las properties induced bﬁ our
earlier defivition of a probuility. In particdar,

R %((-X) ¥ can be ﬁrea’fe\r Yoan |
I {:)((.)O = |
PAA) = Pla = X = b) = [ phxddx

Note the valve of a PDF af a particdar x does ot have the
same inferpretation as a Probabili’fa. ln fact, POK=x) = O
For X it X is continvous.



Probabilit n'”ramdom variables

Just like the PF, the PDF las properties induced bﬁ our
earlier defivition of a probuility. In particdar,
0 ¢ £(x)
I %((-X) = | IV\’feﬁm’fes Yo | instead of summing To .
PAA) = Pla = X = b) = [ phxddx

Note the valve of a PDF af a particdar x does ot have the
same inferpretation as a Probabih’fa. ln fact, POK=x) = O
For X it X is continvous.



Probabilit n'”ramdom variables

Just like the PF, the PDF las properties induced bﬁ our
earlier defivition of a probuility. In particdar,

O ¢ {:X(JO
I {:)((.)O = | /
PAA) = Pla = X = b) = [ phxddx

Note the valve of a PDF af a particdar x does ot have the
same inferpretation as a Probabili’fa. ln fact, POK=x) = O
For X it X is continvous.

Aﬂam, an infeqrol



Probabilit 3'”ramdom variables

A word, about ¥ erminology and notafion
There are a lof of different ¥ ypes of functions o keep Track

of (even sometling called “random variable” is ack wlly a
fnction), and more Yo come. | have tried Yo vse what | think
is the most standard and accepted termindoqy and votation for
these. | will also fry Yo be consistent. Do, please, wnderstand
that notation and terminoo Y vary quite a b bﬂ sowrce, and
sometimes we will vse less Eormal Yerms, like sa ng

“distribvtion of a random variable” for either a PF or a PDF.



Probabilit n'”exam?le
Let a, D be veal vwmbers such that a < .
Let S = Yxia <= x <= bY.

Suppuse X is defived in such a waw That the probabili of X
elonging o any subinterval of g is proportional Yo iz?ne
leng the subinterval.  Then,

1) ={ |/ ba) a<c=x<d

O otherwise

We call this vandom variable X “waikorm with parameters a §

b," devoted X ~ Vlab].



Probabilit n'”exam?le

Here's a picture: ¢ 4

“?&"XP



Probabilit n'”exam?le

Here's a picture:

.
| gp— "r

0 b

£ you wanit Yo compute the Probabili’fﬁ of & Vlab] random
variable being in some interval (e, d] n (ab], You can %;}s’r
infeqrate 1/(b-a) over that region. Or, since the PDF is

Hat, you can st use d-¢)/(b-a).



Probabilit 3'”ramdom variables

Sometimes it's handy o be able Yo express probabilities
related Yo a vandom variable in an alfernative form.
Dovblﬂ handy s The fact that this alternative form s
the same olz?i vifion veqardless of whether the vrandom
varioble is diserete or continvous.

The comative distribution fnction (CDF) Fy of a random
variable X is defined for each x as

Fx) = PIX <= x).



Probubility==-vandom variables

Properfies of probability imply certain things abovt COFs:
0 <= Fylx) <= |
Flx) i non-decreasing in x
lim F)((-X> =0

=20

lim Fx(.)(> = |

o, 00
F(x) is vi 4t confinvous
Note that CDFs are continvovs everywhere for continvous
random variales and have jumps jeOr discrete random
variables.



Probabilit 3'”ramdom variables

A PF/PDF and, a CDF for a particar vandom variable
confain exactly the same information about its distribution,
st ina ditferent form. 1t stands Yo reason, then, that
given the PF/PDF, one could recover the CDF and, vice
versa. This is frve. Here's how Yo do it with continvous
random variables:

Fx) = PK <= x) = j% £ 6dx
PG = 28« £



Probabilit n'”ramdom variables

A PF/PDF and, a CDF for a particar vandom variable
confain exactly the same information about its distribution,
Jstina ditkerent form. [t stands Yo reason, then, that
given the PF/PDF, one could recover the CDF and, vice
versa.  Twis is true. Here's how Yo do it with continvous
random variables:

Flx) = PIK <= x) = j% £ 0dx
RGO = 25 = £

his is Trve {)rovidzd X
confinvovs and F' exists at all

but a fivite vumber of poins



Probabi\i’fn”'\'\om’f distributions

When we were falking abot probubility last lecture, | said

Tk, going Sorward, it was qoing Yo be important for vs Yo
be able Yo discuss relafionships between stochastic events.
We then Yalked abovt independence and. conditional
probability.  We will falk abovt avaloqus concepts in The
context of vandom variables, but first we must a \oint
distribvtion.  (n the case where ovxlﬁ fwo random variables
are nvolved, we call them bivariate distributions.)



Probubility==-yoint distributions

Why?

Might be interested in the relafionship and joint behavior of two
or more random variables.
~~vainall and orop qrowth

"lenﬂﬂn of the reﬂvlar checkovt line and, the le\nﬂ’ﬂn of the
express checkout line

~~the wwber of veq Toppings and the number of non-vey
Toppings on my pizza

~=dollar/evro exchange vate and the stock price of an
ex?or’ﬁnﬂ {wm



Probubility==-yoint distributions
£ X and Y are continvovs random variables detined on the

same sample space S, then the Mﬁ%ﬁmﬁ
£mcjjgm 0\[ XiY, \[N(X, 5), 15 Yhe sw\cace such That tor

any region A of the xy"plane,

PAY) ¢ A) = II fodx g\)dxdﬁ
Like before, properfies of ?robabili’fﬁ imply certain properfies
of the \oint PDF, such as it must infeqrate Yo | over the
xmﬂaw\e, and any individual point or one-dimensional curve
has {)robabili’fn 2690



Probubility==-yoint distributions
(The ava 040V ;ym’LEE exists or discrete vandom variables,

fodkxy) = POK=x and Y-),

bt | wont say anything else about i right viow.
Sometimes | will st give defivitions n Terms of continous
random variables. )




Probabilit n'”exam?le

Suppose atter howrs of wrifing lecture viotes, | develop a
splitfing headache. | rummage around, in W\p drawer and
find one tablet of naproxen and one of ace arminophien. |

fake both. Let X be the etfective period of naproxen.
Let Y be the etfective period of acefaminophen. - Suppose

\CN(X,@ = Azexﬂ’Mx’fﬂ)} \Cor XY 7 O

What is the grobabili’f Y Hoat my headache comes back within
Yhree hovrs



Probabilit n'”exam?le

What is the probubili Y Hhat my headache comes back within
Yaree hows, i.e., POK <= 3 and Y <= 3)7

Sz S: Alexﬁ’A(x’fg)}dgdx

(-exp AR



Probabilit n'”example

What is the probubili Y Hhat my headache comes back within
Yaree hows, i.e., POK <= 3 and Y <= 3)7

- SZ S: Alexﬁ’A(x’fg)}dﬁdx
= \

= -CX?S['BADZ hese dots wean Tt you can
work ovt the details ot home.




Probabilit n'”example

What is the probubili Y Hhat my headache comes back within
Yaree hows, i.e., POK <= 3 and Y <= 3)7
fy

- SZ S: Alexﬁ’A(x’fg)}dgdx
= (-exp)3Af? }
]
This is the region

over which we are
iV\‘\'CﬂYaﬁV\ﬂ.



Probabilit n'”exam?le

What i owlﬂ Took the acefaminophen atter the naproxen
stopped working?




Probabilit n'”exam?le

What i owlﬂ Took the acefaminophen atter the aproxen
sTopped workivsﬁ? Now |'m aski\nﬁ ot POK+Y <= 3).

f‘

0

3-x
ﬁ MM oM &tﬂ } dx

0

—(tan)e P



Probabilit n'”exam‘;le

What i owhﬁ Took the acefaminophen atter the aproxen
stopped workivsﬁ? Now |'m asking about POKY <= 3).

o5y
f ﬁ HCXL e oM d/j}obc

0 0

. . [x
—(tan)e P %

J
This is the region

over which we are
'w\’feﬂm’ﬁnﬂ.




Probabilit n'”exam?le

What if | detined, a vew vandom variable Z = otal effective

life of naproxen and acefaminophen taken sequentially = X
+Y.

What is F,(2)7 We've alreadg computed i F(2) -
PZ < 2)=PRtYc=2)=1-( 1A)exﬁ’ 2\}, for

2 > 0.

What is £(2)7 Well st Take the derivative. f(2) -
FZA2) = Naexp b 2\}, for 2 > O.
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