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Motivation

Outcomes may differ in similar environments.
This has been explained by multiple equilibria
(w/strategic complementarity)

o Investment/Development

Search

Bank Runs

Currency attacks

Electoral competition...

But with introduction of incomplete information,
such games tend to be dominance-solvable
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A simple partnership game

Invest

Not-
Invest

Not-
Invest
Invest
0,0 0-1,0
0,0-1 0,0

Assume 0 is known

If 0> 1, Investis
dominant

If 0 < 0, Not-Invest is
dominant

Otherwise, multiple
equilibria
Risk-dominance v.
Pareto-dominance

0 is not common knowledge

0 is uniformly distributed over a large interval
Each player i gets a signal

X; =0 + og

o (&, &) Is bounded,

o Independent of 0,

o and has joint density.

Carlsson and van Damme: when is ¢ small,
the game is dominance solvable:

o Invest if x; > %2

o Not Invest if x; < %.




Motivation—I iterature Review

Carlsson and van Damme ‘93 shows this
more generally for 2 x 2 games

The unique solution is given by risk-
dominance (= best response to uniform
belief)

Morris and Shin ‘98 applies this idea to
“currency attack” problem, obtaining intuitive
comparative statics,

... and leading to a large applied literature

Road map

Carlsson and Van Damme, briefly

Global Games as Supermodular Games
1. 2x2 Example
2. Frankel Pauzner and Morris

Currency Attacks & Applications
Dynamic Global Games




Carlsson and Van Damme—2x2 games

RISK-DOMINANCE

p-dominance

Consideragame G = (N, S, u)
A Nash equilibrium s* = (s{, ..., s,) IS
(p1, -, Pn)-dominant if, for each i, s;" is a best
response whenever i assigns at least
probability p; on sZ,.
In a 2x2 game an equilibrium is risk dominant
if itis (p;, p»)-dominant for some

P1 + |2) < 1.

In a symmetric 2x2 game, risk dominance =
best response to uniform belief




Risk-Dominance

Assume (a,a) and (b, b)
are Nash equilibria.

For each equilibrium s
bl gb,a) | g(bDb) and player i, let

(a, a) is risk dominant iff
(91(61; a) — g1(b, a))

al glaa) | g(ab)

Monotone supermodular games

G =(N,T,A,u,p)

T=TyxT;x...xT, < RMJ[set of type profiles]
A, is compact sublattice of RX [set of actions]
u: A x T — R [utility function]

o ya,.): T — R is measurable

a u.,t): A— Ris continuous, “bounded”, supermodular in a;,
has increasing differences in a and in (a;,t)

p(.|t;) is increasing function of t—in the sense of 1s-order
stochastic dominance (e.qg. p is affiliated). [interim belief]

Theorem: There exist BNE s* and s** such that
o For each rationalizable strategy s, s* > s > s**;
o Both s* and s** are isotone.

10




A simple partnership game

| Not- 0 is uniformly distributed
hvest Invest over a large interval
Each player i gets a signal
Invest | 0,0 | 6-1,0 PAYET 198758 519
X; = 0 + og;
Not- where (0,g,, &,) is bounded
Invest 0,0-1 0,0 and stochastically
independent.
Monotone BNE
Best reply:

X; < 0 = s;(x;) = Not Invest

Invest&x; > Pr(s; = Not-Invest|x)
Assume supp(b) = [a,b] wherea<0<1<bh.

X;> 1 = si(x) = Invest
A cutoff x* s.t.
o X < X* = s(x) = Not Invest; x; > x* = si(x;) = Invest;
Symmetry: xX;* = X,* = x*
X* = Pr(s;= Not-Invest|x*) = Pr(x; < x*|x=x*) = 1/2
“Unique” BNE, i.e., “dominance-solvable”




Rank Beliefs

Rank Belief:

R(x) = Pr(x; < x|x; = x)
Extremal Equilibria: monotone, symmetric BNE with
cutoff x*.

Extremal equilibria are the extremal solutions to the
Indifference Condition for Cutoff:
R(x*) = E[0]|x; = x*]

Normal Model

0 =y+mandx; =6+ oe; wheren,g; ~N(0,1) iid

Conditional on x;, with @ = 72/(t?+0?), we have
E[0lx] =y +alx—y)
O~N(E[6|x;],0%a)
xj~N(E[0]x;],02(a + 1))
e~N((1 = @)(xi —1)/0,)
Rank Belief Function:
R(x) = Pr(x; < x|x; = x) = ®A(E[0]x;] — ¥))
1= l1—«a _ o
S acva+1 t2a+1
Indifference Condition for cutoff x*:
PAE[O]x:] — ¥)) = E[0]x;]




‘ Equilibrium Cutoffs in Normal Model
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 Equilibrium Cutoffs
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Figure 6.1: The equilibrium cutoff £ [0|x] in Normal example as a function of y for
A=0.1,1,4,10.

‘ Equilibrium Qutoffs
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‘ Equilibrium Selection

= OAE[OIX] —y)) = E[6]%]
= Carlsson and van Damme: ¢ = 0 while T > 0 is fixed (a = 1, 1 = 0)
E[0]X] = ®(0) =1/2

= i.e. risk dominant selection

= Alternatively, take 2 = 1 (while g, T > 0 can be arbitrarily small):
E[g|z] = P(E[01%] —¥)

= Cutoff E[6|X] can take any value in (0,1), depending on y.

= i.e. any equilibrium can be selected by varying y.

Coordination under Model Uncertainty
= 7 has t-distribution (normal with unknown variance).

mo=T

5 075r
R

z=(x-y)lc

-20 A5 -10 -5 0 5 7(0.6) 15 20
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Coordination under Model Uncertainty

Define
Z(09) = mZaxR‘l(H) = max{z|R(oz + y) = 6}

Invest is uniquely rationalizable if

it is risk dominant (i.e. E[8|x;] > 1/2) and

there is large positive shock, i.e.,

E[0]x;] —y > oz(E[0]x;]).

In particular, invest is uniquely rationalizable
whenever E[6]|x;] > R.
A converse is also true.
Opposite conclusions without model uncertainty

General Supermodular Global Games
Frankel, Mortis, and Pauzner
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Model

N ={1,...,n} players
Ai - [Ovl]’
o countable union of closed intervals
0 0,1 eA
Uncertain payoffs u,(a;,a,,0)
o continuous with bounded derivatives
1-dimensional payoff uncertainty: 6 € R
Each player i observes a signal
X; =0 + og
a (0, g, &,) are independent with atomless densities
o (g4, &) bounded

Main Assumptions

Let Au,(a;,a’,,a,,0) = ui(a;a;,0) - u(a’;,a,;,n)
Strategic complementarities: a,> a’, & a;> a’
= Au(a,a’,,a,,0) > Au(a,a’;,a’;,0)

Dominance regions:
a 0 is dominant when 6 is very small
o 1 is dominant when 6 is very large

State monotonicity: outside dominance
regions, 3K>0: V a,>a’; v 6> 0’,

Aui(a,a’,a;,0) - Au(a,a’,a;,0’) > K(a;- a’;)(0- 0")
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Theorem (Limit Uniqueness)

In the limit c — 0, there is a “unique”
rationalizable strategy, which is increasing.

l.e., there exists an increasing pure strategy
profile s* such that if for each ¢ > 0, s°® is
rationalizable at o, then almost everywhere

Lim,_o S1°(X) = s*(x))

c—0

Intuition

|
®
®
*
+
>,
Sell
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Limit Solution

(5.*(%),S,*(x)) is a Nash equilibrium of the
complete information game in which it is
common knowledge that 6=x.

Noise dependence

There exists a game satisfying the FPM
assumptions in which for different noise
distributions, different equilibria are selected
in the limit as the signal errors vanish.

There are conditions under which s* is
independent of the noise distributions.
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Currency attacks
Morris & Shin

Model

Fundamental: 8 in [0,1]

Competitive exchange rate: f(8)

fis increasing

Exchange rate is pegged at e* = f(1).
A continuum of speculators, who either

o Attack, which costs t, or
o Not attack

Government defends or not

The exchange rate is e* if defended, f(6)
otherwise
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Speculator’s Payoffs

Attack, not
Exghange rate o defended:
i} | e* —f(0) -t
et i/'f Attack, defended:
’ t
No attack: O
0

Government’s payoffs

Value of peg =v  ¢(a.0)
Cost of defending )
c(a.,0)
where o Is the ratio

of speculators who
attack

c is increasing in a,
decreasing in 6

c(0,0)

I |---
@
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Government’s strategy

Government knows o and 6;
Defends the peg if

v > c(a.,0)
Abandons it otherwise.

Information Structure

0 is uniformly distributed on [0,1].

Each speculator i gets a signal
X;=0+n,

n;'s are independently and uniformly

distributed on [- ¢, €] where ¢ > 0 is very
small.

The distribution is common knowledge.
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Government’s strategy

Government knows o and 6;
Defends the peg if

v > c(a.,0)
Abandons it otherwise.

Define: a(0) = the minimum o for which G
abandons the peg

v =c(a(0),0)

a(0)

18



| Speculator’s payoffs

= I = ratio of speculators who attack
= u(Attack,r,0) = e*-1(0) —tifr = a(0)

-
= U(NoAttack,r,0) =0

otherwise

| Unique Equilibrium

= Equilibrium: Attack iff x; < x*
= r(0) = Pr(x < x*|0)

1 6*—x*
0*) = = —
a(0) =5 -2

x*—e=0"—-2e(1—a(6"))
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6*

Utility from attack

1 (¢
UGe) = 5 j (e = 00—t

= 2%(9* —x"+e)(e” —

feH) -t
=(1-a(@))(e"—f(69) -t
=0

Indifference Condition:

(1—a@))(e = fM) =t

“Risk dominance”

Suppose all strategies are equally likely
r is uniformly distributed on [0,1]
Expected payoff from Attack
(1-a(6))(e*-(0)) —1
Attack is “risk dominant” iff
(1-a(0))(e*-f(0)) > t
Cutoff value 6*:
(1-a(6%))(e*-f(6%)) =1
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| Comparative statics — t

= Cutoff value 6*:
(1-a(6%))(e*-f(6%)) = t

= LHS is decreasing in
0*.

If transaction cost t
increases,

attack becomes

less likely!

0*(t") 6%(t) 0

| Comparative statics — e*

= Cutoff value 6*:
(1-a(6%))(e*-f(6%)) = t

= LHS is decreasing in 6*

= and increasing in e*

LHS(e*)

If e* increases,
attack becomes

more likely!

9*(e*) 9*(e**) e
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Comparative statics — ¢

Let c(a,0) =y C(a,0)
Cutoff value 0*:

(1-a(6)(e*-f(6%)) =t
LHS is decreasing in 6*
and decreasing in a
l.e., increasing in y

LHS(Y)

If y increases,

attack becomes

: o) 0x(v)
more likely! !

0

Continuum of Anonymous Players

N = [0,1]
A; ={0,1}
a(a) = [ a;dj

Types: X = 0+ o&;
o @ distributed with CDF G, continuous pdf g
o & € [—1,1] distributed with CDF F and pdf f
Payoff:
a;U(a,8)
where U is weakly increasing
1 is dominant for # > 6 and 0 is dominant for 6 < 6
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Extremal Equilibria

Extremal equilibrium with cutoff X
Fraction of players who take action:

a(e):1—F<’?_9>=F(9_’?>
o o

Indifference Condition for cutoff:

[ (e (25) 0)actro o

Linear Games:

Ul@B)=a+6—-1
Indifference condition for linear games:
R(X) = E[0|X]
where

R(x) = Pr(x; < x|x; =x) = fF(ei)dF(edx)

Games of Regime Change
Payoffs:
_\WV(@@)—-CO) ifa=a(d)
U(@6) = { —C(0)  ifa<@®)
a V,a,C are Lipschitz continuous,
oV > 0 weakly increasing,
o @, C are weakly decreasing
o 0is dominant if 8 < 6; 1 is dominant if § > 6
Extremal Equilibria with Cutoff £
Regime Change if 6 > 6 where

~

(0) =F<9"?>

o

Indifference Condition:

f V(6)dG(6|x) = E[C|X]
G}
In the limit o - 0:

V@ (1 =a®)) =C(&)
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Dynamic Global Games

Selection by Dynamics

a Burdzy, Frankel, Pauzner, Eca, 2001

o Frankel, Pauzner, QJE, 2000

o Chamley, QJE, 1999

Dynamic Global Games of Regime Change
a Angeletos, Hellwig, Pavan, Eca, 2007

Fear of Miscoordination

o Chassang, Eca, 2010

Equilibrium Shifts and Large Shocks

o Morris and Yildiz, 2019

Selection by Dynamics (BEP 01)

A continuum of players, i
Discrete time, t =0, 1, 21, 31, ...

At each t, players randomly match to play the investment
game where ...

Return 6, follows a random walk (6,=6;_, *+ 0+/7)
Friction: Pr(i can change his action) = kt

Players are forward looking

Solution Concept: Iterated conditional dominance.

Theorem: For small o and large k, there exist a unique
solution: risk dominant action everywhere
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Dynamic Global Games of Regime Change
(AHP,07)

A continuum of players, i, discrete time, t = 0,1, 2, ...
At each t, each player chooses {attack, no attack},

o A;= Fraction of people who attack

Regime changesif A, > 6

o Payoff from attack 1 — c if regime changes - ¢ otherwise

o The game ends when the regime changes

6~N(z,1/a) and at each t,

each i observes

(]

Xit = 0 + €t
where g;,~N(0,1/8); €;:~N(0,1/1;0);

Dynamic Global Games of Regime Change

First period play as in the static case:
o Attack & x;p < X

o Attack size: A(0) = @ (B(% - 6))

o Critical threshold: § = @ (\/E(J? - é))

o Equilibrium Condition: F(8|%) = ¢

A robust equilibrium for dynamic game:

o no further attacks if regime survives t = 0
o This is the only equilibrium when z is small

Multiple monotone equilibria if z large;
o Infinitely many equilibria with arbitrary # attacks if z is very large

Interesting dynamics: periods of tranquility after
supposed attacks
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| Equilibrium Shifts & Large Shocks
(MY’19)

= Continuum of players i, discrete time t
= At each t, the following happens:
o A new state 9, is drawn:
O = 0p—1 + ony
o Each player i observes her own return parameter:
X =0, +o¢jp
o Each i chooses a;; € {0,1 = invest}
o Payoff from investment:
xXe +A4;—1
where A, = [ a;.dj
= 7; has fat tails while ¢;; has light tails

‘Equﬂibrium shifts & Large shocks

= Unique rationalizable action when there is a large shock or x;; € (1 — R, R)
= Multiple equilibrium actions otherwise

= 075
R

07t
;1 +o0z
065
06
055
x 05
045F
04t
035}

03t

z=(x-y)lc

20 -5 -0 -5 0 5 (0.6 15 20




Equilibrium shifts and Large Shocks
A typical path under hysteresis
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