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14.126 Game Theory 

Motivation 

 Outcomes may differ in similar environments. 
 This has been explained by multiple equilibria 

(w/strategic complementarity) 
 Investment/Development 
 Search 
 Bank Runs 
 Currency attacks 
 Electoral competition… 

 But with introduction of incomplete information, 
such games tend to be dominance-solvable 
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A simple partnership game 

Not-  Assume  is known Invest 
Invest 

  

  

 If  > 1, Invest is 
dominant Invest 

 If  < 0, Not-Invest is 
Not-

dominant 
Invest 

 Otherwise, multiple 
equilibria 

 Risk-dominance v. 
Pareto-dominance 

 is not common knowledge 

  is uniformly distributed over a large interval 

 Each player i gets a signal 

xi =  + i 

 (1, 2) is bounded, 

 Independent of , 

 and has joint density. 

 Carlsson and van Damme: when is  small, 
the game is dominance solvable: 
 Invest if xi > ½ 

 Not Invest if xi < ½. 
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Motivation—Literature Review 

 Carlsson and van Damme ‘93 shows this 
more generally for 2 x 2 games 

 The unique solution is given by risk-
dominance (≅ best response to uniform 
belief) 

 Morris and Shin ‘98 applies this idea to 
“currency attack” problem, obtaining intuitive 
comparative statics, 

 … and leading to a large applied literature 

Road map 

1. Carlsson and Van Damme, briefly 

2. Global Games as Supermodular Games 
1. 2x2 Example 

2. Frankel Pauzner and Morris 

3. Currency Attacks & Applications 

4. Dynamic Global Games 
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Carlsson and Van Damme—2x2 games 

RISK-DOMINANCE 

p-dominance 

 Consider a game 𝐺 ൌ ሺ𝑁, 𝑆,𝑢ሻ 
 A Nash equilibrium 𝑠∗ ൌ ሺ𝑠ଵ

∗ , … , 𝑠௡∗ሻ is 
ሺ𝑝ଵ, … ,𝑝௡ሻ-dominant if, for each 𝑖, 𝑠௜

∗ is a best 
response whenever 𝑖 assigns at least 

∗ probability 𝑝௜ on 𝑠ି௜. 
 In a 2x2 game an equilibrium is risk dominant 

if it is ሺ𝑝ଵ,𝑝ଶሻ-dominant for some 
𝑝ଵ ൅ 𝑝ଶ ൏ 1. 

 In a symmetric 2x2 game, risk dominance = 
best response to uniform belief 
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Risk-Dominance 

 Assume ሺ𝑎, 𝑎ሻ and ሺ𝑏, 𝑏ሻ 
a b 

𝑔 𝑎, 𝑎  𝑔  𝑎, 𝑏 

𝑔 𝑏, 𝑎  𝑔  𝑏, 𝑏 

are Nash equilibria. 
a 

 For each equilibrium 𝑠 
b and player 𝑖, let 

 ሺ𝑎, 𝑎ሻ is risk dominant iff 
𝑔ଵ 𝑎, 𝑎 െ 𝑔ଵ 𝑏, 𝑎 

Monotone supermodular games 
 G = (N,T,A,u,p) 

 T = T0  T1  …  Tn  RM [set of type profiles] 

 Ai is compact sublattice of RK [set of actions] 

 ui : A  T → R [utility function] 
 ui(a,.): T → R is measurable 

 ui(. ,t): A → R is continuous, “bounded”, supermodular in ai, 
has increasing differences in a and in (ai,t) 

 p(.|ti) is increasing function of ti—in the sense of 1st-order 
stochastic dominance (e.g. p is affiliated). [interim belief] 

 Theorem: There exist BNE s* and s** such that 

 For each rationalizable strategy s, s*  s  s**; 

 Both s* and s** are isotone. 
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A simple partnership game 

Not-   is uniformly distributed 
Invest 

Invest over a large interval 

  

  

 Each player i gets a signal 
Invest 

xi =  + i 

Not- where (1, 2) is bounded 
and stochastically Invest 
independent. 

Monotone BNE 

 Best reply: 
Investxi  Pr(sj = Not-Invest|xi) 

 Assume supp() = [a,b] where a < 0 < 1 < b. 
 xi < 0  si(xi) = Not Invest 
 xi > 1  si(xi) = Invest 
 A cutoff xi* s.t. 

 xi < xi *  si(xi) = Not Invest; xi > xi *  si(xi) =  Invest; 

 Symmetry: x1* = x2* = x* 
 x* = Pr(sj = Not-Invest|x*) = Pr(xj < x*|xi =x*) = 1/2 
 “Unique” BNE, i.e., “dominance-solvable” 
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Rank Beliefs 
 Rank Belief: 

𝑅 𝑥 ൌ  Pr ሺ𝑥௝ ൑ 𝑥|𝑥௜ ൌ 𝑥ሻ  

 Extremal Equilibria: monotone, symmetric BNE with 
cutoff 𝑥∗ . 

 Extremal equilibria are the extremal solutions to the 
Indifference Condition for Cutoff:

𝑅 𝑥∗ ൌ 𝐸 𝜃 𝑥௜ ൌ 𝑥∗ 

Normal Model 
 𝜃 ൌ 𝑦 ൅ 𝜏𝜂  and 𝑥௜ ൌ 𝜃  ൅  𝜎𝜀௜ where 𝜂, 𝜀௜  ~𝑁ሺ0,1ሻ iid 

 Conditional on xi, with 𝛼 ൌ  𝜏ଶ/(𝜏ଶ+𝜎ଶ), we have 
𝐸 𝜃 𝑥௜ ൌ 𝑦 ൅ 𝛼  𝑥௜ െ 𝑦  

𝜃~𝑁ሺ𝐸 𝜃 𝑥௜ , 𝜎ଶ𝛼ሻ 
𝑥௝~𝑁ሺ𝐸 𝜃 𝑥௜ , 𝜎ଶሺ𝛼 ൅ 1ሻሻ 

𝜀௜~𝑁ሺሺ1 െ 𝛼ሻሺ𝑥௜ െ 𝑦ሻ/𝜎, 𝛼ሻ 
 Rank Belief Function: 

𝑅 𝑥 ൌ  Pr 𝑥௝ ൑ 𝑥  𝑥௜ ൌ 𝑥  ൌ Φ  𝜆ሺ𝐸 𝜃 𝑥௜ െ 𝑦ሻ  
1 െ 𝛼  𝜎 

𝜆 ൌ
𝛼𝜎 𝛼 ൅  1 

ൌ 
𝜏ଶ 𝛼 ൅  1 

 Indifference Condition for cutoff x*:
Φ 𝜆ሺ𝐸 𝜃 𝑥௜ െ 𝑦ሻ  ൌ  𝐸  𝜃 𝑥௜ 
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Equilibrium Cutoffs in Normal Model 

𝐸 𝜃 𝑥௜ െ y 

Dominance Solvable if 𝜆 ൏  2𝜋 
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Equilibrium Cutoffs 
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Equilibrium Qutoffs 
𝐸ሾ𝜃|𝑥ොሿ 𝐸ሾ𝜃|𝑥ොሿ 

Multiplicity Region Uniqueness Region 

y 0  1/2  𝑦ത 1 െ 𝑦ത 

1 

0 
1 

Multiplicity 

b 
a 

y 0 1/2 

1 

0 
1 

b 
a 



 

Equilibrium Selection 

 Φ 𝜆ሺ𝐸 𝜃 𝑥ො െ  𝑦ሻ  ൌ 𝐸  𝜃 𝑥ො 
 Carlsson and van Damme: 𝜎 ≅  0 while 𝜏 ൐  0 is fixed (𝛼 ≅  1, 𝜆 ≅  0) 

𝐸 0 ൌ 1/2 𝜃 𝑥ො ≅  Φ  

 i.e. risk dominant selection 

 Alternatively, take 𝜆 ൌ  1 (while 𝜎, 𝜏 ൐  0 can be arbitrarily small): 
𝐸 𝜃 𝑥ො ൌ Φ  𝐸 𝜃 𝑥ො െ 𝑦  

 Cutoff 𝐸 𝜃 𝑥ො can take any value in (0,1), depending on 𝑦. 

 i.e. any equilibrium can be selected by varying 𝑦. 

Coordination under Model Uncertainty 
 𝜂 has t-distribution (normal with unknown variance). 

 𝜎 ൌ  𝜏  

z=(x-y)/ 

𝑦 ൅  𝜎𝑧  

𝑦 ൅  𝜎𝑧/2 

𝑧̅ሺ0.6ሻ 

𝑅ത 
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Coordination under Model Uncertainty 

 Define
𝑧̅ 𝜃 ൌ  max𝑅ିଵ 𝜃 ൌ  max ሼ𝑧|𝑅 𝜎𝑧 ൅ 𝑦 ൌ 𝜃ሽ 

௭ 

 Invest is uniquely rationalizable if 

1. it is risk dominant (i.e. 𝐸 𝜃 𝑥௜ ൐ 1/2ሻ and 

2. there is large positive shock, i.e.,
𝐸 𝜃 𝑥௜ െ y ൐ σ𝑧̅ 𝐸 𝜃 𝑥௜ . 

 In particular, invest is uniquely rationalizable 
whenever 𝐸 𝜃 𝑥௜ ൐ 𝑅ത. 

 A converse is also true. 

 Opposite conclusions without model uncertainty 

General Supermodular Global Games 
Frankel, Morris, and Pauzner 
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Model 

 N = {1,…,n} players 
 Ai  [0,1], 

 countable union of closed intervals 
 0,1 Ai 

 Uncertain payoffs ui(ai,a-i,) 
 continuous with bounded derivatives 

 1-dimensional payoff uncertainty:  R 
 Each player i observes a signal 

xi =  + i 
 1, 2) are independent with atomless densities 
 1, 2) bounded 

Main Assumptions 

Let ui(ai,a’i,a-i,) = ui(ai,a-i,) - ui(a’i,a-i,)  
 Strategic complementarities: ai  a’i & a-i  a’-i 
 ui(ai,a’i,a-i,)  ui(ai,a’i,a’-i,) 

 Dominance regions: 
 0 is dominant when  is very small 
 1 is dominant when  is very large 

 State monotonicity: outside dominance 
regions, K>0:  ai  a’i    ’, 

ui(ai,a’i,a-i,) - ui(ai,a’i,a-i,’)  K(ai - a’i )( - ’) 
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Theorem (Limit Uniqueness) 

 In the limit  → 0, there is a “unique” 
rationalizable strategy, which is increasing. 

 i.e., there exists an increasing pure strategy 
profile s* such that if for each  > 0, s is 
rationalizable at , then almost everywhere 

Lim→0 si 
(xi) = si*(xi). 

Intuition 

𝜃 𝑥∗ 𝑥∗ ൅ 𝛿  𝜃̅ 

0 

1 

𝑆̅ 

𝑆 

𝑆ሚ 

𝑎∗ 
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Limit Solution 

 (s1*(x),s2*(x)) is a Nash equilibrium of the 
complete information game in which it is 
common knowledge that =x. 

Noise dependence 

 There exists a game satisfying the FPM 
assumptions in which for different noise 
distributions, different equilibria are selected 
in the limit as the signal errors vanish. 

 There are conditions under which s* is 
independent of the noise distributions. 
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Currency attacks 
Morris & Shin 

Model 

 Fundamental: θ in [0,1] 
 Competitive exchange rate: f(θ) 
 f is increasing 
 Exchange rate is pegged at e* ≥ f(1). 
 A continuum of speculators, who either 
 Attack, which costs t, or 
 Not attack 

 Government defends or not 
 The exchange rate is e* if defended, f(θ) 

otherwise 
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Speculator’s Payoffs 

e* Exchange rate 

e*-t 

 

 Attack, not 
defended: 

e*  f t 

 Attack, defended: 
f 

-t 

 No attack: 0 

 

Government’s payoffs 

c()  Value of peg = v 

 Cost of defending 

c() 

where  is the ratio 
of speculators who 
attack 

 c is increasing in , 
decreasing in  

  

v 

c(1,) 

c(0,) 
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Government’s strategy 

 Government knows  and ; 

 Defends the peg if 

v > c() 

 Abandons it otherwise. 

Information Structure 

  is uniformly distributed on [0,1]. 

 Each speculator i gets a signal 

xi =  + i 

 i’s are  independently and uniformly 
distributed on [– ] where  is very 
small. 

 The distribution is common knowledge. 
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Government’s strategy 

 Government knows  and ; 

 Defends the peg if 

v > c() 

 Abandons it otherwise. 

Define: a() = the minimum  for which G 
abandons the peg 

v c(a 

a 

 
 
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    r

a

Speculator’s payoffs 

 r = ratio of speculators who attack 

 u(Attack,r,) = e* - f() – t if r ≥ a() 

-t otherwise 

 U(NoAttack,r,) = 0 

Unique Equilibrium 

 Equilibrium: Attack iff 𝑥௜ ൑ 𝑥∗ 

 𝑟ሺ𝜃ሻ ൌ  Prሺ𝑥 ൑ 𝑥∗|𝜃ሻ 
1 

2 
െ 
𝜃∗ െ 𝑥∗ 

𝑎 𝜃∗ ൌ 
1

2𝜀 

𝑥∗ െ 𝜀  ൌ 𝜃∗ െ 2𝜀ሺ1 െ 𝑎  𝜃∗ ሻ 

1
2 
െ 
𝜃 െ  𝑥∗ 

2𝜀 

Abandon 
the peg 

x*- * x*+   
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r

a

1 

* 

Abandon 
the peg 

1
2 
െ 
𝜃 െ  𝑥∗ 

2𝜀 

 Utility from attack 
ఏ∗ 

𝑈 𝑥∗ ൌ 
1

𝑒∗ െ 𝑓ሺ𝜃ሻ  𝑑𝜃  െ 𝑡  
2𝜀 
න
௫∗ିఌ 

ൎ
ଵ

ଶఌ
ሺ𝜃∗ െ 𝑥∗ ൅ 𝜀ሻሺ𝑒∗ െ 

𝑓ሺ𝜃∗ሻሻ െ 𝑡

ൌ 1 െ 𝑎  𝜃∗ 𝑒∗ െ 𝑓  𝜃∗ െ 𝑡  

ൌ 0 
 Indifference Condition:

1 െ 𝑎  𝜃∗ 𝑒∗ െ 𝑓  𝜃∗ ൌ 𝑡  

x*- * x*+   

“Risk dominance” 

 Suppose all strategies are equally likely 
 r is uniformly distributed on [0,1] 
 Expected payoff from Attack 

(1-a())(e*-f()) – t 
 Attack is “risk dominant” iff 

(1-a())(e*-f()) > t 
 Cutoff value *: 

(1-a(*))(e*-f(*)) = t 
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Comparative statics – t 

 Cutoff value *: 

(1-a(*))(e*-f(*)) = t 

 LHS is decreasing in 
*. 

If transaction cost t 
increases, 

attack becomes 
less likely! *(t’) *(t)  

t’ 

t 

LHS 

LHS(e*) 

t 

LHS(e**) 

Comparative statics – e* 

 Cutoff value *: 

(1-a(*))(e*-f(*)) = t 

 LHS is decreasing in * 

 and increasing in e* 

If e* increases, 

attack becomes 
more likely! 

*(e*) *(e**)  
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LHS 

t 

LHS’ 

Comparative statics – c 

 Let c() =  C() 

 Cutoff value *: 

(1-a(*))(e*-f(*)) = t 

 LHS is decreasing in * 

 and decreasing in a 

 i.e., increasing in  

If  increases, 
attack becomes *() ’  

more likely! 

Continuum of Anonymous Players 

 𝑁 ൌ ሾ0,1ሿ 
 𝐴௜ ൌ ሼ0,1ሽ 

 𝛼 𝑎 ൌ  𝑎௝𝑑𝑗 ׬ 

 Types: 𝑥௜ ൌ 𝜃  ൅  𝜎𝜀௜ 
 𝜃 distributed with CDF G,  continuous pdf 𝑔 
 𝜀௜ ∈ ሾെ1,1ሿ distributed with CDF 𝐹 and pdf 𝑓 

 Payoff: 
𝑎௜𝑈ሺ𝛼, 𝜃ሻ 

where 𝑈 is weakly increasing 

 1 is dominant for 𝜃 ൐ 𝜃  and 0 is dominant for 𝜃 ൏  𝜃  



 

 

 

 

Extremal Equilibria 
 Extremal equilibrium with cutoff 𝑥ො 
 Fraction of players who take action: 

𝛼 𝜃 ൌ  1 െ 𝐹  
𝑥ො െ 𝜃

ൌ 𝐹  
𝜃 െ 𝑥ො 

𝜎 𝜎 
 Indifference Condition for cutoff: 

௫ොାఙ

𝑈  𝐹 
𝜃 െ 𝑥ො 

න
௫ොିఙ 𝜎 

, 𝜃 𝑑𝐺 𝜃 𝑥ො ൌ  0 

 Linear Games: 
𝑈 𝛼, 𝜃 ൌ 𝛼 ൅ 𝜃 െ  1 

 Indifference condition for linear games:
𝑅 𝑥ො ൌ 𝐸  𝜃 𝑥ො 

where 

𝑅 𝑥 ൌ  Pr 𝑥௝ ൑ 𝑥  𝑥௜ ൌ 𝑥  ൌ  න  𝐹  𝜀௜ 𝑑𝐹ሺ𝜀௜|𝑥ሻ 

Games of Regime Change 
 Payoffs: 

𝑈ሺ𝛼, 𝜃ሻ ൌ ൝
𝑉 𝜃 െ  𝐶ሺ𝜃ሻ  𝑖𝑓𝛼  ൒  𝛼ሺ𝜃ሻ 

െ𝐶ሺ𝜃ሻ 𝑖𝑓𝛼 ൏ 𝛼ሺ𝜃ሻ 
 𝑉, 𝛼ത, 𝐶 are Lipschitz continuous, 
 𝑉 ൐  0 weakly increasing, 
 𝛼ത, 𝐶 are weakly decreasing 
 0 is dominant if 𝜃 ൏  𝜃; 1 is dominant if 𝜃 ൐ 𝜃  

 Extremal Equilibria with Cutoff 𝑥ො 
 Regime Change if 𝜃 ൒ 𝜃෠ where 

𝛼 𝜃෠ ൌ 𝐹  
𝜃෠ െ 𝑥ො 
𝜎 

 Indifference Condition: 
ஶ 

න 𝑉  𝜃 𝑑𝐺  𝜃 𝑥ො ൌ 𝐸ሾ𝐶|𝑥ොሿ 
ఏ෡ 

 In the limit 𝜎 →  0: 
𝑉 𝑥ො 1 െ 𝛼  𝑥ො ൌ  𝐶ሺ𝑥ොሻ 
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Dynamic Global Games 
 Selection by Dynamics 
 Burdzy, Frankel, Pauzner, Eca, 2001 

 Frankel, Pauzner, QJE, 2000 

 Chamley, QJE, 1999 

 Dynamic Global Games of Regime Change 
 Angeletos, Hellwig, Pavan, Eca, 2007 

 Fear of Miscoordination 
 Chassang, Eca, 2010 

 Equilibrium Shifts and Large Shocks 
 Morris and Yildiz, 2019 

Selection by Dynamics (BFP 01) 
 A continuum of players, i 

 Discrete time, t = 0, , 2, 3, … 

 At each t, players randomly match to play the investment 
game where … 

 Return 𝜃௧ follows a random walk (𝜃௧=𝜃௧ିଵ േ 𝜎  𝜏) 
 Friction: Pr(i can change his action) = 𝑘𝜏 
 Players are forward looking 

 Solution Concept: Iterated conditional dominance. 

 Theorem: For small 𝜎 and large k, there exist a unique 
solution: risk dominant action everywhere 
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Dynamic Global Games of Regime Change 
(AHP,07) 

 A continuum of players, 𝑖, discrete time, 𝑡 ൌ  0, 1, 2, … 
 At each t, each player chooses {attack, no attack}, 

 𝐴௧= Fraction of people who attack 

 Regime changes if 𝐴௧ ൐ 𝜃  

 Payoff from attack 1 െ 𝑐  if regime changes – 𝑐 otherwise 

 The game ends when the regime changes 

 θ~𝑁ሺ𝑧, 1/𝛼ሻ and at each 𝑡, 
 each 𝑖 observes  

𝑥௜௧ ൌ 𝜃  ൅  𝜀௜௧ 
where 𝜀௜଴~𝑁ሺ0,1/𝛽ሻ; 𝜀௜௧~𝑁ሺ0,1/𝜂௜௧ሻ; 

Dynamic Global Games of Regime Change 

 First period play as in the static case: 
 Attack  𝑥௜଴ ൏ 𝑥ො 

 Attack size: 𝐴 𝜃 ൌ Φ  𝛽 𝑥ො െ 𝜃  

 Critical threshold: 𝜃መ ൌ Φ  𝛽 𝑥ො െ 𝜃መ 

 Equilibrium Condition: 𝐹 𝜃መ|𝑥ො ൌ 𝑐  

 A robust equilibrium for dynamic game: 
 no further attacks if regime survives 𝑡 ൌ  0 
 This is the only equilibrium when 𝑧 is small 

 Multiple monotone equilibria if 𝑧 large; 
 Infinitely many equilibria with arbitrary # attacks if 𝑧 is very large 

 Interesting dynamics: periods of tranquility after 
supposed attacks 
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Equilibrium Shifts & Large Shocks 
(MY’19) 
 Continuum of players 𝑖, discrete time 𝑡 
 At each 𝑡, the following happens: 

 A new state 𝜃௧ is drawn:
𝜃௧ ൌ 𝜃௧ିଵ ൅ 𝜎𝜂௧ 

 Each player 𝑖 observes her own return parameter:
𝑥௧ ൌ 𝜃௧ ൅ 𝜎𝜀௜௧ 

 Each 𝑖 chooses 𝑎௜௧ ∈ ሼ0,1 ൌ 𝑖𝑛𝑣𝑒𝑠𝑡ሽ  
 Payoff from investment: 

𝑥௧ ൅ 𝐴௧ െ 1 
where 𝐴௧ ൌ ׬ 𝑎௝௧𝑑𝑗 

 𝜂௧ has fat tails while 𝜀௜௧ has light tails 

Equilibrium shifts & Large shocks 
 Unique rationalizable action when there is a large shock or 𝑥௜௧ ∉ ሺ1 െ 𝑅, 𝑅ሻ 
 Multiple equilibrium actions otherwise 

z=(x-y)/ 

𝜃௧ିଵ ൅ 𝜎𝑧  

𝑧̅ሺ0.6ሻ 

𝑅ത 
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Equilibrium shifts and Large Shocks 
A typical path under hysteresis 
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