Supermodular Games

Muhamet Yildiz 14.126 Game Theory MIT Economics Department

April 1, 2024

Outline

- Example
- Basics of Lattice Theory Review
- Supermodular Optimization Problems
- Supermodular Games

Complementarity

- **Constraints:** Activities are complementary if doing one enables doing the other.
 - i.e. the domain is a lattice.
- Payoffs: Activities are complementary if doing one makes it weakly more profitable to do the other.
 - i.e. payoffs are supermodular.
- Main Lesson: When a and b are complementary, a higher input a leads to a higher output b
 - in optimization problems
 - and in strategic environments.

Example—Diamond's Search Model

- A continuum of players, i.
- ullet Each exerts effort $a_i \in [0,1]$ and obtains payoff

$$U_i(a) = \theta a_i g(\bar{a}_{-i}) - a_i^2/2.$$

where

- \bullet θ is value of a match,
- \bar{a}_{-i} is the average search by others,
- $a_i g(\bar{a}_{-i})$ is probability of match where $g:[0,1]\to [0,1]$ is increasing, continuous.
- Strategic complementarity: $\partial U_i/\partial a_i$ is increasing in \bar{a}_{-i} .
- leads to an increasing best-response function:

$$B_i(a_{-i}) = \theta g(\bar{a}_{-i}).$$

• Complementarity between a_i and θ :

$$\partial^2 U_i/\partial a_i \partial \theta = g(\bar{a}_{-i}) \geq 0.$$

Lattices

Definition

A partially-ordered set (X, \ge) is lattice if for all $x, y \in X$

$$x \lor y \equiv \inf \{z \in X | z \ge x, z \ge y\} \in X$$

 $x \land y \equiv \sup \{z \in X | x \ge z, y \ge z\} \in X.$

Example

 $X = \mathbb{R}^n$ with the usual coordinate-wise order:

$$(x_1,...,x_n) \ge (y_1,...,y_n) \iff x_i \ge y_i \quad \forall i.$$

 (\mathbb{R}^n, \geq) is a lattice with

$$x \lor y = (\max\{x_1, y_1\}, ..., \max\{x_n, y_n\})$$

 $x \land y = (\min\{x_1, y_1\}, ..., \min\{x_n, y_n\}).$

Complete Lattices

Definition

A lattice (X, \geq) is said to be *complete* if for every $S \subseteq X$, a greatest lower bound $\inf(S)$ and a least upper bound $\sup(S)$ exist in X, where $\inf(\varnothing) = \sup(X)$ and $\sup(\varnothing) = \inf(X)$.

Example

- $X = 2^S$ and $A \ge B \iff A \supseteq B$.
- $A \lor B = A \cup B \in X$ and $A \land B = A \cap B \in X$.
- Therefore, (X, \supseteq) is a lattice.
- Complete: $\vee_{\alpha} A_{\alpha} = \cup_{\alpha} A_{\alpha} \in 2^{S}$ and $\wedge_{\alpha} A_{\alpha} = \cap_{\alpha} A_{\alpha} \in 2^{S}$.

Strong Set Order and Sublattices

Definition (Strong Set Order)

Given any lattice (X, \geq) , for any $A, B \subseteq X$, write $A \geq B$ iff

$$x \lor y \in A, x \land y \in B$$
 $(\forall x \in A, y \in B)$.

Example:

$$\begin{array}{lcl} \{1,2,3,4\} & \geq & \{0,1,2,3\} \\ & \geq & \{-0.5,0.5,1.5,2.5\} \end{array}$$

Definition

 $S \subseteq X$ is sublattice if for any $x, y \in S$,

$$x \lor y \in S$$
 and $x \land y \in S$,

i.e., S > S.

Supermodular Functions

Definition

 $f: T \rightarrow X$ is isotone (or weakly increasing) if

$$t \ge t' \Rightarrow f(t) \ge f(t')$$
.

Definition

 $f: X \to \mathbb{R}$ is supermodular if for all $x, y \in X$

$$f(x \lor y) + f(x \land y) \ge f(x) + f(y).$$

f is submodular if -f is supermodular.

• When $X = X_1 \times X_2$, ordered coordinate-wise,

$$f(x_1, y_2) - f(x_1, x_2) \ge f(y_1, y_2) - f(y_1, x_2).$$

• For smooth functions on \mathbb{R}^2 : $\frac{\partial^2 f}{\partial_{x_1}\partial_{x_2}} \geq 0$

Supermodularity on Product Spaces

• For lattices $(X_1, \geq_1), ..., (X_n, \geq_n)$, let $X = X_1 \times \cdots \times X_n$ and

$$(x_1,...,x_n) \geq (y_1,...,y_n) \iff x_i \geq_i y_i \quad \forall i.$$

- For $f: X \to \mathbb{R}$, define $f(\cdot|x_{-ij}): X_i \times X_i \to \mathbb{R}$ by $f(x_i, x_i | x_{-ii}) = f(x_i, x_i, x_{-ii}).$
- **Definition:** $f: X \to \mathbb{R}$ has increasing differences if

$$[x_i \ge x_i' \text{ and } x_j \ge x_j'] \Leftrightarrow f(x_i, x_j, x_{-ij}) - f(x_i', x_j, x_{-ij}) \\ \ge f(x_i, x_j', x_{-ij}) - f(x_i', x_j', x_{-ij}) \Big($$

- When $X = \mathbb{R}^n$, this is called pair-wise supermodularity.
- **Lemma:** If f has increasing differences and $x_i \ge y_i$ for each j, $f(x_i, x_{-i}) - f(y_i, x_{-i}) > f(x_i, y_{-i}) - f(y_i, y_{-i}).$
- **Theorem:** f is supermodular if and only if
 - f has increasing differences and
 - \bigcirc f is supermodular within X_i for each i.

Outline

- Example
- Basics of Lattice Theory Review
- Supermodular Optimization Problems
- Supermodular Games

Monotonicity Theorem

Theorem (Topkis's Monotonicity Theorem)

For any lattices (X, \geq) and (Π, \geq) , let $u: X \times \Pi \to \mathbb{R}$ be a supermodular function (with coordinate-wise order) and define

$$B(\pi) = \arg\max_{x \in D(\pi)} u(x, \pi).$$

If $\pi \geq \pi'$ and $D(\pi) \geq D(\pi')$, then $B(\pi) \geq B(\pi')$.

Corollary

For any fixed π , if $u(\cdot, \pi): X \to \mathbb{R}$ is supermodular and $D(\pi)$ is a sublattice of X, then $B(\pi)$ is a sublattice of X.

Monotonicity Theorem—Illustration

Monotonicity Theorem—Proof

- Take $\pi \geq \pi'$, $D(\pi) \geq D(\pi')$, $x \in B(\pi)$ and $x' \in B(\pi')$.
- Need to show: $x \lor x' \in B(\pi)$ and $x \land x' \in B(\pi')$.
- Since x ∈ B(π) ⊆ D(π), x ∈ D(π). Similarly, x' ∈ D(π').
- Since $D(\pi) \ge D(\pi')$, by 3, $x \lor x' \in D(\pi)$ and $x \land x' \in D(\pi')$.
- Suffices: $u(x \lor x', \pi) = u(x, \pi)$ and $u(x \land x', \pi') = u(x', \pi')$.
- By 1 and 4,

$$u(x \lor x', \pi) \le u(x, \pi)$$

 $u(x \land x', \pi') \le u(x', \pi').$

If either inequality is strict, supermodularity fails:

$$u(x \lor x', \pi) + u(x \lor x', \pi') < u(x, \pi) + u(x', \pi').$$

Application—Pricing

• Under demand function $D(p, \theta)$ and marginal cost c, a monopolist sets a price

$$p^*(\theta, c) = \arg\max_{p \geq c} (p - c) D(p, \theta)$$

where $\theta \in \Theta$ is a demand parameter.

Observe:

$$p^{*}(\theta,c) = \arg\max_{p \geq c} \log\left(p-c\right) + \log D\left(p,\theta\right).$$

- p^* is isotone in c because of supermodularity w.r.t. (p, c).
- p^* is isotone in θ whenever $\log D(p, \theta)$ is supermodular
- ... whenever the price elasticity of demand

$$-\frac{\partial \log D}{\partial \log p}$$

is weakly decreasing in θ .

Application—Pricing under Demand Uncertainty

• Monopolist does not know θ and has belief π about θ ;

$$\tilde{D}(p,\pi) = E_{\pi}[D(p,\theta)].$$

- Assume D is isotone in θ and supermodular; c = 0.
- Monopolist sets price

$$p^*(\pi) = \arg\max_{p \geq 0} p \tilde{D}(p, \pi)$$
.

Optimal price is isotone in monopolist's belief:

$$\pi \geq_{FOSD} \pi' \Longrightarrow p^*(\pi) \geq p^*(\pi').$$

- Proof: Apply Monotonicity Theorem:
 - \bigcirc $(\Delta(\Theta), \geq_{FOSD})$ is a lattice (Exercise).
 - **2** Since D is increasing in θ , \tilde{D} is isotone in π , and
 - \bigcirc since D is supermodular, so is \tilde{D} (prove these);
 - opis trivially isotone and supermodular.
 - Hence, $p\tilde{D}(p, \pi)$ is supermodular (Exercise).

Extensions and Generalizations

Definitions

A function $f:X\to\mathbb{R}$ on a lattice is said to be *quasi-supermodular* if for any $x,y\in X$,

$$f(x) \ge f(x \land y) \Rightarrow f(x \lor y) \ge f(y)$$

 $f(x) > f(x \land y) \Rightarrow f(x \lor y) > f(y)$.

A function $f: X \times \Pi \to \mathbb{R}$ is said to have single crossing property in (x, π) if for any x > x' and $\pi > \pi'$

$$\begin{array}{ccc}
f(x,\pi') & \geq & f(x',\pi') \Leftrightarrow f(x,\pi) \geq f(x',\pi) \\
f(x,\pi') & > & f(x',\pi') \Leftrightarrow f(x,\pi) > f(x',\pi)
\end{array}$$

Theorem (Milgrom and Shannon)

Let $f: X \times \Pi \to \mathbb{R}$, where X is a lattice and Π is a partially ordered set. Then, for all (π, D) , $(\pi', D') \in \Pi \times 2^X$,

Expected Utility Theory

Definition

A function $f: X \to \mathbb{R}$ is said to be *log-supermodular* if $\log f$ is supermodular.

Theorem (Athey)

Consider an expected utility maximizer with utility function $u: X \times \Pi \times \Theta \to \mathbb{R}$ and density $f: \Theta \times \Pi \to \mathbb{R}$. If both u and f are log-supermodular, then

$$B(\pi) = \arg \max_{x \in X} \iint u(x, \pi, \theta) f(\theta, \pi) d\theta$$

is isotone.

Monotonicity under Completeness and Continuity

- Consider a complete lattice (X, \geq) and $u: X \to \mathbb{R}$.
- **Definition:** *u* is continuous if

$$\lim u(x_n) = u(\sup x_n)$$
 and $\lim u(y_n) = u(\inf y_n)$

for any (x_n) with $x_n \ge x_{n-1}$ and (y_n) with $y_n \ge y_{n+1}$ for all n.

Theorem

Let

- (X, \geq) and (Π, \geq) be complete lattices,
- $u: X \times \Pi \to \mathbb{R}$ be continuous, supermodular w.r.t. x and has increasing differences.

Then,

$$B(\pi) = \arg\max_{x \in X} u(x, \pi)$$

is a complete lattice and isotone; $\bar{B}(\pi) \equiv \max B(\pi) \in B(\pi)$ and $B(\pi) \equiv \min B(\pi) \in B(\pi)$ exist and isotone.

Outline

- Example
- Basics of Lattice Theory Review
- Supermodular Optimization Problems
- Supermodular Games

Supermodular Games—Formulation

Definition

A game (N, S, u) is supermodular if for each player $i \in N$,

- strategy space (S_i, \geq_i) is a complete lattice for some order \geq_i , and
- \bullet u_i is continuous, supermodular in s_i and has increasing differences:

$$u_i(s \vee s') + u_i(s \wedge s') \geq u_i(s) + u_i(s') \qquad (\forall s_i, s_i', \forall \underline{s_{-i}} \geq \underline{s_{-i}'}).$$

Since S is a complete lattice, $s = \min S$ and $\overline{s} = \max S$ exist.

Linear Oligopoly Models

Differentiated Bertrand Competition: n firms; each firm sets price p_i
and gets profit

$$u_{i}\left(p\right)=\left(p_{i}-c_{i}\right)Q_{i}\left(p\right)=\left(p_{i}-c_{i}\right)\quad\theta-\mathsf{a}_{i}p_{i}+\sum_{j\neq i}b_{ij}p_{j}\right)\left($$

- ... supermodular (whenever b_{ij} are all non-negative).
- Cournot Duopoly: n = 2 firms; each firm sets quantity q_i and gets profit

$$u_{i}\left(p
ight)=q_{i}\left(heta-Q-c_{i}
ight)$$
 where $Q=q_{1}+\cdots+q_{n}.$

- ... supermodular when q_2 is ordered in the reverse order.
- Cournot Oligopoly: n > 2 firms.
- submodular...
- ... and cannot be made supermodular.

Fundamental Lemmas

Lemma

For any supermodular game, any $i \in N$,

 \bigcirc for every $s_{-i} \in S_{-i}$,

$$B_i(s_{-i}) = \arg \max_{s_i \in S_i} u_i(s_{i,s_{-i}})$$

is a complete lattice;

- for every s, $\bar{B}_i(s) \equiv \max B_i(s_{-i}) \in B_i(s_{-i})$ and $\underline{B}_i(s) \equiv \min B_i(s_{-i}) \in B_i(s_{-i})$,and
- \bar{B}_i and \underline{B}_i are isotone, i.e., $\bar{B}_i(s) \geq \bar{B}_i(s')$ and $\underline{B}_i(s) \geq \underline{B}_i(s')$ whenever $s \geq s'$.

Lemma

Every s_i with $s_i \not\geq \underline{B}_i(\underline{s})$ is strictly dominated by $s_i \vee \underline{B}_i(\underline{s})$, where $\underline{s} = \min S$.

Rationalizability and Equilibrium

Theorem

For any supermodular game,

- $\bar{z} \equiv \lim_k \bar{B}^k(\bar{s}) \equiv \inf_k \bar{B}^k(\bar{s})$ and $\underline{z} \equiv \lim_k \underline{B}^k(\underline{s}) \equiv \sup_k \underline{B}^k(\underline{s})$ exists, where $\bar{s} = \sup S$ and $\underline{s} = \inf S$;
- for every rationalizable strategy profile s.

$$\overline{z} \geq s \geq \underline{z}$$
,

 \bigcirc and \overline{z} and \underline{z} are (pure strategy) Nash equilibria.

Corollary

A supermodular game is dominance solvable if and only if there exists a unique Nash equilibrium in pure strategies.

A Partnership Game

- Players: an employer, who provides capital K,
- and a worker, who provides labor L.
- They share the output: $K^{\alpha}L^{\beta}$ for some $\alpha, \beta \in (0,1)$ with $\alpha + \beta < 1$.
- The utility functions: $K^{\alpha}L^{\beta}/2 K$ and $K^{\alpha}L^{\beta}/2 L$.

Comparative Statics

Theorem

- A family of supermodular games $G^t = (N, S, U(\cdot; t))$.
- For all $i, s_{-i}, U_i(s_i, s_{-i}; t)$ is supermodular in (s_i, t) .
- Write $\overline{z}(t)$ and $\overline{z}(t)$ for the extremal equilibria at t.
- Then, $\overline{z}(t)$ and $\underline{z}(t)$ are isotone.

Monotone Supermodular Games

Definition

A monotone supermodular game is a Bayesian game

$$\mathcal{B} = (N, A, \Theta, T, u, p)$$
 with

- each A_i is a compact sublattice of \mathbb{R}^K ;
- $\Theta \times T$ is a measurable subset of \mathbb{R}^M ;
- u_i is such that
 - $u_i(a, \cdot) : \Theta \to R$ is measurable,
 - $u_i(\cdot, \theta): A \to R$ is continuous, bounded by an integrable function, supermodular in a_i and has increasing differences,
 - u_i has increasing differences in (a_i, θ) , and
- $p(\cdot|t_i)$ is a weakly increasing function of t_i in the sense of first-order stochastic dominance.

Monotone Supermodular Games—Main Result

Theorem

Any monotone supermodular game has Bayesian Nash equilibria s^* and s^{**} in pure strategies such that

• for any t_i and any ICR action $a_i \in S_i^{\infty}[t_i]$ for t_i ,

$$s_i^*(t_i) \geq a_i \geq s_i^{**}(t_i),$$

o for any Bayesian Nash equilibrium s,

$$s^*(t) \ge s(t) \ge s^{**}(t)$$
 $(\forall t \in T)$,

 \circ $s_i^*(t_i)$ and $s_i^{**}(t_i)$ are weakly increasing in t_i .

MIT OpenCourseWare https://ocw.mit.edu/

14.126 Game Theory Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.