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Complementarity

o Constraints: Activities are complementary if doing one enables doing
the other.

o i.e. the domain is a lattice.

o Payoffs: Activities are complementary if doing one makes it weakly
more profitable to do the other.

o i.e. payoffs are supermodular.

o Main Lesson: When a and b are complementary, a higher input a
leads to a higher output b

o in optimization problems
o and in strategic environments.
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Example—Diamond’s Search Model

o A continuum of players, i.
o Each exerts effort a; € [0, 1] and obtains payoff
Ui(a) = baig(a_;) —a; /2.
where

o 0 is value of a match,

o a_; is the average search by others,

o a;g(a_;) is probability of match where g : [0,1] — [0, 1] is increasing,
continuous.

o Strategic complementarity: dU;/da; is increasing in 3_;.
o leads to an increasing best-response function:

Bi(a-j) = 0g(a-i).
o Complementarity between a; and 6:

9? U;/0a;00 = g(é_,-) > 0.
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Definition

A partially-ordered set (X, >) is lattice if for all x,y € X

xVy = inf{zeX|z>x,z>y} e X
xNy = sup{zeX|x>2zy>z}eX.

X = R™ with the usual coordinate-wise order:

(X1, Xn) = (V1,0 ¥n) <= x; >y Vi
(R",>) is a lattice with

xVy = (max{x;,y1},....max{xs, yn})
xANy = (min{x;,y1} ....min{xy, yn}).
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Complete Lattices

Definition

A lattice (X, >) is said to be complete if for every S C X, a greatest
lower bound inf(S) and a least upper bound sup(S) exist in X, where
inf(2) = sup (X) and sup(@) = inf(X).

e X=2and A>B<—= ADB.
e AVB=AUBeXand ANAB=ANB € X.

@ Therefore, (X, D) is a lattice.
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Strong Set Order and Sublattices

Definition (Strong Set Order)
Given any lattice (X, >), for any A, B C X, write A > B iff

xVy€eAxNy eB (Vx e A,y € B).

Example:
{1,2,3,4} {0,1,2,3}

>
? {-05,05,15,25}

Definition
S C X is sublattice if for any x,y € S,

xVy€eS and xAy€eS,
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Supermodular Functions

Definition

f: T — X is isotone (or weakly increasing) if

t>t = f(t) > f(t).

Definition

f: X — R is supermodular if for all x,y € X
f(xVy)+f(xAy)>1f(x)+f(y).

f is submodular if —f is supermodular.

o When X = Xj; X X5, ordered coordinate-wise,

f(x1,y2) — f(x1,x) > f(y1,y2) — f(y1, x).

. 2
o For smooth functions on R?: aaf{ >0
X17X2
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Supermodularity on Product Spaces

o For lattices (X1,>1), ..., (Xp, >4), let X = X; x -+ X X, and
(X1, o Xn) = (V1,0 Vn) = X > yi Vi.

o For f: X — R, define f(:|x_j) : Xj x Xj — R by
F(xi xj|x-ij) = £(xi, x5, x-j).
o Definition: f : X — IR has increasing differences if

F(xixj, x—) = £ (x5, xj)
> F(x, % x5) — £ (X% x5) (

When X = IR", this is called pair-wise supermodularity.

[x,- zx,! and x; ZXJ/]

(*]

o Lemma: If f has increasing differences and x; > y; for each j,
f(xiox-i) = f(yi,x=i) = f(xi,y—i) — F(yi y-i).
o Theorem: f is supermodular if and only if

@ f has increasing differences and
Q f is supermodular within X; for each i.
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Monotonicity Theorem

Theorem (Topkis's Monotonicity Theorem)

For any lattices (X, >) and (I1,>), let u: X x I — R be a
supermodular function (with coordinate-wise order) and define

B(m) = argxén;é) u(x, 7).

If 1 > i’ and D(rt) > D(7t'), then B(7t) > B(7').

For any fixed 7, if u(-, 7t) : X — R is supermodular and D(7t) is a
sublattice of X, then B() is a sublattice of X.
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Monotonicity Theorem—Illlustration
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Monotonicity Theorem—Proof

o
o
o
o
o
o

By 1 and 4,

@ If either inequality is strict, supermodularity fails:

ulxVx',m) <
ux A\x', ') <

Take m > 7/, D(mr) > D(7'), x € B(rt) and x' € B(7').

Need to show: x V x" € B(m) and x Ax" € B(7').

Since x € B(mr) C D(m), x € D(m). Similarly, x' € D(7').
Since D(rt) > D(7c'), by 3, x Vx' € D(7r) and x A x" € D(7').

Suffices: u(xV x', ) = u(x, ) and u(x A X', t') = u(X', 7).

ux VX', ) +ulxVvx, 1) < ulx, )+ u(x, 7).
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Application—Pricing

o Under demand function D(p, #) and marginal cost ¢, a monopolist
sets a price
p'(6.) = argmax (p— <) D (p,6)
p>c

where 0 € O is a demand parameter.

o Observe:
p*(6,¢c) =arg max log (p—c)+logD(p,0).
p>c
o p*is isotone in ¢ because of supermodularity w.r.t. (p, c).

p* is isotone in 6 whenever log D(p, ) is supermodular

©

©

. whenever the price elasticity of demand

_dlogD
dlogp

is weakly decreasing in 6.
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Application—Pricing under Demand Uncertainty

@ Monopolist does not know 8 and has belief 7t about 0,
D (p.7) = Ex[D (p.6)].

Assume D is isotone in 6 and supermodular; ¢ = 0.
Monopolist sets price

(+]

(*]

p*(7r) = argmaxpD (p, 7).
p=>0

(4]

Optimal price is isotone in monopolist’s belief:
T >rosp T = p* () > p" (7).

o Proof: Apply Monotonicity Theorem:
Q (A(®),>rosp) is a lattice (Exercise).
@ Since D is increasing in 0, D is isotone in 77, and
@ since D is supermodular, so is D (prove these);
Q@ pis trivially isotone and supermodular.
@ Hence, pD (p, i) is supermodular (Exercise).
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Extensions and Generalizations

A function f : X — IR on a lattice is said to be quasi-supermodular if for
any x,y € X,

f(x) > f(xAy)=f(xVy)>f(y)
f(x) > f(xAy)=Ff(xVy)>f(y).

A function f : X X Il — IR is said to have single crossing property in
(x, ) if for any x > x” and 7w > 7’

far) > f(x’,n’)gf(x,n)zf(x’,n)é

f (X, 7'[’) > f (x’, 7{’) f(x,m)>f (X/, 7'()

V.

Theorem (Milgrom and Shannon)

Let f: X X Il — IR, where X is a lattice and I1 is a partially ordered set.
Then, for all (7, D), (7, D") € T x 2%,

Muhamet Yildiz 14.126 Game Theory MIT E Supermodularity April 1, 2024 16 / 27




Expected Utility Theory

A function f : X — R is said to be log-supermodular if log f is
supermodular.

Theorem (Athey)

Consider an expected utility maximizer with utility function
u: X xIIx® — R and density f : ©@ x Il — R. If both u and f are
log-supermodular, then

B () = arg max /<u (x, 72,0) f (6, 77) df

is isotone.
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Monotonicity under Completeness and Continuity

o Consider a complete lattice (X,>) and uv: X — R.
o Definition: v is continuous if

limu(x,) = u(supx,) and limu(y,) = u (infy,)
for any (x,) with x, > x,_1 and (y,) with y, > y,41 for all n.

Let

o (X,>) and (I1, >) be complete lattices,
o u: X XII — 1R be continuous, supermodular w.r.t. x and has

increasing differences.

Then,
B = m
() argx a)><<u(x, )

is a complete lattice and isotone; B (71) = max B (1) € B (7) and

1) = min B (71) € B (71) exist and isotone.
et Yildiz 14.126 Game Theory MIT E Supermodularit pril 1, 2024
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Supermodular Games—Formulation

A game (N, S, u) is supermodular if for each player i € N,

o strategy space (S;, >;) is a complete lattice for some order >;,and

o wuj is continuous, supermodular in s; and has increasing differences:

ui(sVs ) +ui(sns') > ui(s)+u(s) (Vs s/, Vs, >5")).

Since S is a complete lattice, s = min S and 5 = max S exist.
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Linear Oligopoly Models

o Differentiated Bertrand Competition: n firms; each firm sets price p;
and gets profit

ui (p) = (pi —¢ci) Qi (p) = (pi—ci) 0—aipi+ ; bfj/?j) <

(+]

. supermodular (whenever b;; are all non-negative).

o Cournot Duopoly: n = 2 firms; each firm sets quantity g; and gets
profit
ui(p) =qi (0 —Q—cj) where Q=g+ +qn.
o ... supermodular when g is ordered in the reverse order.
o Cournot Oligopoly: n > 2 firms.
o submodular...
o ... and cannot be made supermodular.
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Fundamental Lemmas

For any supermodular game, any i € N,

Q foreverys ;€ S_;,
B,' —i) = i\Si,5—i
(s—i) arggpeaéu(s,s )
is a complete lattice;
Q for every s, Bi(s) = maxB;i (s_;) € Bi (s_;) and
Bi(s) = min B, (s—;) € B (s—;),and
Q B; and B; are isotone, i.e., Bi(s) > Bi(s') and B;(s) > B;(s')
whenever s > s'.

Lemma

Every s; with s; # B;(s) is strictly dominated by s; VV B;(s), where
s=minS.
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Rationalizability and Equilibrium

For any supermodular game,

Q z = lim, B*(3) = inf, BX(3) and z= lim B*(s) = sup, B*(s)
exists, where’ s = sup S and s= inf S,

Q for every rationalizable strategy profile s.
zZ>s2>z

Q and z and z are (pure strategy) Nash equilibria.

Corollary

A supermodular game is dominance solvable if and only if there exists a
unique Nash equilibrium in pure strategies.
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A Partnership Game

Players: an employer, who provides capital K,

They share the output: K*LP for some &, B € (0,1) with a + B < 1.

°
o and a worker, who provides labor L.

°

o The utility functions: K“Lf/2 — K and K*LP/2 — L.
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Comparative Statics

o A family of supermodular games G* = (N, S, U (+; t)).
o Foralli,s_;, Ui(si,s—j; t) is supermodular in (s;, t).
o Write Z(t) and Z(t) for the extremal equilibria at t.
o Then, Z(t) and z(t) are isotone.
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Monotone Supermodular Games

A monotone supermodular game is a Bayesian game
B=(N,A O, T,u, p) with

o each A; is a compact sublattice of RX;

o O x T is a measurable subset of RM:
@ u; is such that

o uj(a,-): ® — R is measurable,

o ui(+,0): A— R is continuous, bounded by an integrable function,
supermodular in a; and has increasing differences,

o uj has increasing differences in (a;,6), and

o p(-|t;) is a weakly increasing function of t; in the sense of first-order
stochastic dominance. »
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Monotone Supermodular Games—Main Result

Any monotone supermodular game has Bayesian Nash equilibria s* and
s™ in pure strategies such that

O for any t; and any ICR action a; € S [t;] for t;,
st (ti) = ai = 577 (ti),
Q for any Bayesian Nash equilibrium s,
s*(t) > s(t) > s () (VteT),

Q s/ (ti) and s*(t;) are weakly increasing in t;.
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