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Metric spaces and topology
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Metric spaces. Open, closed and compact sets 

When we discuss probability theory of random processes, the underlying sample 
spaces and σ-field structures become quite complex. It helps to have a unifying 
framework for discussing both random variables and stochastic processes, as 
well as their convergence, and such a framework is provided by metric spaces. 

Definition 1. A metric space is a pair (S, ρ) of a set S and a function ρ : 
S × S → R+ such that for all x, y, z ∈ S the following holds: 

1. ρ(x, y) = 0 if and only if x = y. 

2. ρ(x, y) = ρ(y, x) (symmetry). 

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality).   
Examples of metric spaces include S = Rd with ρ(x, y) = (xj − yj )2,1≤j≤d 

or = |xj − yj | or = max1≤j≤d |xj − yj |. These metrics are also called 1≤j≤d 
L2, L1 and L∞ norms and we write Ix − yI1, Ix − yI2, Ix − yI∞, or simply  1  
Ix−yI. More generally one can define Ix−yIp = (xj −yj)

p p 
, p ≥1≤j≤d

1. p = ∞ essentially corresponds to Ix − yI∞. 

Problem 1. Show that Lp is not a metric when 0 < p < 1. 

Another important example is S = C[0, T ] – the space of continuous func­
tions x : [0, T ] → Rd and ρ(x, y) = ρT = sup0≤t≤T Ix(t) − y(t)I, where I · I 
can be taken as any of Lp or L∞. We will usually concentrate on the case d = 1, 
in which case ρ(x, y) = ρT = sup0≤t≤T |x(t) − y(t)|. The space C[0, ∞) is 
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 1also a metric space under ρ(x, y) = n∈N 2n min(ρn(x, y), 1), where ρn is the 
metric defined on C[0, n]. (Why did we have to use the min operator in the def­
inition above?). We call ρT and ρ uniform metric. We will also write Ix − yIT 
or Ix − yI instead of ρT . 

Problem 2. Establish that ρT and ρ defined above on C[0, ∞) are metrics. 
Prove also that if xn → x in ρ metric for xn, x ∈ C[0, ∞), then the restrictions 
' 'x , x' of xn, x onto [0, T ] satisfy x → x' w.r.t. ρT .n n 

Finally, let us give an example of a metric space from a graph theory. Let 
G = (V, E) be an undirected graph on nodes V and edges E. Namely, each 
element (edge) of E is a pair of nodes (u, v), u, v ∈ V . For every two nodes u 
and v, which are not necessarily connected by an edge, let ρ(u, v) be the length 
of a shortest path connecting u with v. Then it is easy to see that ρ is a metric 
on the finite set V . 

Definition 2. A sequence xn ∈ S is said to converge to a limit x ∈ S (we write 
xn → x) if limn ρ(xn, x) = 0. A sequence xn ∈ S is Cauchy if for every E > 0 

'there exists n0 such that for all n, n > n0, ρ(xn, xn' ) < E. A metric space is 
defined to be complete if every Cauchy sequence converges to some limit x. 

The space Rd is a complete space under all three metrics L1, L2, L∞. The 
space Q of rational points in R is not complete (why?). A subset A ⊂ S is 
called dense if for every x ∈ S there exists a sequence of points xn ∈ A such 
that xn → x. The set of rational values in R is dense and is countable. The set of 
irrational points in R is dense but not countable. The set of points (q1, . . . , qd) ∈ 
Rd such that qi is rational for all 1 ≤ i ≤ d is a countable dense subset of Rd . 

Definition 3. A metric space is defined to be separable if it contains a dense 
countable subset A. A metric space S is defined to be a Polish space if it is 
complete and separable. 

We just realized that Rd is Polish. Is there a countable dense subset of 
C[0, T ] of C[0, ∞), namely are these spaces Polish as well? The answer is 
yes, but we will get to this later. 

Problem 3. Given a set S, consider the metric ρ defined by ρ(x, x) = 0, ρ(x, y) = 
1 for x  = y. Show that (S, ρ) is a metric space. Suppose S is uncountable. Show 
that S is not separable. 

Given x ∈ S and r > 0 define a ball with radius r to be B(x, r) = {y ∈ S : 
ρ(x, y) ≤ r}. A set A ⊂ S is defined to be open if for every x ∈ A there exists 
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E such that B(x, E) ⊂ A. A set A is defined to be closed if Ac = S \ A is 
open. The empty set is assumed to be open and closed by definition. It is easy 
to check that union of open sets is open and intersection of closed sets is closed. 
Also it is easy to check that a finite intersection of open sets is open and finite 
union of closed sets is closed. Every interval (a, b) is and every countable union 
of intervals ∪i≥1(ai, bi) is an open set. Show that a union of close intervals 
[ai, bi], i ≥ 1 is not necessarily close. 

For every set A define its interior Ao as the union of all open sets U ⊂ A. 
¯This set is open (check). For every set A define its closure A as the intersection 

of all closed sets V ⊃ A. This set is closed. For every set A define its boundary 
¯∂A as A \ Ao . Examples of open sets are open balls Bo(x, r) = {y ∈ S : 

ρ(x, y) < r} ⊂ B(x, r) (check this). A set K ⊂ S is defined to be compact 
if every sequence xn ∈ K contains a converging subsequence xnk → x and 
x ∈ K. It can be shown that K ⊂ Rd is compact if and only if K is closed and 
bounded (namely supx∈K IxI < ∞ (this applies to any Lp metric). Prove that 
every compact set is closed. 

Proposition 1. Given a metric space (S, ρ) a set K is compact iff every cover 
of K by open sets contains a finite subcover. Namely, if Ur, r ∈ R is a (possibly 
uncountable) family of sets such that K ⊂ ∪rUr, then there exists a finite subset 
r1, . . . , rm ∈ R such that K ⊂ ∪1≤i≤mUri . 

We skip the proof of this fact, but it can be found in any book on topology. 

Problem 4. Give an example of a closed bounded set K ⊂ C[0, T ] which is not 
compact. 

Definition 4. Given two metric spaces (S1, ρ1), (S2, ρ2) a mapping f : S1 → 
S2 is defined to be continuous in x ∈ S1 if for every E > 0 there exists δ > 0 such 
that f(B(x, δ)) ⊂ B(f(x), E). Equivalently for every y such that ρ1(x, y) < δ 
we must have ρ2(f(x), f(y)) < E. And again, equivalently, if for every sequence 
xn ∈ S1 converging to x ∈ S it is also true that f(xn) converges to f(x). 

A mapping f is defined to be continuous if it is continuous in every x ∈ S1. 
A mapping is uniformly continuous if for every E > 0 there exists δ > 0 such 
that ρ1(x, y) < δ implies ρ2(f(x), f(y)) < E. 

Problem 5. Show that f is a continuous mapping if and only if for every open 
set U ⊂ S2, f−1(U) is an open set in S1. 

Proposition 2. Suppose K ⊂ S1 is compact. If f : K → Rd is continuous then 
it is also uniformly continuous. Also there exists x0 ∈ K satisfying If(x0)I = 
supx∈K If(x)I, for any norm I · I = I · Ip. 
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Proof. This is where alternative property of compactness provided in Propo­
sition 1 is useful. Fix E > 0. For every x ∈ K find δ = δ(x) such that 
f(B(x, δ(x))) ⊂ B(f(x), E). This is possible by continuity of f . Then K ⊂ 
∪x∈K Bo(x, δ(x)/2) (recall that B0 is an ”open” version of B). Namely, we 
have an open cover of K. By Proposition 1, there exists a finite subcover 
K ⊂ ∪1≤i≤kBo(xi, δ(xi)/2). Let δ = min1≤i≤k δ(xi). This value is positive 
since k is finite. Consider any two points y, z ∈ K such that ρ1(y, z) < δ/2. 
We just showed that there exists i, 1 ≤ i ≤ k such that ρ1(xi, y) ≤ δ(xi)/2. 
By triangle inequality ρ1(xi, z) < δ(xi)/2 + δ/2 ≤ δ(xi). Namely both y 
and z belong to Bo(xi, δ(xi)). Then f(y), f(z) ∈ Bo(f(xi), E). By triangle 
inequality we have If(y) − f(z)I ≤ If(y) − f(xi)I + If(z) − f(xi)I < 2E. 
We conclude that for every two points y, z such that ρ1(y, z) < δ/2 we have 
If(y) − f(z)I < 2E. The uniform continuity is established. Notice, that in this 
proof the only property of the target space Rd we used is that it is a metric space. 
In fact, this part of the proposition is true if Rd is replaced by any metric space 
S2, ρ2. 

Now let us show the existence of x0 ∈ K satisfying If(x0)I = supx∈K If(x)I. 
First let us show that supx∈K If(x)I < ∞. If this is not true, identify a se­
quence xn ∈ K such that If(xn)I → ∞. Since K is compact, there ex­
ists a subsequence xnk which converges to some point y ∈ K. Since f is 
continuous then f(xnk ) → f(y), but this contradicts If(xn)I → ∞. Thus 
supx∈K If(x)I < ∞. Find a sequence xn satisfying limn If(xn)I = supx∈K If(x)I. 
Since K is compact there exists a converging subsequence xnk → x0. Again us­
ing continuity of f we have f(xnk ) → f(x0). But If(xnk )I → supx∈K If(x)I. 
We conclude f(x0) = supx∈K If(x)I. 

We mentioned that the sets in Rd which are compact are exactly bounded closed 
sets. What about C[0, T ]? We will need a characterization of compact sets in this 
space later when we analyze tightness properties and construction of a Brownian 
motion. 

Given x ∈ C[0, T ] and δ > 0, define wx(δ) = sups,t:|s−t|<δ |x(t) − x(s)|. The 
quantity wx(δ) is called modulus of continuity. Since [0, T ] is compact, then by 
Proposition 2 every x ∈ C[0, T ] is uniformly continuous on [0, T ]. This may be 
restated as for E > 0, there exists δ > 0 such that wx(δ) < E. 

Theorem 1 (Arzel´ A set A ⊂ C[0, T ] is compact if and a-Ascoli Theorem). 
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only if it is closed and
 

sup |x(0)| < ∞, (1) 
x∈A 

and 

lim sup wx(δ) = 0. (2)
δ→0 x∈A 

Proof. We only show that if A is compact then (1) and (2) hold. The converse is 
established using a similar type of mathematical analysis/topology arguments. 

We already know that if A is compact it needs to be closed. The assertion 
(1) follows from Proposition 2. We now show (2). For any s, t ∈ [0, T ] we have 

|y(t) − y(s)| ≤ |y(t) − x(t)| + |x(t) − x(s)| + |x(s) − y(s)| ≤ |x(t) − x(s)| + 2Ix − yI. 

Similarly we show that |x(t) − x(s)| ≤ |y(t) − y(s)| +2Ix − yI. Therefore for 
every δ > 0. 

|wx(δ) − wy(δ)| < 2Ix − yI. (3) 

We now show (2). Check that (2) is equivalent to 

1 
lim sup wx( ) = 0. (4) 
n nx∈A 

Suppose A is compact but (4) does not hold. Then we can find a subsequence 
xni ∈ A, i ≥ 1 such that wxni 

(1/ni) ≥ c for some c > 0. Since A is compact 
then there is further subsequence of xni which converges to some x ∈ A. To 
ease the notation we denote this subsequence again by xni . Thus Ixni −xI → 0. 
From (3) we obtain 

|wx(1/ni) − wxni 
(1/ni)| < 2Ix − xni I < c/2 

for all i larger than some i0. This implies that 

wx(1/ni) ≥ c/2, (5) 

for all sufficiently large i. But x is continuous on [0, T ], which implies it is 
uniformly continuous, as [0, T ] is compact. This contradicts (5). 
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2 Convergence of mappings 

Given two metric spaces (S1, ρ1), (S2, ρ2) a sequence of mappings fn : S1 → 
S2 is defined to be point-wise converging to f : S1 → S2 if for every x ∈ S1 we 
have ρ2(fn(x), f(x)) → 0. A sequence fn is defined to converge to f uniformly 
if 

lim sup ρ2(fn(x), f(x)) = 0. 
n x∈S1 

Also given K ⊂ S1, sequence fn is said to converge to f uniformly on K if the 
restriction of fn, f onto K gives a uniform convergence. A sequence fn is said 
to converge to f uniformly on compact sets u.o.c if fn converges uniformly to f 
on every compact set K ⊂ S1. 

Problem 6. Let S1 = [0, ∞) and let S2 be arbitrary. Show that fn converges to 
f uniformly on compact sets if and only if for every T > 0 

lim sup ρ2(fn(t), f(t)) = 0. 
n 0≤t≤T 

Point-wise convergence does not imply uniform convergence even on com­
pact sets. Consider xn = nx for x ∈ [0, 1/n], = n(2/n − x) for x ∈ [1/n, 2/n] 
and = 0 for x ∈ [2/n, 1]. Then xn converges to zero function point-wise but not 
uniformly. Moreover, if fn is continuous and fn converges to f point-wise, this 
does not imply in general that f is continuous. Indeed, let fn = 1/(nx +1), x ∈ 
[0, 1]. Then fn converges to 0 point-wise everywhere except x = 0 where it 
converges to 1. The limiting function is discontinuous. However, the uniform 
continuity implies continuity of the limit, as we are about to show. 

Proposition 3. Suppose fn : S1 → S2 is a sequence of continuous mappings 
which converges uniformly to f . Then f is continuous as well. 

Proof. Fix x ∈ S1 and E > 0. There exists n0 such that for all n > n0, 
sup ρ2(fn(z), f(z)) < E/3. Fix any such n > n0. Since, by assumption fnz 
is continuous, then there exists δ > 0 such that ρ2(fn(x), fn(y)) < E/3 for all 
y ∈ Bo(x, δ). Then for any such y we have 

ρ2(f(x), f(y)) ≤ ρ2(f(x), fn(x)) + ρ2(fn(x), fn(y)) + ρ2(fn(y), f(x)) < 3E/3 = E. 

This proves continuity of f . 

Theorem 2. The spaces C[0, T ], C[0, ∞) are Polish. 
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Problem 7. Use Proposition 3 (or anything else useful) to prove that C[0, T ] is 
complete. 

That C[0, T ] has a dense countable subset can be shown via approximations 
by polynomials with rational coefficients (we skip the details). 

Skorohod space and Skorohod metric 

The space C[0, ∞) equipped with uniform metric will be convenient when we 
discuss Brownian motion and its application later on in the course, since Brown­
ian motion has continuous samples. Many important processes in practice, how­
ever, including queueing processes, storage, manufacturing, supply chain, etc. 
are not continuous, due to discrete quantities involved. As a result we need to 
deal with probability concept on spaces of not necessarily continuous functions. 

Denote by D[0, ∞) the space of all functions x on [0, ∞) taking values in R 
or in general any metric space (S, ρ), such that x is right-continuous and has left 
limits. Namely, for every t0, limt↑t0 f(t), limt↓t0 f(t) exist, and limt↓t0 f(t) = 
f(t0). As an example, think about a process describing the number of customers 
in a branch of a bank. This process is described as a piece-wise constant func­
tion. We adopt a convention that at a moment when a customer arrives/departs, 
the number of customers is identified with the number of customers right af­
ter arrival/departure. This makes the process right-continuous. It also has left-
limits, since it is piece-wise constant. 

Similarly, define D[0, T ] to be the space of right-continuous functions on 
[0, T ] with left limits. We will right shortly RCLL. On D[0, T ] and D[0, ∞) we 
would like to define a metric which measures some proximity between the func­
tions (processes). We can try to use the uniform metric again. Let us consider 
the following two processes x, y ∈ D[0, T ]. Fix τ, ∈ [0, T ) and δ > 0 such that 
τ + δ < T and define x(z) = 1{z ≥ τ}, y(z) = 1{z ≥ τ + δ}. We see that x 
and y coincide everywhere except for a small interval [τ, τ + δ). It makes sense 
to assume that these processes are ”close” to each other. Yet Ix − yIT = 1. 
Thus uniform metric is inadequate. For this reason Skorohod introduce the so 
called Skorohod metric. Before we define Skorohod metric let us discuss the 
idea behind it. The problem with uniform metric was that the two processes x, y 
described above where close to each other in a sense that one is a perturbed ver­
sion of the other, where the amount of perturbation is δ. In particular, consider 
the following piece-wise linear function λ : [0, T ] → [0, T ] given by  τ t ∈ [0, τ + δ];τ +δ t,λ(t) =

τ + 1−τ (t − τ − δ), t ∈ [τ + δ, T ].1−τ−δ 
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We see that x(λ(t)) = y(t). In other words, we rescaled the axis [0, T ] by 
a small amount and made y close to (in fact identical to) x. This motivates the 
following definition. From here on we use the following notations: x ∧ y stands 
for min(x, y) and x ∨ y stands for max(x, y) 

Definition 5. Let Λ be the space of strictly increasing continuous functions λ 
from [0, T ] onto [0, T ]. A Skorohod metric on D[0, T ] is defined by 

ρs(x, y) = inf Iλ − II ∨ Ix − yλ)I , 
λ∈Λ 

for all x, y ∈ D[0, T ], where I ∈ Λ is the identity transformation, and I · I is 
the uniform metric on D[0, T ]. 

Thus, per this definition, the distance between x and y is less than E if there 
exists λ ∈ Λ such that sup0≤t≤T |λ(t)−t| < E and sup0≤t≤T |x(t)−y(λ(t))| < 
E. 

Problem 8. Establish that ρs is a metric on D[0, T ]. 

Proposition 4. The Skorohod metric and uniform metric are equivalent on C[0, T ], 
in a sense that for xn, x ∈ C[0, T ], the convergence xn → x holds under Sko­
rohod metric if and only if it holds under the uniform metric. 

Proof. Clearly Ix − yI ≥ ρs(x, y). So convergence under uniform metric im­
plies convergence under Skorohod metric. Suppose now ρs(xn, x) → 0. We 
need to show Ixn − xI → 0. 

Consider any sequence λn ∈ Λ such that Iλn−II → 0 and Ix(λn)−xnI → 
0. Such a sequence exists since ρs(xn, x) → 0 (check). We have 

Ix − xnI ≤ Ix − xλnI + Ixλn − xnI. 

The second summand in the right-hand side converges to zero by the choice of 
λn. Also since λn converges to I uniformly, and x is continuous on [0, T ] and 
therefore uniformly continuous on [0, T ], then Ix − xλnI → 0. 

Additional reading materials 

• Billingsley [1], Appendix M1-M10. 

References 

[1] P.	 Billingsley, Convergence of probability measures, Wiley-Interscience 
publication, 1999. 

8 

( )



MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



