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Certain Disclosures and Disclaimers 
 

• I am an employee of Susquehanna International Group, 
LLP (together with its affiliated and related entities, 
“SIG”).  However, the views expressed today are my 
own and do not necessarily reflect the views of SIG.  
SIG expressly disclaims any liability in connection with 
the use of this document or its contents by any third 
party. 

 
• Information presented in this document is for 

informational, educational and illustrative purposes 
only.  While the information in this document is from 
sources believed to be reliable, no representations or 
warranties, express or implied, as to whether the 
information is accurate or complete are given.  
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Outline of Talk 
• Explanation of what Cepheus 

accomplished, and discussions of Game 
Theory Optimal (GTO) Strategies in Poker,  

• Explanation of Regret minimization and 
Counterfactual Regret (CFR) 

• Improvements to CFR, CFR+  
• Extension of Computer Solutions to other 

games, including big bet games and multi-
player games 
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What did Cepheus Accomplish? 
• Cepheus is a Game Theory Optimal (GTO) solution to 

Heads-up Limit Holdem.    
• After 900 CPU-years they have achieved an exploitability 

of less than 1/1000 of a big blind. This is virtually 
indistinguishable from a perfect strategy. 

• It’s definitely a milestone, this is the first time a real poker 
game has been solved, however given the previous work 
of Bowling, Burch, Johanson, and Tammelin it was just a 
matter of time (and lots of CPU).    

• What effect does this have on other games?   We will visit 
this later.    
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Nash Equilibrium 
John F. Nash, Nobel Prize 1994 for “pioneering 
analysis of equilibria in the theory of non-cooperative 
games.”  
Nash’s work extended earlier idea of John Von 
Neumann and Oskar Morgenstern. 
A (Nash) Equilibrium is a set of strategies: 

One strategy for each player such that no player has 
an incentive to unilaterally change his strategy. 

In two player Zero-Sum games, we also refer to Nash 
Equilibria as Game Theory Optimal (GTO).

TM 

4



Game Theory Poker Example 

• The following game is played with Rose and Colin.  Each
player antes $50 for a $100 pot.   Rose looks at a card
from a full deck.  Rose will win the pot at showdown if the
card is a Spade, otherwise she will lose.

• Rose can decide to bet $100 or check.

• If Rose bets, Colin may decide to call $100 or fold.  If
Colin folds, Rose wins, if Colin calls there is a showdown
for the $300 pot.

• What are the best strategies for Rose and Colin?
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Game Theory Example—Poker  
• Rose should always bet a spade.  
• If Colin calls 100% of the time, Rose will just never bluff (bet when 

she doesn’t have a spade) and net $150 each time she has a spade 
and -$50 when she does not for a total net gain of zero. 

• If Colin never calls , Rose will just bet every time and net $50.  
• If Colin calls half the time, Rose will be indifferent to bluffing, she will 

net -$50 either way without a spade, and $100 with a spade for a net 
of -$12.50.  This is the correct strategy for Colin  

• Conversely, if Rose’s ratio’s of bluffs to spade bets (these are called 
value bets) is 1:2 then Colin is indifferent to calling.  So Rose should 
bluff on half of the hearts (or similar frequency).  

• These are the Nash Equilibrium, and GTO strategies.   
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Game Theory Optimal 
The set up is that there is a game value function 𝑢 𝜎𝑥, 𝜎𝑦  which takes 
as arguments a strategy from X and a strategy from Y.    

We can take convex linear combinations of strategies, that is if 𝜎𝑥𝑘𝜖𝑋 and 
𝑎𝑘 ≥ 0, with  𝑎𝑘 = 1 then  we can take 𝜎𝑥 =  𝑎𝑘𝜎𝑥𝑘 and also  

𝑢 𝜎𝑥, 𝜎𝑦 = 𝑎𝑘𝑢(𝜎𝑥
𝐾, 𝜎𝑦) 

We define a pair of strategies 𝜎𝑥∗, 𝜎𝑦∗ o be in 𝜖 equilibrium if: 

max
𝜎𝑥
𝑢 𝜎𝑥, 𝜎𝑦

∗ −min
𝜎𝑦
𝑢 𝜎𝑥
∗, 𝜎𝑦 ≤ 𝜖 
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Regret Minimization 
Suppose at each time step t, the player has an option of a linear 
combination of n pure strategies:  

𝜎𝑡 = 𝑎𝑘
𝑡𝜎𝑘

𝑛

𝑘=1

 

Where  𝑎𝑘
𝑡 = 1 𝑎𝑛𝑑 𝑎𝑘

𝑡 ≥ 0𝑛
𝑘=1 .    

Now at each time step t we are given values 𝑢𝑡 𝜎𝑘  perhaps by an 
adversary.  We define the equity of the play as:

𝑢𝑡 𝜎𝑡 = 𝑎𝑘
𝑡𝑢𝑡(𝜎𝑘)

𝑛

𝑘=1

 

The idea is that the adversary can choose strategy k to score well 
sometimes and badly at other times.   
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Regret Minimization 
We now define the total regret for strategy k:  

𝑅𝑘
𝑇 = 𝑢𝑡 𝜎𝑘 −

𝑇

𝑡=1

𝑢𝑡 𝜎𝑡  

Note this can be negative or positive, but the idea is that we want the 
average positive regret to go to zero that is 𝑅𝑘𝑇/𝑇 < 𝜖𝑡 where 𝜖𝑡 is a 
sequence converging to zero.  The point is that we can do this if we use 
the algorithm called regret matching that is if we define 𝑅𝑘𝑇+ = max (𝑅𝑘𝑇 , 0), 
and we set 

𝑎𝑘
𝑇 =

𝑅𝑘
𝑇−1+

 𝑅𝑘
𝑇−1+𝑛

𝑘=1

 

(or a random strategy if all regrets are negative or zero).   
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Regret minimization example. 
Suppose we have n=2 strategies and at each step one of the strategies 
has equity 1 and the other strategy has equity 0.   

1. At t=1 we pick 𝜎𝑡 = 𝜎1.  We are given  𝑢𝑡 𝜎1 = 0 and 𝑢𝑡 𝜎2 = 1 .
Thus we have 𝑅1𝑡 = 0  and 𝑅2𝑡 = 1. 

2. At t=2 we pick 𝜎𝑡 = 𝜎2. We are given  𝑢𝑡 𝜎1 = 1 and 𝑢𝑡 𝜎2 = 0 .
Now we have 𝑅1𝑡 = 1  and 𝑅2𝑡 = 1. 

3. At t=3 we pick 𝜎𝑡 = 𝜎1/2 + 𝜎2/2. We are given  𝑢𝑡 𝜎1 = 0 and
𝑢𝑡 𝜎2 = 1 .   Now we have 𝑅1𝑡 = 0.5  and 𝑅2𝑡 = 1.5 

4. At t=4 we pick 𝜎𝑡 = 𝜎1/4 + 3𝜎2/4. We are given  𝑢𝑡 𝜎1 = 0 and
𝑢𝑡 𝜎2 = 1 .   Now we have 𝑅1𝑡 = −0.25  and 𝑅2𝑡 = 1.75 

5. At t=5 we pick 𝜎𝑡 = 𝜎2.
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Regret Minimization 
We actually have a quadratic bound in our example 𝑅1𝑇+ 2 + 𝑅2𝑇+ 2 ≤ 𝑇 

If both regrets are positive: 

𝑅1
𝑇+1 2 + 𝑅2

𝑇+1 2 = 𝑅1
𝑇 ±

𝑅2
𝑇

𝑅1
𝑇 + 𝑅2

𝑇

2

+ 𝑅2
𝑇 ∓

𝑅1
𝑇

𝑅1
𝑇 + 𝑅2

𝑇

2

 

≤ 𝑅1
𝑇 2 + 𝑅2

𝑇 2 + 1 

This means that 𝑅𝑘𝑇/𝑇 ≤ 1/ 𝑇. 

In fact this is the general bound, we have  

𝑅𝑘
𝑇

𝑇
≤
𝑛 − 1

𝑇
∆ 

where ∆ is the maximum deviation of each play.    
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Regret minimization and GTO  
Now what does this have to do with GTO strategies?  Suppose the pure 

strategies for X are 𝜎𝑥,𝑘 𝑘=1
𝑚  and for Y are 𝜎𝑦,𝑘 𝑘=1

𝑛  then if we regret-
match using the equity functions  𝑢𝑥𝑡 ∙ = 𝜇(∙, 𝜎𝑦𝑡)  and 𝑢𝑦𝑡 ∙ = −𝜇(𝜎𝑥𝑡 ,∙)  
then if we let 𝜎 𝑥𝑇 =  𝜎𝑥

𝑡/𝑇𝑇
𝑡=1  and 𝜎 𝑦

𝑇 =  𝜎𝑦
𝑡/𝑇𝑇

𝑡=1  then we know that  

𝑢 𝜎𝑥,𝑘 , 𝜎 𝑦
𝑇 − 𝑢 𝜎 𝑥

𝑇 , 𝜎𝑦,𝑗  

= 𝑢 𝜎𝑥,𝑘 , 𝜎 𝑦
𝑇 −
1

𝑇
 𝑢(𝜎𝑥

𝑇 , 𝜎𝑦
𝑇

𝑇

𝑡=1

) +
1

𝑇
 𝑢(𝜎𝑥

𝑇 , 𝜎𝑦
𝑇

𝑇

𝑡=1

) − 𝑢 𝜎 𝑥
𝑇 , 𝜎𝑦,𝑗  

= 𝑅𝑥,𝑘
𝑇 /𝑇 + 𝑅𝑦,𝑗

𝑇 /𝑇 < 2𝜖𝑡 

We know that the strategies are within 2𝜖𝑡 equilibrium of GTO .    
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Counterfactual Regret (CFR) 
This is the major innovation of the work.   First notice that the results will 
converge if we just have an unbiased sample of u instead of the actual 
value of u.  That is because the sampled regrets will converge to the 
true regrets by the Central Limit Theorem.  

The main idea is to create a personal tree from the information set of 
each player, that is cards he was dealt, the community cards, and the 
actions of each player.   In this personal tree, we use regret matching at 
each node where the player has a decision. It’s called counterfactual 
regret because the weighting is given assuming the player plays to that 
node, so weights are given by the probability of each community card 
and the probability of the opponents actions given 𝜎𝑦𝑡.   

This means the hands can be sampled intrinsically, by playing out a 
hand, or a few variations of a hands.     
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CFR Modifications 

• In the final algorithm CFR+, which floored regrets at 0 
instead of allowing really negative regrets and used more 
of an exhaustive search along the tree instead of Monte 
Carlo  

• Branches can be weighted so that the ones with higher 
average regret can be visited more often. 

• There is a lot of flexibility in weighting things in general.   
For example one could weight later iterations more 
heavily. On the river, a weighting scheme could help with 
the fact that call regret could be the whole pot while fold 
regret could only be one bet.   
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Limit Holdem 
• Let’s try to figure out how big the trees are.  Let’s concentrate on the

river nodes.
• If we assume a 4 bet Cap, there are 9 possible actions on each bettng

round (Preflop, Flop , Turn) that gets us to the next street.
• Using symmetries on the Flop we have C(13,3)=286 flops with one

suit,  13*C(13,2) = 1014 with two suits, and C(15,3) = 455 three suited
flops = 1755 flops.

• There are 49*48 = 2352 turns and rivers, making 1755*9*9*9*2352 = 3
billion possible action sequences to the river.

• There are 47*46 = 2126 hand types on the river, making 6.5x10^12
hand-river types.  Each river node should be visited around 1000
times.   It’s a big computational problem but still tractable, and they
used many shortcuts.

TM 

15



Solving other poker games 
• Omaha 8—Same structure at LHE, except more hand types.   There

are C(47,4)  hand types instead of C(47,2).  That’s an 82.5x to the
original tree.  However there could be efficiencies due to bucketing
hand types.   That is if X is the space of possible strategies we only
consider a subspace 𝑋′∁𝑋 and 𝑌′∁𝑌 and solve the subgame u(X’,Y’).
The Alberta group used these methods originally to develop strong
LHE programs.

• Razz—definitely the simplest variant of Stud.  Only 13 card types,
ranks do not matter.  Unfortunately there are 13^8 possible ways the
upcards can come, and 9^4 action sequences, since there is one more
street and still C(15,3)=455 river hand types.  That’s 2.44x10^15 river-
hands,  a factor of 374 over Holdem.   Although much simplification
can probably be made.  There are really 78 different games—the A vs
2 game, etc.   Also because of the nature of the game, some streets
could be trivial.
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Big Bet Games 
• The problem with No Limit and Pot Limit games is that there is

a continuum of bet sizes.
• In fact there is a continuum of responses to each bet, and then

there could be further streets etc.   The problem is that one
needs some type of interpolation between bet sizes.

• Even if some bet sizes are non-optimal a full strategy needs
responses to the bets.

• Simple approximations like the rigid Pot Limit Game where the
only bet size is the pot may reveal something interesting.

• Perhaps small stack games are amenable to solutions since
many of the actions terminate.
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Multiplayer Games 3+ players.  
• Addressed in “Using Counterfactual Regret to Create Competitive 

Multiplayer Agents”   
• Programs were 1st and 2nd in an annual 3-player LHE event  
• One problem is there is no guarantee of epsilon-convergence to a 

Nash equilibrium.  
• The bigger problem is that there could be multiple equilibria for 

multiway games, especially in tournaments/satellites with payouts for 
other places than first.   

• Problems like the Rock-Maniac game in the Math of Poker where 
players can use a simple strategy and ensure you losing 

• This is a rich area of study. 
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