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Overview of Improper Integrals 

Now let’s contrast the two types of improper integrals we’ve looked at — one in 
which x goes to infinity and one in which x approaches a point of singularity. 

We have just considered functions like: 
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converge while improper integrals of functions larger than or equal to x 
1 diverge. 
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Figure 1: Area under the graph of y = x 
1 . 

As shown in Figure 1, the graph of f(x) = x 
1 is symmetric to itself by a 

reflection across the line y = x. The total area under the curve to the right of 
x = 1 is infinite and so is the area under the curve between x = 0 and x = 1. 

The graph of y = 
x1
1 
/2 lies below that of y = x 

1 on the left and above x 
1 on 

the right. (See Figure 3.) The total area under the graph of y = 
x
1 to the 1/2 

right of x = 1 is infinite, but the area under the curve between x = 0 and x = 1 
is 2. (See Figure 2.) 
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Figure 2: Area under the graph of y = 
x1
1 
/2 . 
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Figure 3: Graph of y = x 
1 superimposed on graph of y = 

x1
1 
/2 . 

Compare this to the area under the graph of y = x
1 
2 . Here the area to the 

right of 1 is finite (2) and the area between 0 and 1 is infinite. (See Figure 4.) 

By comparing the sizes of the vertical and horizontal “tails” of the functions 
we can get a geometric sense of the difference between convergent and divergent 
indefinite integrals. 
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Figure 4: Area under the graph of y = x
1 
2 .
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Figure 5: Graph of y = x 
1 superimposed on graph of y = x

1

2 .
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