Summing the Geometric Series

In lecture we saw a geometric argument that 1 + 3 + 1 + 3 +.--=2. By an-

swering the questions below, we complete an algebraic proof that this is true.
We start by proving by induction that:
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a) (Base case) Prove that Sy = 21231 =1.

b) (Inductive hypothesis and inductive step) Assume that:
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Add N to both sides to prove that:
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This completes the inductive proof.
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c¢) Show that if Sy = 5

Solution

Students often find proof by induction intimidating or confusing. However, once
one masters the technique, one finds that the hardest part of a proof can be the
high school level algebraic manipulation.

a) (Base case) Prove that Sy = 21231 =1.

The hardest part of this step is understanding and using the summation
notation.

b) (Inductive hypothesis and inductive step) Assume that:
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1
Add N to both sides to prove that:
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This completes the inductive proof.

This step requires careful manipulation of rational expressions, but is other-
wise straightforward. We start with:

Applying the definition of Sy to the left hand side, we get:
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Next we add QLN to both sides:
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Expand the summation and then add to complete the proof.
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This is a straightforward evaluation of a limit.
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Then we showed that as the number of terms in this sum approaches infinity,
the value of the sum approaches 2.
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To summarize, we first proved that — +
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