Improper Integrals of the Second Kind, Continued

We'll continue our discussion of integrals of functions which have singularities
at finite values; for example, f(z) = % If f(x) has a singularity at 0 we define

/0 f(z)dz = lim f(z)dx.
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As before, we say the integral converges if this limit exists and diverges if not.
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Figure 1: Area under the graph of y = %

We treat this infinite vertical “tail” the same way we treated horizontal tails.
Figure 1 shows a function whose value goes to positive infinity as x goes to zero
from the right hand side. We don’t know whether the area under its graph
between 0 and 1 is going to be infinite or finite, so we cut it off at some point a
where we know it will be finite. Then we let a go to zero from above (a — 0T)
and see whether the area under the curve between a and 1 goes to infinity or to
some finite limit.
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This is a convergent integral.
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This integral diverges.

In general:
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diverges if p > 1.
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