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18.02 Multivariable Calculus, Fall 2007 
Transcript – Lecture 32 

Thank you. So, yesterday we saw stuff about Stokes theorem. And, I have a few 
more things to tell you about it, and some applications, and how it connects to 
various other things. And then, we'll review for the exam because I hate to remind 
you, but on Tuesday, that's the last test in this class, and so it's at 1 pm usual time 
in the usual place, namely in Walker for most of you and in here for some of you. 

So: same place as last time and the time before. OK, so remember, we've seen 
Stokes theorem, which says if I have a closed curve bounding some surface, S, and I 
orient the curve and the surface compatible with each other, then I can compute the 
line integral along C along my curve in terms of, instead, surface integral for flux of a 
different vector field, namely, curl f dot n dS. OK, so that's the statement. And, just 
to clarify a little bit, so, again, we've seen various kinds of integrals. So, line 
integrals we know how to evaluate. They take place in a curve. You express 
everything in terms of one variable, and after substituting, you end up with a usual 
one variable integral that you know how to evaluate. 

And, surface integrals, we know also how to evaluate. Namely, we've seen various 
formulas for ndS. Once you have such a formula, due to the dot product with this 
vector field, which is not the same as that one. But it's a new vector field that you 
can build out of f. You do the dot product. You express everything in terms of your 
two integration variables, and then you evaluate. So, now, what does this have to do 
with various other things? 

So, one thing I want to say has to do with how Stokes helps us understand path 
independence, so, how it actually motivates our criterion for gradient fields, 
independence. OK, so, we've seen that if we have a vector field defined in a simply 
connected region, and its curl is zero, then it's a gradient field, and the line integral 
is path independent. So, let me first define for you when a simply connected region 
is. So, we say that a region in space is simply connected -

-- if every closed loop inside this region bounds some surface again inside this 
region. OK, so let me just give you some examples just to clarify. So, for example, 
let's say that I have a region that's the entire space with the origin removed. OK, so 
space with the origin removed, OK, you think it's simply connected? Who thinks it's 
simply connected? Who thinks it's not simply connected? Let's think a little bit 
harder. Let's say that I take a loop like this one, OK, it doesn't go through the origin. 
Can I find a surface that's bounded by this loop and that does not pass through the 
origin? Yeah, I can take the sphere, you know, for example, or anything that's just 
not quite the disk? So, and similarly, if I take any other loop that avoids the origin, I 
can find, actually, a surface bounded by it that does not pass through the origin. 

So, actually, that's kind of a not so obvious theorem to prove, but maybe intuitively, 
start by finding any surface. Well, if that surface passes through the origin, just 
wiggle it a little bit, you can make sure it doesn't pass through the origin anymore. 
Just push it a little bit. So, in fact, this is simply connected. That was a trick 



question. OK, now on the other hand, a good example of something that is not 
simply connected is if I take space, and I remove the z axis -

-- that is not simply connected. And, see, the reason is, if I look again, say, at the 
unit circle in the x axis, sorry, unit circle in the xy plane, I mean, in the xy plane, so, 
if I try to find a surface whose boundary is this disk, well, it has to actually cross the 
z axis somewhere. There's no way that I can find a surface whose only boundary is 
this curve, which doesn't hit the z axis anywhere. 

Of course, you could try to use the same trick as there, say, maybe we want to go 
up, up, up. You know, let's start with a cylinder. Well, the problem is you have to go 
infinitely far because the z axis goes infinitely far. And, you'll never be able to 
actually close your surface. So, the matter what kind of trick you might want to use, 
it's actually a theorem in topology that you cannot find a surface bounded by this 
disk without intersecting the z axis. 

Yes? Well, a doughnut shape certainly would stay away from the z axis, but it 
wouldn't be a surface with boundary just this guy. Right, it would have to have either 
some other boundary. So, maybe what you have in mind is some sort of doughnut 
shape like this that curves on itself, and maybe comes back. Well, if you don't quite 
close it all the way around, so I can try to, indeed, draw some sort of doughnut here. 

Well, if I don't quite close it, that it will have another edge at the other end wherever 
I started. If I close it completely, then this curve is no longer its boundary because 
my surface lives on both sides of this curve. See, I want a surface that stops on this 
curve, and doesn't go beyond it. And, nowhere else does it have that kind of 
behavior. Everywhere else, it keeps going on. So, actually, I mean, maybe actually 
another way to convince yourself is to find a counter example to the statement I'm 
going to make about vector fields with curl zero and simply connected regions always 
being conservative. 

So, what you can do is you can take the example that we had in one of our older 
problem sets. That was a vector field in the plane. But, you can also use it to define 
a vector field in space just with no z component. That vector field is actually defined 
everywhere except on the z axis, and it violates the usual theorem that we would 
expect. So, that's one way to check just for sure that this thing is not simply 
connected. 

So, what's the statement I want to make? So, recall we've seen if F is a gradient 
field -- -- then its curl is zero. That's just the fact that the mixed second partial 
derivatives are equal. So, now, the converse is the following theorem. It says if the 
curl of F equals zero in, sorry, and F is defined -- No, is not the logical in which to 
say it. So, if F is defined in a simply connected region, and curl F is zero -

-- then F is a gradient field, and the line integral for F is path independent -- -- F is 
conservative, and so on, all the usual consequences. Remember, these are all 
equivalent to each other, for example, because you can use path independence to 
define the potential by doing the line integral of F. OK, so where do we use the 
assumption of being defined in a simply connected region? Well, the way which we 
will prove this is to use Stokes theorem. OK, so the proof, so just going to prove that 
the line integral is path independent; the others work the same way. OK, so let's 
assume that we have a vector field whose curl is zero. 



And, let's say that we have two curves, C1 and C2, that go from some point P0 to 
some point P1, the same point to the same point. Well, we'd like to understand the 
line integral along C1, say, minus the line integral along C2 to show that this is zero. 
That's what we are trying to prove. So, how will we compute that? Well, the line 
integral along C1 minus C2, well, let's just form a closed curve that is C1 minus C2. 
OK, so let's call C, woops -

So that's equal to the integral along C of f dot dr where C is C1 followed by C2 
backwards. Now, C is a closed curve. So, I can use Stokes theorem. Well, to be able 
to use Stokes theorem, I need, actually, to find a surface to apply it to. And, that's 
where the assumption of simply connected is useful. I know in advance that any 
closed curve, so, C in particular, has to bound some surface. OK, so we can find S, a 
surface, S, that bounds C because the region is simply connected. So, now that tells 
us we can actually apply Stokes theorem, except it won't fit here. So, instead, I will 
do that on the next line. 

That's equal by Stokes to the double integral over S of curl F dot vector dS, or ndS. 
But now, the curl is zero. So, if I integrate zero, I will get zero. OK, so I proved that 
my two line integrals along C1 and C2 are equal. But for that, I needed to be able to 
find a surface which to apply Stokes theorem. And that required my region to be 
simply connected. If I had a vector field that was defined only outside of the z axis 
and I took two paths that went on one side and the other side of the z axis, I might 
have obtained, actually, different values of the line integral. OK, so anyway, that's 
the customary warning about simply connected things. 

OK, let me just mention very quickly that there's a lot of interesting topology you 
can do, actually in space. So, for example, this concept of being simply connected or 
not, and studying which loops bound surfaces or not can be used to classify shapes 
of things inside space. So, for example, one of the founding achievements of 
topology in the 19th century was to classify surfaces in space -- -- by trying to look 
at loops on them. So, what I mean by that is that if I take the surface of a sphere, 
well, I claim the surface of a sphere -

-- is simply connected. Why is that? Well, let's take my favorite closed curve on the 
surface of a sphere. I can always find a portion of the sphere that's bounded by it. 
OK, so that's the definition of the surface of a sphere being simply connected. On the 
other hand, if I take what's called a torus, or if you prefer, the surface of a 
doughnut, that's more, it's a less technical term, but it's -

-- well, that's not simply connected. And, in fact, for example, if you look at this loop 
here that goes around it, well, of course it bounds a surface in space. But, that 
surface cannot be made to be just a piece of the donut. You have to go through the 
hole. You have to leave the surface of a torus. In fact, there's another one. See, this 
one also does not bound anything that's completely contained in the torus. And, of 
course, it bounds this disc, but inside of a torus. But, that's not a part of the surface 
itself. So, in fact, there's, and topologists would say, there's two independent -

-- loops that don't bound surfaces, that don't bound anything. And, so this number 
two is somehow an invariant that you can associate to this kind of shape. And then, 
if you consider more complicated surfaces with more holes in them, you can try, 
somehow, to count independent loops on them, and that's the beginning of the 
classification of surfaces. Anyway, that's not really an 18.02 topic, but I thought I 
would mentioned it because it's kind of a cool idea. 



OK, let me say a bit more in the way of fun remarks like that. So, food for thought: 
let's say that I want to apply Stokes theorem to simplify a line integral along the 
curve here. So, this curve is maybe not easy to see in the picture. It kind of goes 
twice around the z axis, but spirals up and then down. OK, so one way to find a 
surface that's bounded by this curve is to take what's called the Mobius strip. OK, so 
the Mobius strip, it's a one sided strip where when you go around, you flip one side 
becomes the other. So, you just, if you want to take a band of paper and glue the 
two sides with a twist, so, it's a one sided surface. 

And, that gives us, actually, serious trouble if we try to orient it to apply Stokes 
theorem. So, see, for example, if I take this Mobius strip, and I try to find an 
orientation, so here it looks like that, well, let's say that I've oriented my curve going 
in this direction. So, I go around, around, around, still going this direction. Well, the 
orientation I should have for Stokes theorem is that when I, so, curve continues 
here. Well, if you look at the convention around here, it tells us that the normal 
vector should be going this way. OK, if we look at it near here, if we walk along this 
way, the surface is to our right . 

So, we should actually be flipping things upside down. The normal vector should be 
going down. And, in fact, if you try to follow your normal vector that's pointing up, 
it's pointing up, up, up. It will have to go into things, into, into, down. There's no 
way to choose consistently a normal vector for the Mobius strip. So, that's what we 
call a non-orientable surface. And, that just means it has only one side. And, if it has 
only one side, that we cannot speak of flux for it because we have no way of saying 
that we'll be counting things positively one way, negatively the other way, because 
there's only one, you know, there's no notion of sides. So, you can't define a side 
towards which things will be going positively. So, that's actually a situation where 
flux cannot be defined. 

OK, so as much as Mobius strips and climb-bottles are exciting and really cool, well, 
we can't use them in this class because we can't define flux through them. So, if we 
really wanted to apply Stokes theorem, because I've been telling you that space is 
simply connected, and I will always be able to apply Stokes theorem to any curve, 
what would I do? Well, I claim this curve actually bounds another surface that is 
orientable. 

Yeah, that looks counterintuitive. Well, let's see it. I claim you can take a 
hemisphere, and you can take a small thing and twist it around. So, in case you 
don't believe me, let me do it again with the transparency. Here's my loop, and see, 
well, the scale is not exactly the same. So, it doesn't quite match. But, and it's 
getting a bit dark. But, that spherical thing with a little slit going twisting into it will 
actually have boundary my loop. And, that one is orientable. I mean, I leave it up to 
you to stare at the picture long enough to convince yourselves that there's a well-
defined up and down. OK. 

So now, I mean, in case you are getting really, really worried, I mean, there won't 
be any Mobius strips on the exam on Tuesday, OK? It's just to show you some cool 
stuff. OK, questions? No? OK, one last thing I want to show you before we start 
reviewing, so one question you might have about Stokes theorem is, how come we 
can choose whatever surface we want? I mean, sure, it seems to work, but why? 



So, I'm going to say a couple of words about surface independence in Stokes 
theorem. So, let's say that I have a curve, C, in space. And, let's say that I want to 
apply Stokes theorem. So, then I can choose my favorite surface bounded by C. So, 
in a situation like this, for example, I might want to make my first choice be this 
guy, S1, like maybe some sort of upper half sphere. And, if you pay attention to the 
orientation conventions, you'll see that you need to take it with normal vector 
pointing up. Maybe actually I would rather make a different choice. 

And actually, I will choose another surface, S2, that maybe looks like that. And, if I 
look carefully at the orientation convention, Stokes theorem tells me that I have to 
take the normal vector pointing up again. So, that's actually into things. So, Stokes 
says that the line integral along C of my favorite vector field can be computed either 
as a flux integral for the curl through S1, or as the same integral, but through S2 
instead of S1. 

So, that seems to suggest that curl F has some sort of surface independence 
property. It doesn't really matter which surface I take, as long as the boundary is 
this given curve, C. Why is that? That's a strange property to have. Where does it 
come from? Well, let's think about it for a second. So, why are these the same? I 
mean, of course, they have to be the same because that's what Stokes tell us. But, 
why is that OK? Well, let's think about comparing the flux integral for S1 and the flux 
integral for S2. So, if we want to compare them, we should probably subtract them 
from each other. OK, so let's do the flux integral for S1 minus the flux integral for S2 
of the same thing. 

Well, let's give a name. Let's call S the surface S1 minus S2. So, what is S? S is S1 
with its given orientation together with S2 with the reversed orientation. So, S is 
actually this whole closed surface here. And, the normal vector to S seems to be 
pointing outwards everywhere. OK, so now, if we have a closed surface with a 
normal vector pointing outwards, and we want to find a flux integral for it, well, we 
can replace that with a triple integral. So, that's the divergence theorem. So, that's 
by the divergence theorem using the fact that S is a closed surface. 

That's equal to the triple integral over the region inside. Let me call that region D of 
divergence, of curl F dV. OK, and what I'm going to claim now is that we can actually 
check that if you take the divergence of the curl of a vector field, you always get 
zero. OK, and so that will tell you that this integral will always be zero. And that's 
why the flux for S1, and the flux for S2 were the same a priori and we didn't have to 
worry about which one we chose when we did Stokes theorem. OK, so let's just 
check quickly that divergence of a curve is zero. 

OK, in case you're wondering why I'm doing all this, well, first I think it's kind of 
interesting, and second, it reminds you of a statement of all these theorems, and all 
these definitions. So, in a way, we are already reviewing. OK, so let's see. If my 
vector field has components P, Q, and R, remember that the curl was defined by this 
cross product between del and our given vector field. So, that's Ry - Qz followed by 
Pz - Rx, and Qx - Py. So, now, we want to take the divergence of this. 

Well, so we have to take the first component, Ry minus Qz, and take its partial with 
respect to x. Then, take the y component, Pz minus Rx partial with respect to y plus 
Qx minus Py partial with respect to z. And, well, now we should expand this. But I 
claim it will always simplify to zero. OK, so I think we have over there, becomes R 
sub yx minus Q sub zx plus P sub zy minus R sub xy plus Q sub xz minus P sub yz. 



Well, let's see. We have P sub zy minus P sub yz. These two cancel out. We have R 
sub yx minus R sub xy. These cancel out. Q sub zx and Q sub xz, these two also 
cancel out. So, indeed, the divergence of a curl is always zero. OK, so the claim is 
divergence of curl is always zero. Del cross F is always zero, and just a small remark, 
if we had actually real vectors rather than this strange del guy, indeed we know that 
if we have two vectors, U and V, and we do u dot u cross v, what is that? 

Well, one way to say it is it's the determinant of u, u, and v, which is the volume of 
the box. But, it's completely flat because u, u, and v are all in the plane defined by u 
and v. The other way to say it is that u cross v is perpendicular to u and v. Well, if 
it's perpendicular u, then its dot product with u will be zero. So, no matter how you 
say it, this is always zero. So, in a way, this reinforces our intuition that del, even 
though it's not at all an actual vector sometimes can be manipulated in the same 
way. 

OK, I think that's it for new topics for today. And, so, now I should maybe try to 
recap quickly what we've learned in these past three weeks so that you know, so, 
the exam is probably going to be similar in difficulty to the practice exams. That's my 
goal. I don't know if I will have reached that goal or not. We'll only know that after 
you've taken the test. But, the idea is it's meant to be more or less the same level of 
difficulty. So, at this point, we've learned about three kinds of beasts in space. 

OK, so I'm going to divide my blackboard into three pieces, and here I will write 
triple integrals. We've learned about double integrals, and we've learned about line 
integrals. OK, so triple integrals over a region in space, we integrate a scalar 
quantity, dV. How do we do that? Well, we can do that in rectangular coordinates 
where dV becomes something like, maybe, dz dx dy, or any permutation of these. 

We've seen how to do it also in cylindrical coordinates where dV is maybe dz times r 
dr d theta or more commonly r dr d theta dz. But, what I want to emphasize in this 
way is that both of these you set up pretty much in the same way. So, remember, 
the main trick here is to find the bounds of integration. So, when you do it, say, with 
dz first, that means for fixed xy, so, for a fixed point in the xy plane, you have to 
look at the bounds for z. So, that means you have to figure out what's the bottom 
surface of your solid, and what's the top surface of your solid? And, you have to find 
the value of z at the bottom, the value of z at the top as functions of x and y. 

And then, you will put that as bounds for z. Once you've done that, you are left with 
the question of finding bounds for x and y. Well, for that, you just rotate the picture, 
look at your solid from above, so, look at its projection to the xy plane, and you set 
up a double integral either in rectangular xy coordinates, or in polar coordinates for x 
and y. Of course, you can always do it a different orders. And, I'll let you figure out 
again how that goes. But, if you do dz first, then the inner bounds are given by 
bottom and top, and the outer ones are given by looking at the shadow of the 
region. Now, there's also spherical coordinates. And there, we've seen that dV is rho 
squared sine phi d rho d phi d theta. So now, of course, if this orgy of Greek letters 
is confusing you at this point, then you probably need to first review spherical 
coordinates for themselves. 

Remember that rho is the distance from the origin. Phi is the angle down from the z 
axis. So, it's zero, and the positive z axis, pi over two in the xy plane, and increases 
all the way to pi on the negative z axis. And, theta is the angle around the z axis. So, 



now, when we set up bounds here, it will look a lot like what you've done in polar 
coordinates in the plane because when you look at the inner bound down on rho, for 
a fixed phi and theta, that means you're shooting a straight ray from the origin in 
some direction in space. 

So, you know, you're sending a laser beam, and you want to know what part of your 
beam is going to be in your given solid. You want to solve for the value of rho when 
you enter the solid and when you leave it. I mean, very often, if the origin is in your 
solid, then rho will start at zero. Then you want to know when you exit. And, I mean, 
there's a fairly small list of kinds of surfaces that we've seen how to set up in 
spherical coordinates. So, if you're really upset by this, go over the problems in the 
notes. That will give you a good idea of what kinds of things we've seen in spherical 
coordinates. 

OK, and then evaluation is the usual way. Questions about this? No? OK, so, I should 
say we can do something bad, but so we've seen, of course, applications of this. So, 
we should know how to use a triple integral to evaluate things like a mass of a solid, 
the average value of a function, the moment of inertia about one of the coordinate 
axes, or the gravitational attraction on a mass at the origin. 

OK, so these are just formulas to remember for examples of triple integrals. It 
doesn't change conceptually. You always set them up and evaluate them the same 
way. It just tells you what to put there for the integrand. Now, double integrals: so, 
when we have a surface in space, well, what we will integrate on it, at least what 
we've seen how to integrate is a vector field dotted with the unit normal vector times 
the area element. OK, and this is sometimes called vector dS. 

Now, how do we evaluate that? Well, we've seen formulas for ndS in various 
settings. And, once you have a formula for ndS, that will relate ndS to maybe dx dy, 
or something else. And then, you will express, so, for example, ndS equals 
something dx dy. And then, it becomes a double integral of something dx dy. Now, 
in the integrand, you want to express everything in terms of x and y. So, if you had 
a z, maybe you have a formula for z in terms of x and y. And, when you set up the 
bounds, well, you try to figure out what are the bounds for x and y? That would be 
just looking at it from above. Of course, if you are using other variables, figure out 
the bounds for those variables. 

And, when you've done that, it becomes just a double integral in the usual sense. 
OK, so maybe I should be a bit more explicit about formulas because there have 
been a lot. So, let me tell you about a few of them. Let me actually do that over here 
because I don't want to make this too crowded. OK, so what kinds of formulas for 
ndS have we seen? Well, we've seen a formula, for example, for a horizontal plane, 
or for something that's parallel to the yz plane or the xz plane. Well, let's do just the 
yz plane for a quick reminder. So, if I have a surface that's contained inside the yz 
plane, then obviously I will express ds in terms of, well, I will use y and z as my 
variables. So, I will say that ds is dy dz, or dz dy, whatever's most convenient. 

Maybe we will even switch to polar coordinates after that if a problem wants us to. 
And, what about the normal vector? Well, the normal vector is either coming straight 
at us, or it's maybe going back away from us depending on which orientation we've 
chosen. So, this gives us ndS. We dot our favorite vector field with it. We integrate, 
and we get the answer. OK, we've seen about spheres and cylinders centered at the 
origin or centered on the z axis. So, the normal vector sticks straight out or straight 



in, depending on which direction you do it in. So, for a sphere, the normal vector is 
<x, y, z> divided by the radius of the sphere. 

For a cylinder, it's <x, y, 0>, divided by the radius of a cylinder. And, the surface 
element on a sphere, so, see, it's very closely related to the volume element of 
spherical coordinates except you don't have a rho anymore. You just plug in a rho 
equals a. So, you get a squared sine phi d phi d theta. And, for a cylinder, it would 
be a dz d theta. So, by the way, just a quick check, when you're doing an integral, if 
it's the surface integral, there should be two integral signs, and there should be two 
integration variables. And, there should be two d somethings. If you end up with a 
dx, dy, dz in the surface integral, something is seriously wrong. 

OK, now, besides these specific formulas, we've seen two general formulas that are 
also useful. So, one is, if we know how to express z in terms of x and y, and just to 
change notation to show you that it's not set in stone, let's say that z is known as a 
function z of x and y. So, how do I get ndS in that case? Well, we've seen a formula 
that says negative partial z partial x, negative partial z partial y, one dx dy. So, this 
formula relates the volume, sorry, the surface element on our surface to the area 
element in the xy plane. It lets us convert between dS and dx dy. 

OK, so we just plug in this, and we dot with F, and then we substitute everything in 
terms of x and y, and we evaluate the integral over x and y. If we don't really want 
to find a way to find z as a function of x and y, but we have a normal vector given to 
us, then we have another formula which says that ndS is, sorry, I should have said 
it's always up to sign because we have a two orientation convention. 

We have to decide based on what we are trying to do, whether we are doing the 
correct convention or the wrong one. So, the other formula is n over n dot k dx dy. 
Sorry, are they all the same? Well, if you want, you can put an absolute value here. 
But, it doesn't matter because it's up to sign anyway. So, I mean, this formula is 
valid as it is. OK, and, I mean, if you're in a situation where you can apply more than 
one formula, they will all give you the same answer in the end because it's the same 
flux integral. OK, so anyway, so we have various ways of computing surface 
integrals, and probably one of the best possible things you can do to prepare for the 
test is actually to look again at some practice problems from the notes that do flux 
integrals over various kinds of surfaces because that's probably one of the hardest 
topics in this unit of the class. 

OK, anyway, let's move on to line integrals. So, those are actually a piece of cake in 
comparison, OK, because all that this is, is just integral of P dx Q dy R dz. And, then 
all you have to do is parameterize the curve, C, to express everything in terms of a 
single variable. And then, you end up with a usual single integral, and you can just 
compute it. So, that one works pretty much as it did in the plane. So, if you 
forgotten what we did in the plane, it's really the same thing. 

OK, so now we have three different kinds of integrals, and really, well, they certainly 
have in common that they integrate things somehow. But, apart from that, they are 
extremely different in what they do. I mean, this one involves a function, a scalar 
quantity. These involve vector quantities. They don't involve the same kinds of 
shapes over which to integrate. Here, you integrate over a three-dimensional region. 
Here, you integrate only over a two-dimensional surface, and here, only a one-
dimensional curve. So, try not to confuse them. That's basically the most important 



advice. Don't get mistaken. Each of them has a different way of getting evaluated. 
Eventually, they will all give you numbers, but through different processes. 

So now, well, I said these guys are completely different. Well, they are, but we still 
have some bridges between them. OK, so we have two, maybe I should say three, 
well, two bridges between these guys. OK, so we have somehow a connection 
between these which is the divergence theorem. We have a connection between 
that, which is Stokes theorem. So -- Just to write them again, so the divergence 
theorem says if I have a region in space, and I call its boundary S, so, it's going to 
be a closed surface, and I orient S with a normal vector pointing outwards, then 
whenever I have a surface integral over S, sorry, I can replace it by a triple integral 
over the region inside. 

OK, so this guy is a vector field. And, this guy is a function that somehow relates to 
the vector field. I mean, you should know how. You should know the definition of 
divergence, of course. But, what I want to point out is if you have to compute the 
two sides separately, well, this is just, you know, your standard flux integral. This is 
just your standard triple integral over a region in space. Once you have computed 
what this guy is, it's really just a triple integral of the function. 

So, the way in which you compute it doesn't see that it came from a divergence. It's 
just the same way that you would compute any other triple integral. The way we 
compute it doesn't depend on what actually we are integrating. Stokes theorem says 
if I have a curve that's the boundary of a surface, S, and I orient the two in 
compatible manners, then I can replace a line integral on C by a surface integral on 
S. 

OK, and that surface integral, well, it's not for the same vector field. This relates a 
line integral for one field to a surface integral from another field. That other field is 
given from the first one just by taking its curl So, after you take the curl, you obtain 
a different vector field. And, the way in which you would compute the surface 
integral is just as with any surface integral. You just find a formula for ndS dot 
product, substitute, evaluate. The calculation of this thing, once you've computed 
curl does not remember that it was a curl. It's the same as with any other flux 
integral. OK, and finally, the last bridge, so this was between two and three. This 
was between one and two. 

Let me just say, there's a bridge between zero and one, which is that if you have a 
function in its gradient, well, the fundamental theorem of calculus says that the line 
integral for the vector field given by the gradient of a function is actually equal to the 
change in value of a function. That's if you have a curve bounded by P0 and P1. So 
in a way, actually, each of these three theorems relates a quantity with a certain 
number of integral signs to a quantity with one more integral sign. 

And, that's actually somehow a fundamental similarity between them. But maybe it's 
easier to think of them as completely different stories. So now, with this one, we 
additionally have to remember another topic is given a vector field, F, with curl equal 
to zero, find the potential. And, we've seen two methods for that, and I'm sure you 
remember them. So, if not, then try to remember them for Tuesday. OK, so anyway, 
again, conceptually, we have, really, three different kinds of integrals. We evaluated 
them in completely different ways, and we have a handful of theorems, connecting 
them to each other. But, that doesn't have any impact on how we actually compute 
things. 



OK, have a nice weekend. Try to get some work for the test. Try to get some sleep 
as well, and see you on Tuesday. 


