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18.02 Multivariable Calculus, Fall 2007 
Transcript – Lecture 34 

Let's get started. So, I guess we are going to start reviewing for the final exam 
because we've run out of other topics. Well, not quite that maybe we've seen enough 
topics that probably we should stop at some point. So, as I already announced last 
time, the final exam will be on Tuesday, December 18 in the morning. So, please get 
your mornings. Start programming your alarm clock. If you have no idea where 
Johnson is, try to figure out. And, at this point, you should have the practice final 
which was handed out yesterday. 

If you still don't have it, then I have a few more copies. You can get some at the end 
of class today. And, presumably, that practice final will be the main topic of 
remaining recitations this coming Monday and Wednesday. And, there's also a review 
sheet with a brief recap of all the topics in problems in case you need to practice 
more of a specific topic. So, in terms of general format, again, because I've had lots 
of questions about that, so the final will basically look like the various our tests put 
together slightly shorter because it's three hours, not four, fortunately. So, it will 
come to a total of maybe somewhere between 15 and 18 problems, roughly four on 
each unit. 

And, in general, level of difficulty, style, and so on, they will be similar to what's 
been on the other tests. So, in particular, the list of topics is pretty much the same. 
But just in case you forgot, we're going to basically spend the last two lectures going 
over them. I'll try to write down the main formulas, things to know, and you should 
feel free to ask questions about them. So, how to study for the final: that's largely 
up to you. Different people have different styles. But, definitely at some point you 
should look at the various exams and practice exams we've seen so far. Oh, and also 
one other thing is if you happen to be one of the very few who have two finals at the 
same time on Tuesday morning, then there's a conflict final on Tuesday afternoon. 
But, you do not choose what you do. OK, so if you're in that situation, you should 
have already received an official notice. 

If not, then go to the math office as soon as possible to resolve the conflict. OK, so 
OK, before we start going into the list of topics, any questions about the general 
format, general procedures, anything like that? Yes? So, the test is going to be 
graded in the same way as before our tests were. There will be partial credit on each 
problem, but to variable extents depending on how valuable we think your partial 
answer is, and depending on who grades which problem. However, all the exams will 
be graded consistently because it's one grader for each problem. 

And, so, we'll be grading, basically, well, you finish at noon. We might have a quick 
lunch, and then we might start grading at 12:30. And, we'll be hard at work until, 
varies from year to year, maybe 11 pm, midnight, 1 am, something like that. And 
so, at some point late during that night, you'll start seeing your scores in the online 
system as well as your final grade. And, of course, you can also e-mail your 
recitation instructor for that. 



Yes? No, the passing grade for this class is not strictly 65 percent. It corresponds to 
65 percent on the tests and on the final, and a little bit more on the homework 
because most of you have probably realized on homework it's not too hard to get, 
actually, scores that are a bit higher than that. So, if you try to do calculations, I 
would try to advise you very strongly not to do any attempts at computing exactly 
how many points you need and trying to pass the class with the lowest possible 
score because that's not a very safe thing to do. 

So, roughly speaking, that's a good approximation. But if you try to end up with 
exactly 65 percent in total, I cannot promise anything. So the final score you'll see 
on the online system where you've been seeing all your grades will say, actually, 
something useful. It will say something like A, B, or C maybe with a plus or a minus. 
But that does not become part, indeed, of your official transcript. So, that grade kind 
of stays within the department. It does not go to the outside world for most of you. 
For those of you who are not freshmen, it's a different story. OK, yeah, and also if 
you happen to be having some, I hope everyone will be in good health and able to 
do things just fine, but if somehow there's a catastrophic event that happens, there's 
a procedure for, so, there's no makeup for the final. 

However, there's a procedure for dealing with people who have been around during 
the term and for some reason couldn't take the final and had a valid excuse. And, 
the valid excuse can be quite varied. One year there was a student who had a valid 
excuse that he was in jail on the day of the final. I hope that you don't try to do that 
one. I do not recommend that one. OK, oh yeah, and the other thing, sorry, so 
before, between now and the final, please check your score on the online system and 
make sure that your grades seem to be reasonably accounted for, that if you are 
excused from some assignment that says excused and so on, check your record. 
And, if there's anything weird, talk to your recitation instructor about it because it's 
much easier if we know beforehand, you know, it's really, really hard to modify your 
grade when it's been given. If a problem is one or two points, it doesn't matter 
because usually the cutoff between successive grades is like 100 points, but if you 
notice that half of your scores are missing, then it would be a good idea to let 
someone know. 

OK, so anyway, let's get started. So, the first unit of the class, so basically I'm going 
to go over the first half of the class today, and the second half of the class on 
Tuesday just because we have to start somewhere. So, the first things that we 
learned about in this class were vectors, and how to do dot-product of vectors. So, 
remember the formula that A dot B is the sum of ai times bi. And, geometrically, it's 
length A times length B times the cosine of the angle between them. And, in 
particular, we can use this to detect when two vectors are perpendicular. 

That's when their dot product is zero. And, we can use that to measure angles 
between vectors by solving for cosine in this. Hopefully, at this point, this looks a lot 
easier than it used to a few months ago. So, hopefully at this point, everyone has 
this kind of formula memorized and has some reasonable understanding of that. But, 
if you have any questions, now is the time. No? Good. Next we learned how to also 
do cross product of vectors in space -

-- and remember, we saw how to use that to find area of, say, a triangle or a 
parallelogram in space because the length of the cross product is equal to the area of 
a parallelogram formed by the vectors a and b. And, we can also use that to find a 



vector perpendicular to two given vectors, A and B. And so, in particular, that comes 
in handy when we are looking for the equation of a plane because we've seen -

So, the next topic would be equations of planes. And, we've seen that when you put 
the equation of a plane in the form ax by cz = d, well, <a, b, c> in there is actually 
the normal vector to the plane, or some normal vector to the plane. So, typically, we 
use cross product to find plane equations. OK, is that still reasonably familiar to 
everyone? Yes, very good. OK, we've also seen how to look at equations of lines, and 
those were of a slightly different nature because we've been doing them as 
parametric equations. So, typically we had equations of a form, maybe x equals 
some constant times t, y equals constant plus constant times t. 

z equals constant plus constant times t where these terms here correspond to some 
point on the line. And, these coefficients here correspond to a vector parallel to the 
line. That's the velocity of the moving point on the line. And, well, we've learned in 
particular how to find where a line intersects a plane by plugging in the parametric 
equation into the equation of a plane. We've learned more general things about 
parametric equations of curves. 

So, there are these infamous problems in particular where you have these rotating 
wheels and points on them, and you have to figure out, what's the position of a 
point? And, the general principle of those is that you want to decompose the position 
vector into a sum of simpler things. OK, so if you have a point on a wheel that's itself 
moving and something else, then you might want to first figure out the position of a 
center of a wheel than find the angle by which the wheel has turned, and then get to 
the position of a moving point by adding together simpler vectors. 

So, the general principle is really to try to find one parameter that will let us 
understand what has happened, and then decompose the motion into a sum of 
simpler effect. So, we want to decompose the position vector into a sum of simpler 
vectors. OK, so maybe now we are getting a bit out of some people's comfort zone, 
but hopefully it's not too bad. Do you have any general questions about how one 
would go about that, or, yes? 

Sorry? What about it? Parametric descriptions of a plane, so we haven't really done 
that because you would need two parameters to parameterize a plane just because 
it's a two dimensional object. So, we have mostly focused on the use of parametric 
equations just for one dimensional objects, lines, and curves. So, you won't need to 
know about parametric descriptions of planes on a final, but if you really wanted to, 
you would think of defining a point on a plane as starting from some given point. 
Then you have two vectors given on the plane. And then, you would add a multiple 
of each of these vectors to your starting point. But see, the difficulty is to convert 
from that to the usual equation of a plane, you would still have to go back to this 
cross product method, and so on. 

So, it is possible to represent a plane, or, in general, a surface in parametric form. 
But, very often, that's not so useful. Yes? How do you parametrize an ellipse in 
space? Well, that depends on how it's given to you. But, OK, let's just do an 
example. Say that I give you an ellipse in space as maybe the more, well, one 
exciting way to parameterize an ellipse in space is maybe the intersection of a 
cylinder with a slanted plane. 



That's the kind of situations where you might end up with an ellipse. OK, so if I tell 
you that maybe I'm intersecting a cylinder with equation x squared plus y squared 
equals a squared with a slanted plane to get, I messed up my picture, to get this 
ellipse of intersection, so, of course you'd need the equation of a plane. And, let's 
say that this plane is maybe given to you. Or, you can switch it to form where you 
can get z as a function of x and y. So, maybe it would be z equals, I've already used 
a; I need to use a new letter. Let's say c1x c2y plus d, whatever, something like 
that. So, what I would do is first I would look at what my ellipse does in the 
directions in which I understand it the best. 

And, those directions would be probably the xy plane. So, I would look at the xy 
coordinates. Well, if I look at it from above xy, my ellipse looks like just a circle of 
radius a. So, if I'm only concerned with x and y, presumably I can just do it the 
usual way for a circle. x equals a cosine t. y equals a sine t, OK? And then, z would 
end up being just, well, whatever the value of z is to be on the slanted plane above a 
given xy position. So, in fact, it would end up being ac1 cosine t plus ac2 sine t plus 
d, I guess. OK, that's not a particularly elegant parameterization, but that's the kind 
of thing you might end up with. Now, in general, when you have a curve in space, it 
would rarely be the case that you have to get a parameterization from scratch unless 
you are already being told information about how it looks in one of the coordinate 
planes, you know, this kind of method. 

Or, at least you'd have a lot of information that would quickly reduce to a plane 
problem somehow. Of course, I could also just give you some formulas and let you 
figure out what's going on. But, in general, we've done more stuff with plane curves. 
With plane curves, certainly there's interesting things with all sorts of mechanical 
gadgets that we can study. OK, any other questions on that? No? OK, so let me 
move on a bit and point out that with parametric equations, we've looked also at 
things like velocity and acceleration. 

So, the velocity vector is the derivative of a position vector with respect to time. 
And, it's not to be confused with speed, which is the magnitude of v. So, the velocity 
vector is going to be always tangent to the curve. And, its length will be the speed. 
That's the geometric interpretation. So, just to provoke you, I'm going to write, 
again, that formula that was that v equals T hat ds dt. What do I mean by that? 

If I have a curve, and I'm moving on the curve, well, I have the unit tangent vector 
which I think at the time I used to draw in blue. But, blue has been abolished since 
then. So, I'm going to draw it in red. OK, so that's a unit vector that goes along the 
curve, and then the actual velocity is going to be proportional to that. And, what's 
the length? Well, it's the speed. And, the speed is how much arc length on the curve 
I go per unit time, which is why I'm writing ds dt. That's another guy. That's another 
of these guys for the speed, OK? And, we've also learned about acceleration, which 
is the derivative of velocity. 

So, it's the second derivative of a position vector. And, as an example of the kinds of 
manipulations we can do, in class we've seen Kepler's second law, which explains 
how if the acceleration is parallel to the position vector, then r cross v is going to be 
constant, which means that the motion will be in an plane, and you will sweep area 
at a constant rate. So now, that is not in itself a topic for the exam, but the kinds of 
methods of differentiating vector quantities, applying the product rule to take the 
derivative of a dot or cross product and so on are definitely fair game. I mean, we've 
seen those on the first exam. They were there, and most likely they will be on the 



final. OK, so I mean that's the extent to which Kepler's law comes up, only just 
knowing the general type of manipulations and proving things with vector quantities, 
but not again the actual Kepler's law itself. 

I skipped something. I skipped matrices, determinants, and linear systems. OK, so 
we've seen how to multiply matrices, and how to write linear systems in matrix form. 
So, remember, if you have a 3x3 linear system in the usual sense, so, you can write 
this in a matrix form where you have a 3x3 matrix and you have an unknown column 
vector. And, their matrix product should be some given column vector. OK, so if you 
don't remember how to multiply matrices, please look at the notes on that again. 
And, also you should remember how to invert a matrix. So, how did we invert 
matrices? 

Let me just remind you very quickly. So, I should say 2x2 or 3x3 matrices. Well, you 
need to have a square matrix to be able to find an inverse. The method doesn't 
work, doesn't make sense. Otherwise, then the concept of inverse doesn't work. And, 
if it's larger than 3x3, then we haven't seen that. So, let's say that I have a 3x3 
matrix. What I will do is I will start by forming the matrix of minors. So, remember 
that minors, so, each entry is a 2x2 determinant in the case of a 3x3 matrix formed 
by deleting one row and one column. 

OK, so for example, to get the first minor, especially in the upper left corner, I would 
delete the first row, the first column. And, I would be left with this 2x2 determinant. 
I take this times that minus this times that. I get a number that gives my first minor. 
And then, same with the others. Then, I flip signs according to this checkerboard 
pattern, and that gives me the matrix of cofactors. OK, so all it means is I'm just 
changing the signs of these four entries and leaving the others alone. And then, I 
take the transpose of that. So, that means I read it horizontally and write it down 
vertically. 

I swept the rows and the columns. And then, I divide by the inverse. Well, I divide 
by the determinant of the initial matrix. OK, so, of course, this is kind of very 
theoretical, and I write it like this. Probably it makes more sense to do it on an 
example. I will let you work out examples, or bug your recitation instructors so that 
they do one on Monday if you want to see that. It's a fairly straightforward method. 
You just have to remember the steps. But, of course, there's one condition, which is 
that the determinant of a matrix has to be nonzero. So, in fact, we've seen that, oh, 
there is still one board left. We've seen that a matrix is invertible -

-- exactly when its determinant is not zero. And, if that's the case, then we can solve 
the linear system, AX equals B by just setting X equals A inverse B. That's going to 
be the only solution to our linear system. Otherwise, well, AX equals B has either no 
solution, or infinitely many solutions. Yes? The determinant of a matrix real quick? 
Well, I can do it that quickly unless I start waving my hands very quickly, but 
remember we've seen that you have a matrix, a 3x3 matrix. Its determinant will be 
obtained by doing an expansion with respect to, well, your favorite. But usually, we 
are doing it with respect to the first row. 

So, we take this entry and multiply it by that determinant. Then, we take that entry, 
multiply it by that determinant but put a minus sign. And then, we take that entry 
and multiply it by this determinant here, and we put a plus sign for that. OK, so 
maybe I should write it down. That's actually the same formula that we are using for 
cross products. Right, when we do cross products, we are doing an expansion with 



respect to the first row. That's a special case. OK, I mean, do you still want to see it 
in more details, or is that OK? Yes? 

That's correct. So, if you do an expansion with respect to any row or column, then 
you would use the same signs that are in this checkerboard pattern there. So, if you 
did an expansion, actually, so indeed, maybe I should say, the more general way to 
determine it is you take your favorite row or column, and you just multiply the 
corresponding entries by the corresponding cofactors. So, the signs are plus or 
minus depending on what's in that diagram there. Now, in practice, in this class, 
again, all we need is to do it with respect to the first row. So, don't worry about it 
too much. 

OK, so, again, the way that we've officially seen it in this class is just if you have a1, 
a2, a3, b1, b2, b3, c1, c2, c3, so if the determinant is a1 times b2 b3, c2 c3, minus 
a2 b1 b3 c1 c3 plus a3 b1 b2 c1 c2. And, this minus is here basically because of the 
minus in the diagram up there. But, that's all we need to know. Yes? How do you tell 
the difference between infinitely many solutions or no solutions? That's a very good 
question. So, in full generality, the answer is we haven't quite seen a systematic 
method. So, you just have to try solving and see if you can find a solution or not. So, 
let me actually explain that more carefully. 

So, what happens to these two situations when a is invertible or not? So, remember, 
in the linear system, you can think of a linear system as asking you to find the 
intersection between three planes because each equation is the equation of a plane. 
So, Ax = B for a 3x3 system means that x should be in the intersection of three 
planes. And then, we have two cases. So, the case where the system is invertible 
corresponds to the general situation where your three planes somehow all just 
intersect in one point. And then, the situation where the determinant, that's when 
the determinant is not zero, you get just one point. 

However, sometimes it will happen that all the planes are parallel to the same 
direction. So, determinant a equals zero means the three planes are parallel to a 
same vector. And, in fact, you can find that vector explicitly because that vector has 
to be perpendicular to all the normals. So, at some point we saw other subtle things 
about how to find the direction of this line that's parallel to all the planes. So, now, 
this can happen either with all three planes containing the same line. You know, they 
can all pass through the same axis. Or it could be that they have somehow shifted 
with respect to each other. And so, it might look like this. 

Then, the last one is actually in front of that. So, see, the lines of intersections 
between two of the planes, so, here they all pass through the same line, and here, 
instead, they intersect in one line here, one line here, and one line there. And, 
there's no triple intersection. So, in general, we haven't really seen how to decide 
between these two cases. There's one important situation where we have seen we 
must be in the first case that when we have a homogeneous system, so that means 
if the right hand side is zero, then, well, x equals zero is always a solution. 

It's called the trivial solution. It's the obvious one, if you want. So, you know that, 
and why is that? Well, that's because all of your planes have to pass through the 
origin. So, you must be in this case if you have a noninvertible system where the 
right hand side is zero. So, in that case, if the right hand side is zero, there's two 
cases. Either the matrix is invertible. Then, the only solution is the trivial one. 



Or, if a matrix is not invertible, then you have infinitely many solutions. If B is not 
zero, then we haven't really seen how to decide. We've just seen how to decide 
between one solution or zero,infinitely many, but not how to decide between these 
last two cases. Yes? I think in principle, you would be able to, but that's, well, I 
mean, that's a slightly counterintuitive way of doing it. I think it would probably 
work. Well, I'll let you figure it out. OK, let me move on to the second unit, maybe, 
because we've seen a lot of stuff, or was there a quick question before that? No? OK. 

OK, so what was the second part of the class about? Well, hopefully you kind of 
vaguely remember that it was about functions of several variables and their partial 
derivatives. OK, so the first thing that we've seen is how to actually view a function 
of two variables in terms of its graph and its contour plot. So, just to remind you 
very quickly, if I have a function of two variables, x and y, then the graph will be just 
the surface given by the equation z equals f of xy. So, for each x and y, I plot a point 
at height given with the value of the a function. 

And then, the contour plot will be the topographical map for this graph. It will tell us, 
what are the various levels in there? So, what it amounts to is we slice the graph by 
horizontal planes, and we get a bunch of curves which are the points at given height 
on the plot. And, so we get all of these curves, and then we look at them from 
above, and that gives us this map with a bunch of curves on it. And, each of them 
has a number next to it which tells us the value of a function there. 

And, from that map, we can, of course, tell things about where we might be able to 
find minima or maxima of our function, and how it varies with respect to x or y or 
actually in any direction at a given point. So, now, the next thing that we've learned 
about is partial derivatives. So, for a function of two variables, there would be two of 
them. There's f sub x which is partial f partial x, and f sub y which is partial f partial 
y. And, in terms of a graph, they correspond to slicing by a plane that's parallel to 
one of the coordinate planes, so that we either keep x constant, or keep y constant. 
And, we look at the slope of a graph to see the rate of change of f with respect to 
one variable only when we hold the other one constant. 

And so, we've seen in particular how to use that in various places, but, for example, 
for linear approximation we've seen that the change in f is approximately equal to f 
sub x times the change in x plus f sub y times the change in y. So, you can think of f 
sub x and f sub y as telling you how sensitive the value of f is to changes in x and y. 
So, this linear approximation also tells us about the tangent plane to the graph of f. 
In fact, when we turn this into an equality, that would mean that we replace f by the 
tangent plane. 

We've also learned various ways of, before I go on, I should say, of course, we've 
seen these also for functions of three variables, right? So, we haven't seen how to 
plot them, and we don't really worry about that too much. But, if you have a function 
of three variables, you can do the same kinds of manipulations. So, we've learned 
about differentials and chain rules, which are a way of repackaging these partial 
derivatives. So, the differential is just, by definition, this thing called df which is f sub 
x times dx plus f sub y times dy. And, what we can do with it is just either plug 
values for changes in x and y, and get approximation formulas, or we can look at 
this in a situation where x and y will depend on something else, and we get a chain 
rule. 



So, for example, if f is a function of t time, for example, and so is y, then we can find 
the rate of change of f with respect to t just by dividing this by dt. So, we get df dt 
equals f sub x dx dt plus f sub y dy dt. We can also get other chain rules, say, if x 
and y depend on more than one variable, if you have a change of variables, for 
example, x and y are functions of two other guys that you call u and v, then you can 
express dx and dy in terms of du and dv, and plugging into df you will get the 
manner in which f depends on u and v. So, that will give you formulas for partial f 
partial u, and partial f partial v. 

They look just like these guys except there's a lot of curly d's instead of straight 
ones, and u's and v's in the denominators. OK, so that lets us understand rates of 
change. We've also seen yet another way to package partial derivatives into not a 
differential, but instead, a vector. That's the gradient vector, and I'm sure it was 
quite mysterious when we first saw it, but hopefully by now, well, it should be less 
mysterious. 

OK, so we've learned about the gradient vector which is del f is a vector whose 
components are just the partial derivatives. So, if I have a function of just two 
variables, then it's just this. And, so one observation that we've made is that if you 
look at a contour plot of your function, so maybe your function is zero, one, and two, 
then the gradient vector is always perpendicular to the contour plot, and always 
points towards higher ground. 

OK, so the reason for that was that if you take any direction, you can measure the 
directional derivative, which means the rate of change of f in that direction. So, 
given a unit vector, u, which represents some direction, so for example let's say I 
decide that I want to go in this direction, and I ask myself, how quickly will f change 
if I start from here and I start moving towards that direction? 

Well, the answer seems to be, it will start to increase a bit, and maybe at some point 
later on something else will happen. But at first, it will increase. So, the directional 
derivative is what we've called f by ds in the direction of this unit vector, and 
basically the only thing we know to be able to compute it, the only thing we need is 
that it's the dot product between the gradient and this vector u hat. In particular, the 
directional derivatives in the direction of I hat or j hat are just the usual partial 
derivatives. That's what you would expect. OK, and so now you see in particular if 
you try to go in a direction that's perpendicular to the gradient, then the directional 
derivative will be zero because you are moving on the level curve. 

So, the value doesn't change, OK? Questions about that? Yes? Yeah, so let's see, so 
indeed to look at more recent things, if you are taking the flux through something 
given by an equation, so, if you have a surface given by an equation, say, f equals 
one. So, say that you have a surface here or a curve given by an equation, f equals 
constant, then the normal vector to the surface is given by taking the gradient of f. 

And that is, in general, not a unit normal vector. Now, if you wanted the unit normal 
vector to compute flux, then you would just scale this guy down to unit length, OK? 
So, if you wanted a unit normal, that would be the gradient divided by its length. 
However, for flux, that's still of limited usefulness because you would still need to 
know about ds. But, remember, we've seen a formula for flux in terms of a non-unit 
normal vector, and n over n dot kdxdy. 



So, indeed, this is how you could actually handle calculations of flux through pretty 
much anything. Any other questions about that? OK, so let me continue with a 
couple more things we need to, so, we've seen how to do min/max problems, in 
particular, by looking at critical points. So, critical points, remember, are the points 
where all the partial derivatives are zero. So, if you prefer, that's where the gradient 
vector is zero. 

And, we know how to decide using the second derivative test whether a critical point 
is going to be a local min, a local max, or a saddle point. Actually, we can't always 
quite decide because, remember, we look at the second partials, and we compute 
this quantity ac minus b squared. And, if it happens to be zero, then actually we 
can't conclude. But, most of the time we can conclude. However, that's not all we 
need to look for an absolute global maximum or minimum. 

For that, we also need to check the boundary points, or look at the behavior of a 
function, at infinity. So, we also need to check the values of f at the boundary of its 
domain of definition or at infinity. Just to give you an example from single variable 
calculus, if you are trying to find the minimum and the maximum of f of x equals x 
squared, well, you'll find quickly that the minimum is at zero where x squared is 
zero. If you are looking for the maximum, you better not just look at the derivative 
because you won't find it that way. However, if you think for a second, you'll see that 
if x becomes very large, then the function increases to infinity. And, similarly, if you 
try to find the minimum and the maximum of x squared when x varies only between 
one and two, well, you won't find the critical point, but you'll still find that the 
smallest value of x squared is when x is at one, and the largest is at x equals two. 

And, all this business about boundaries and infinity is exactly the same stuff, but 
with more than one variable. It's just the story that maybe the minimum and the 
maximum are not quite visible, but they are at the edges of a domain we are looking 
at. Well, in the last three minutes, I will just write down a couple more things we've 
seen there. So, how to do max/min problems with non-independent variables -

So, if your variables are related by some condition, g equals some constant. So, then 
we've seen the method of Lagrange multipliers. OK, and what this method says is 
that we should solve the equation gradient f equals some unknown scalar lambda 
times the gradient, g. So, that means each partial, f sub x equals lambda g sub x 
and so on, and of course we have to keep in mind the constraint equation so that we 
have the same number of equations as the number of unknowns because you have a 
new unknown here. 

And, the thing to remember is that you have to be careful that the second derivative 
test does not apply in this situation. I mean, this is only in the case of independent 
variables. So, if you want to know if something is a maximum or a minimum, you 
just have to use common sense or compare the values of a function at the various 
points you found. Yes? Will we actually have to calculate? Well, that depends on 
what the problem asks you. It might ask you to just set up the equations, or it might 
ask you to solve them. So, in general, solving might be difficult, but if it asks you to 
do it, then it means it shouldn't be too hard. 

I haven't written the final yet, so I don't know what it will be, but it might be an easy 
one. And, the last thing we've seen is constrained partial derivatives. So, for 
example, if you have a relation between x, y, and z, which are constrained to be a 
constant, then the notion of partial f partial x takes several meanings. So, just to 



remind you very quickly, there's the formal partial, partial f, partial x, which means x 
varies. Y and z are held constant. And, we forget the constraint. 

This is not compatible with a constraint, but we don't care. So, that's the guy that we 
compute just from the formula for f ignoring the constraints. And then, we have the 
partial f, partial x with y held constant, which means y held constant. X varies, and 
now we treat z as a dependent variable. It varies with x and y according to whatever 
is needed so that this constraint keeps holding. And, similarly, there's partial f partial 
x with z held constant, which means that, now, y is the dependent variable. 

And, the way in which we compute these, we've seen two methods which I'm not 
going to tell you now because otherwise we'll be even more over time. But, we've 
seen two methods for computing these based on either the chain rule or on 
differentials, solving and substituting into differentials. 


