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Introduction

0.1 About this book
This first volume is a one semester course in basic analysis. Together with the second volume it is a
year-long course. It started its life as my lecture notes for teaching Math 444 at the University of
Illinois at Urbana-Champaign (UIUC) in Fall semester 2009. Later I added the metric space chapter
to teach Math 521 at University of Wisconsin–Madison (UW). Volume II was added to teach Math
4143/4153 at Oklahoma State University (OSU). A prerequisite for these courses is usually a basic
proof course, using for example [ H ], [ F ], or [ DW ].

It should be possible to use the book for both a basic course for students who do not necessarily
wish to go to graduate school (such as UIUC 444), but also as a more advanced one-semester course
that also covers topics such as metric spaces (such as UW 521). Here are my suggestions for what
to cover in a semester course. For a slower course such as UIUC 444:

§0.3, §1.1–§1.4, §2.1–§2.5, §3.1–§3.4, §4.1–§4.2, §5.1–§5.3, §6.1–§6.3

For a more rigorous course covering metric spaces that runs quite a bit faster (such as UW 521):

§0.3, §1.1–§1.4, §2.1–§2.5, §3.1–§3.4, §4.1–§4.2, §5.1–§5.3, §6.1–§6.2, §7.1–§7.6

It should also be possible to run a faster course without metric spaces covering all sections of
chapters 0 through 6. The approximate number of lectures given in the section notes through chapter
6 are a very rough estimate and were designed for the slower course. The first few chapters of the
book can be used in an introductory proofs course as is done, for example, at Iowa State University
Math 201, where this book is used in conjunction with Hammack’s Book of Proof [ H ].

With volume II one can run a year-long course that also covers multivariable topics. It may
make sense in this case to cover most of the first volume in the first semester while leaving metric
spaces for the beginning of the second semester.

The book normally used for the class at UIUC is Bartle and Sherbert, Introduction to Real
Analysis third edition [ BS ]. The structure of the beginning of the book somewhat follows the
standard syllabus of UIUC Math 444 and therefore has some similarities with [  BS ]. A major
difference is that we define the Riemann integral using Darboux sums and not tagged partitions.
The Darboux approach is far more appropriate for a course of this level.

Our approach allows us to fit a course such as UIUC 444 within a semester and still spend some
time on the interchange of limits and end with Picard’s theorem on the existence and uniqueness of
solutions of ordinary differential equations. This theorem is a wonderful example that uses many
results proved in the book. For more advanced students, material may be covered faster so that we
arrive at metric spaces and prove Picard’s theorem using the fixed point theorem as is usual.
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6 INTRODUCTION

Other excellent books exist. My favorite is Rudin’s excellent Principles of Mathematical
Analysis [ R2 ] or, as it is commonly and lovingly called, baby Rudin (to distinguish it from his other
great analysis textbook, big Rudin). I took a lot of inspiration and ideas from Rudin. However,
Rudin is a bit more advanced and ambitious than this present course. For those that wish to continue
mathematics, Rudin is a fine investment. An inexpensive and somewhat simpler alternative to Rudin
is Rosenlicht’s Introduction to Analysis [ R1 ]. There is also the freely downloadable Introduction to
Real Analysis by William Trench [ T ].

A note about the style of some of the proofs: Many proofs traditionally done by contradiction,
I prefer to do by a direct proof or by contrapositive. While the book does include proofs by
contradiction, I only do so when the contrapositive statement seemed too awkward, or when
contradiction follows rather quickly. In my opinion, contradiction is more likely to get beginning
students into trouble, as we are talking about objects that do not exist.

I try to avoid unnecessary formalism where it is unhelpful. Furthermore, the proofs and the
language get slightly less formal as we progress through the book, as more and more details are left
out to avoid clutter.

As a general rule, I use := instead of = to define an object rather than to simply show equality.
I use this symbol rather more liberally than is usual for emphasis. I use it even when the context is
“local,” that is, I may simply define a function f (x) := x2 for a single exercise or example.

Finally, I would like to acknowledge Jana Maříková, Glen Pugh, Paul Vojta, Frank Beatrous,
Sönmez Şahutoğlu, Jim Brandt, Kenji Kozai, Arthur Busch, Anton Petrunin, Mark Meilstrup,
Harold P. Boas, Atilla Yılmaz, Thomas Mahoney, Scott Armstrong, and Paul Sacks, Matthias Weber,
Manuele Santoprete, Robert Niemeyer, Amanullah Nabavi, for teaching with the book and giving me
lots of useful feedback. Frank Beatrous wrote the University of Pittsburgh version extensions, which
served as inspiration for many more recent additions. I would also like to thank Dan Stoneham,
Jeremy Sutter, Eliya Gwetta, Daniel Pimentel-Alarcón, Steve Hoerning, Yi Zhang, Nicole Caviris,
Kristopher Lee, Baoyue Bi, Hannah Lund, Trevor Mannella, Mitchel Meyer, Gregory Beauregard,
Chase Meadors, Andreas Giannopoulos, Nick Nelsen, Ru Wang, Trevor Fancher, Brandon Tague,
an anonymous reader or two, and in general all the students in my classes for suggestions and
finding errors and typos.
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0.2. ABOUT ANALYSIS 7

0.2 About analysis
Analysis is the branch of mathematics that deals with inequalities and limits. The present course
deals with the most basic concepts in analysis. The goal of the course is to acquaint the reader with
rigorous proofs in analysis and also to set a firm foundation for calculus of one variable (and several
variables if volume II is also considered).

Calculus has prepared you, the student, for using mathematics without telling you why what
you learned is true. To use, or teach, mathematics effectively, you cannot simply know what is true,
you must know why it is true. This course shows you why calculus is true. It is here to give you a
good understanding of the concept of a limit, the derivative, and the integral.

Let us use an analogy. An auto mechanic that has learned to change the oil, fix broken
headlights, and charge the battery, will only be able to do those simple tasks. He will be unable to
work independently to diagnose and fix problems. A high school teacher that does not understand
the definition of the Riemann integral or the derivative may not be able to properly answer all the
students’ questions. To this day I remember several nonsensical statements I heard from my calculus
teacher in high school, who simply did not understand the concept of the limit, though he could “do”
the problems in the textbook.

We start with a discussion of the real number system, most importantly its completeness property,
which is the basis for all that comes after. We then discuss the simplest form of a limit, the limit of
a sequence. Afterwards, we study functions of one variable, continuity, and the derivative. Next, we
define the Riemann integral and prove the fundamental theorem of calculus. We discuss sequences
of functions and the interchange of limits. Finally, we give an introduction to metric spaces.

Let us give the most important difference between analysis and algebra. In algebra, we prove
equalities directly; we prove that an object, a number perhaps, is equal to another object. In analysis,
we usually prove inequalities, and we prove those inequalities by estimating. To illustrate the point,
consider the following statement.

Let x be a real number. If x < ε is true for all real numbers ε > 0, then x≤ 0.

This statement is the general idea of what we do in analysis. Suppose next we really wish to
prove the equality x = 0. In analysis, we prove two inequalities: x ≤ 0 and x ≥ 0. To prove the
inequality x≤ 0, we prove x < ε for all positive ε . To prove the inequality x≥ 0, we prove x >−ε

for all positive ε .

The term real analysis is a little bit of a misnomer. I prefer to use simply analysis. The other
type of analysis, complex analysis, really builds up on the present material, rather than being distinct.
Furthermore, a more advanced course on real analysis would talk about complex numbers often. I
suspect the nomenclature is historical baggage.

Let us get on with the show. . .

7



8 INTRODUCTION

0.3 Basic set theory
Note: 1–3 lectures (some material can be skipped, covered lightly, or left as reading)

Before we start talking about analysis, we need to fix some language. Modern  

*
 analysis uses the

language of sets, and therefore that is where we start. We talk about sets in a rather informal way,
using the so-called “naïve set theory.” Do not worry, that is what majority of mathematicians use,
and it is hard to get into trouble. The reader has hopefully seen the very basics of set theory and
proof writing before, and this section should be a quick refresher.

0.3.1 Sets

Definition 0.3.1. A set is a collection of objects called elements or members. A set with no objects
is called the empty set and is denoted by /0 (or sometimes by {}).

Think of a set as a club with a certain membership. For example, the students who play chess
are members of the chess club. However, do not take the analogy too far. A set is only defined by
the members that form the set; two sets that have the same members are the same set.

Most of the time we will consider sets of numbers. For example, the set

S := {0,1,2}

is the set containing the three elements 0, 1, and 2. By “:=”, we mean we are defining what S is,
rather than just showing equality. We write

1 ∈ S

to denote that the number 1 belongs to the set S. That is, 1 is a member of S. At times we want to
say that two elements are in a set S, so we write “1,2 ∈ S” as a shorthand for “1 ∈ S and 2 ∈ S.”

Similarly, we write
7 /∈ S

to denote that the number 7 is not in S. That is, 7 is not a member of S.
The elements of all sets under consideration come from some set we call the universe. For

simplicity, we often consider the universe to be the set that contains only the elements we are
interested in. The universe is generally understood from context and is not explicitly mentioned. In
this course, our universe will most often be the set of real numbers.

While the elements of a set are often numbers, other objects, such as other sets, can be elements
of a set. A set may also contain some of the same elements as another set. For example,

T := {0,2}

contains the numbers 0 and 2. In this case all elements of T also belong to S. We write T ⊂ S. See
 Figure 1 for a diagram.

*The term “modern” refers to late 19th century up to the present.
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0.3. BASIC SET THEORY 9

T

S
0

2
1 7

Figure 1: A diagram of the example sets S and its subset T .

Definition 0.3.2.
(i) A set A is a subset of a set B if x ∈ A implies x ∈ B, and we write A⊂ B. That is, all members

of A are also members of B. At times we write B⊃ A to mean the same thing.

(ii) Two sets A and B are equal if A⊂ B and B⊂ A. We write A = B. That is, A and B contain
exactly the same elements. If it is not true that A and B are equal, then we write A 6= B.

(iii) A set A is a proper subset of B if A⊂ B and A 6= B. We write A ( B.

For S and T defined above T ⊂ S, but T 6= S. So T is a proper subset of S. If A = B, then A and
B are simply two names for the same exact set.

To define sets, one often uses the set building notation,{
x ∈ A : P(x)

}
.

This notation refers to a subset of the set A containing all elements of A that satisfy the property
P(x). Using S = {0,1,2} as above, {x ∈ S : x 6= 2} is the set {0,1}. The notation is sometimes
abbreviated as

{
x : P(x)

}
, that is, A is not mentioned when understood from context. Furthermore,

x ∈ A is sometimes replaced with a formula to make the notation easier to read.

Example 0.3.3: The following are sets including the standard notations.

(i) The set of natural numbers, N := {1,2,3, . . .}.
(ii) The set of integers, Z := {0,−1,1,−2,2, . . .}.

(iii) The set of rational numbers, Q :=
{m

n : m,n ∈ Z and n 6= 0
}

.

(iv) The set of even natural numbers, {2m : m ∈ N}.
(v) The set of real numbers, R.

Note that N⊂ Z⊂Q⊂ R.

We create new sets out of old ones by applying some natural operations.

Definition 0.3.4.
(i) A union of two sets A and B is defined as

A∪B := {x : x ∈ A or x ∈ B}.

(ii) An intersection of two sets A and B is defined as

A∩B := {x : x ∈ A and x ∈ B}.

9



10 INTRODUCTION

(iii) A complement of B relative to A (or set-theoretic difference of A and B) is defined as

A\B := {x : x ∈ A and x /∈ B}.

(iv) We say complement of B and write Bc instead of A\B if the set A is either the entire universe
or is the obvious set containing B, and is understood from context.

(v) We say sets A and B are disjoint if A∩B = /0.

The notation Bc may be a little vague at this point. If the set B is a subset of the real numbers R,
then Bc means R\B. If B is naturally a subset of the natural numbers, then Bc is N\B. If ambiguity
can arise, we use the set difference notation A\B.

A∪B

A\B Bc

A∩B

B

A B BA

BA

Figure 2: Venn diagrams of set operations, the result of the operation is shaded.

We illustrate the operations on the Venn diagrams in  Figure 2 . Let us now establish one of most
basic theorems about sets and logic.

Theorem 0.3.5 (DeMorgan). Let A,B,C be sets. Then

(B∪C)c = Bc∩Cc,

(B∩C)c = Bc∪Cc,

or, more generally,

A\ (B∪C) = (A\B)∩ (A\C),

A\ (B∩C) = (A\B)∪ (A\C).

10



0.3. BASIC SET THEORY 11

Proof. The first statement is proved by the second statement if we assume the set A is our “universe.”
Let us prove A\ (B∪C) = (A\B)∩ (A\C). Remember the definition of equality of sets. First,

we must show that if x ∈ A\ (B∪C), then x ∈ (A\B)∩ (A\C). Second, we must also show that if
x ∈ (A\B)∩ (A\C), then x ∈ A\ (B∪C).

So let us assume x ∈ A\ (B∪C). Then x is in A, but not in B nor C. Hence x is in A and not in
B, that is, x ∈ A\B. Similarly x ∈ A\C. Thus x ∈ (A\B)∩ (A\C).

On the other hand suppose x ∈ (A\B)∩ (A\C). In particular, x ∈ (A\B), so x ∈ A and x /∈ B.
Also as x ∈ (A\C), then x /∈C. Hence x ∈ A\ (B∪C).

The proof of the other equality is left as an exercise.

The result above we called a Theorem, while most results we call a Proposition, and a few we
call a Lemma (a result leading to another result) or Corollary (a quick consequence of the preceding
result). Do not read too much into the naming. Some of it is traditional, some of it is stylistic choice.
It is not necessarily true that a Theorem is always “more important” than a Proposition or a Lemma.

We will also need to intersect or union several sets at once. If there are only finitely many, then
we simply apply the union or intersection operation several times. However, suppose we have an
infinite collection of sets (a set of sets) {A1,A2,A3, . . .}. We define

∞⋃
n=1

An := {x : x ∈ An for some n ∈ N},

∞⋂
n=1

An := {x : x ∈ An for all n ∈ N}.

We can also have sets indexed by two integers. For example, we can have the set of sets
{A1,1,A1,2,A2,1,A1,3,A2,2,A3,1, . . .}. Then we write

∞⋃
n=1

∞⋃
m=1

An,m =
∞⋃

n=1

(
∞⋃

m=1

An,m

)
.

And similarly with intersections.
It is not hard to see that we can take the unions in any order. However, switching the order of

unions and intersections is not generally permitted without proof. For instance,

∞⋃
n=1

∞⋂
m=1

{k ∈ N : mk < n}=
∞⋃

n=1

/0 = /0.

However,
∞⋂

m=1

∞⋃
n=1

{k ∈ N : mk < n}=
∞⋂

m=1

N= N.

Sometimes, the index set is not the natural numbers. In such a case we require a more general
notation. Suppose I is some set and for each λ ∈ I, there is a set Aλ . Then we define⋃

λ∈I

Aλ := {x : x ∈ Aλ for some λ ∈ I},
⋂
λ∈I

Aλ := {x : x ∈ Aλ for all λ ∈ I}.

11



12 INTRODUCTION

0.3.2 Induction
When a statement includes an arbitrary natural number, a common method of proof is the principle
of induction. We start with the set of natural numbers N = {1,2,3, . . .}, and we give them their
natural ordering, that is, 1 < 2 < 3 < 4 < · · · . By S⊂ N having a least element, we mean that there
exists an x ∈ S, such that for every y ∈ S, we have x≤ y.

The natural numbers N ordered in the natural way possess the so-called well ordering property.
We take this property as an axiom; we simply assume it is true.

Well ordering property of N. Every nonempty subset of N has a least (smallest) element.

The principle of induction is the following theorem, which is in a sense  

*
 equivalent to the well

ordering property of the natural numbers.

Theorem 0.3.6 (Principle of induction). Let P(n) be a statement depending on a natural number n.
Suppose that

(i) (basis statement) P(1) is true,

(ii) (induction step) if P(n) is true, then P(n+1) is true.

Then P(n) is true for all n ∈ N.

Proof. Suppose S is the set of natural numbers m for which P(m) is not true. Suppose S is nonempty.
Then S has a least element by the well ordering property. Let us call m the least element of S.
We know 1 /∈ S by assumption. So m > 1 and m− 1 is a natural number as well. Since m is
the least element of S, we know that P(m− 1) is true. But by the induction step we see that
P(m−1+1) = P(m) is true, contradicting the statement that m ∈ S. Therefore, S is empty and P(n)
is true for all n ∈ N.

Sometimes it is convenient to start at a different number than 1, all that changes is the labeling.
The assumption that P(n) is true in “if P(n) is true, then P(n+ 1) is true” is usually called the
induction hypothesis.

Example 0.3.7: Let us prove that for all n ∈ N,

2n−1 ≤ n! (recall n! = 1 ·2 ·3 · · ·n).

We let P(n) be the statement that 2n−1 ≤ n! is true. By plugging in n = 1, we see that P(1) is true.
Suppose P(n) is true. That is, suppose 2n−1 ≤ n! holds. Multiply both sides by 2 to obtain

2n ≤ 2(n!).

As 2≤ (n+1) when n ∈ N, we have 2(n!)≤ (n+1)(n!) = (n+1)!. That is,

2n ≤ 2(n!)≤ (n+1)!,

and hence P(n+1) is true. By the principle of induction, P(n) is true for all n, and hence 2n−1 ≤ n!
is true for all n ∈ N.

*To be completely rigorous, this equivalence is only true if we also assume as an axiom that n−1 exists for all
natural numbers bigger than 1, which we do. In this book, we are assuming all the usual arithmetic holds.
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0.3. BASIC SET THEORY 13

Example 0.3.8: We claim that for all c 6= 1,

1+ c+ c2 + · · ·+ cn =
1− cn+1

1− c
.

Proof: It is easy to check that the equation holds with n = 1. Suppose it is true for n. Then

1+ c+ c2 + · · ·+ cn + cn+1 = (1+ c+ c2 + · · ·+ cn)+ cn+1

=
1− cn+1

1− c
+ cn+1

=
1− cn+1 +(1− c)cn+1

1− c

=
1− cn+2

1− c
.

Sometimes, it is easier to use in the inductive step that P(k) is true for all k = 1,2, . . . ,n, not just
for k = n. This principle is called strong induction and is equivalent to the normal induction above.
The proof of that equivalence is left as an exercise.

Theorem 0.3.9 (Principle of strong induction). Let P(n) be a statement depending on a natural
number n. Suppose that

(i) (basis statement) P(1) is true,

(ii) (induction step) if P(k) is true for all k = 1,2, . . . ,n, then P(n+1) is true.

Then P(n) is true for all n ∈ N.

0.3.3 Functions
Informally, a set-theoretic function f taking a set A to a set B is a mapping that to each x ∈ A
assigns a unique y ∈ B. We write f : A→ B. An example function f : S→ T taking S := {0,1,2}
to T := {0,2} can be defined by assigning f (0) := 2, f (1) := 2, and f (2) := 0. That is, a function
f : A→ B is a black box, into which we stick an element of A and the function spits out an element
of B. Sometimes f is called a mapping or a map, and we say f maps A to B.

Often, functions are defined by some sort of formula, however, you should really think of a
function as just a very big table of values. The subtle issue here is that a single function can have
several formulas, all giving the same function. Also, for many functions, there is no formula that
expresses its values.

To define a function rigorously, first let us define the Cartesian product.

Definition 0.3.10. Let A and B be sets. The Cartesian product is the set of tuples defined as

A×B :=
{
(x,y) : x ∈ A,y ∈ B

}
.

For instance, the set [0,1]× [0,1] is a set in the plane bounded by a square with vertices (0,0),
(0,1), (1,0), and (1,1). When A and B are the same set we sometimes use a superscript 2 to denote
such a product. For example, [0,1]2 = [0,1]× [0,1] or R2 = R×R (the Cartesian plane).

13
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Definition 0.3.11. A function f : A→ B is a subset f of A×B such that for each x ∈ A, there is a
unique (x,y) ∈ f . We then write f (x) = y. Sometimes the set f is called the graph of the function
rather than the function itself.

The set A is called the domain of f (and sometimes confusingly denoted D( f )). The set

R( f ) := {y ∈ B : there exists an x such that f (x) = y}

is called the range of f .

It is possible that the range R( f ) is a proper subset of B, while the domain of f is always equal
to A. We generally assume that the domain of f is nonempty.

Example 0.3.12: From calculus, you are most familiar with functions taking real numbers to real
numbers. However, you saw some other types of functions as well. The derivative is a function
mapping the set of differentiable functions to the set of all functions. Another example is the
Laplace transform, which also takes functions to functions. Yet another example is the function that
takes a continuous function g defined on the interval [0,1] and returns the number

∫ 1
0 g(x) dx.

Definition 0.3.13. Consider a function f : A→ B and C ⊂ A. Define the image (or direct image) of
C as

f (C) :=
{

f (x) ∈ B : x ∈C
}
.

Let D⊂ B. Define the inverse image of D as

f−1(D) :=
{

x ∈ A : f (x) ∈ D
}
.

Notice in particular that R( f ) = f (A), the range is the direct image of the domain A.

a1

2

3

4

b

c

d

f f ({1,2,3,4}) = {b,c,d}
f ({1,2,4}) = {b,d}
f ({1}) = {b}
f−1({a,b,c}) = {1,3,4}
f−1({a}) = /0
f−1({b}) = {1,4}

Figure 3: Example of direct and inverse images for the function f : {1,2,3,4}→ {a,b,c,d} defined by
f (1) := b, f (2) := d, f (3) := c, f (4) := b.

Example 0.3.14: Define the function f : R→ R by f (x) := sin(πx). Then f
(
[0,1/2]

)
= [0,1],

f−1({0})= Z, etc.

Proposition 0.3.15. Consider f : A→ B. Let C,D be subsets of B. Then

f−1(C∪D) = f−1(C)∪ f−1(D),

f−1(C∩D) = f−1(C)∩ f−1(D),

f−1(Cc) =
(

f−1(C)
)c
.

14



0.3. BASIC SET THEORY 15

Read the last line of the proposition as f−1(B\C) = A\ f−1(C).

Proof. Let us start with the union. Suppose x ∈ f−1(C∪D), meaning that x is taken to C or D.
Thus f−1(C∪D)⊂ f−1(C)∪ f−1(D). Conversely if x ∈ f−1(C), then x ∈ f−1(C∪D). Similarly
for x ∈ f−1(D). Hence f−1(C∪D)⊃ f−1(C)∪ f−1(D), and we have equality.

The rest of the proof is left as an exercise.

The proposition does not hold for direct images. We do have the following weaker result.

Proposition 0.3.16. Consider f : A→ B. Let C,D be subsets of A. Then

f (C∪D) = f (C)∪ f (D),

f (C∩D)⊂ f (C)∩ f (D).

The proof is left as an exercise.

Definition 0.3.17. Let f : A→ B be a function. The function f is said to be injective or one-to-one
if f (x1) = f (x2) implies x1 = x2. In other words, for all y ∈ B, the set f−1({y}) is empty or consists
of a single element. We call such an f an injection.

If f (A) = B, then we say f is surjective or onto. We call such an f a surjection.
If f is both an surjective and injective, then we say f is bijective or that f is a bijection.

When f : A→ B is a bijection, then the inverse image of a single element, f−1({y}), is always a
unique element of A. We then consider f−1 as a function f−1 : B→ A and we write simply f−1(y).
In this case, we call f−1 the inverse function of f . For instance, for the bijection f : R→ R defined
by f (x) := x3, we have f−1(x) = 3

√
x.

Definition 0.3.18. Consider f : A→ B and g : B→C. The composition of the functions f and g is
the function g◦ f : A→C defined as

(g◦ f )(x) := g
(

f (x)
)
.

For example, if f : R→R is f (x) := x3 and g : R→R is g(y) = sin(y), then (g◦ f )(x) = sin(x3).

0.3.4 Relations and equivalence classes
We often compare two objects in some way. We say 1 < 2 for natural numbers, or 1/2 = 2/4 for
rational numbers, or {a,c} ⊂ {a,b,c} for sets. The ‘<’, ‘=’, and ‘⊂’ are examples of relations.

Definition 0.3.19. Given a set A, a binary relation on A is a subset R ⊂ A×A, which are those
pairs where the relation is said to hold. Instead of (a,b) ∈R, we write aR b.

Example 0.3.20: Take A := {1,2,3}.
Consider the relation ‘<’. The corresponding set of pairs is

{
(1,2),(1,3),(2,3)

}
. So 1 < 2

holds as (1,2) is in the corresponding set of pairs, but 3 < 1 does not hold as (3,1) is not in the set.
Similarly, the relation ‘=’ is defined by the set of pairs

{
(1,1),(2,2),(3,3)

}
.

Any subset of A×A is a relation. Let us define the relation † via
{
(1,2),(2,1),(2,3),(3,1)

}
,

then 1 † 2 and 3 † 1 are true, but 1 † 3 is not.

15
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Definition 0.3.21. Let R be a relation on a set A. Then R is said to be

(i) reflexive if aR a for all a ∈ A,

(ii) symmetric if aR b implies bR a,

(iii) transitive if aR b and bR c implies aR c.

If R is reflexive, symmetric, and transitive, then it is said to be an equivalence relation.

Example 0.3.22: Let A := {1,2,3} as above. The relation ‘<’ is transitive, but neither reflexive nor
symmetric. The relation ‘≤’ defined by

{
(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)

}
is reflexive and

transitive, but not symmetric. Finally, a relation ‘?’ defined by
{
(1,1),(1,2),(2,1),(2,2),(3,3)

}
is

an equivalence relation.

Equivalence relations are useful in that they divide a set into sets of “equivalent” elements.

Definition 0.3.23. Let A be a set and R an equivalence relation. An equivalence class of a ∈ A,
often denoted by [a], is the set {x ∈ A : aR x}.

For example, given the relation ‘?’ above, there are two equivalence classes, [1] = [2] = {1,2}
and [3] = {3}.

Reflexivity guarantees that a ∈ [a]. Symmetry guarantees that if b ∈ [a], then a ∈ [b]. Finally,
transitivity guarantees that if a ∈ [b] and b ∈ [c], then a ∈ [c]. In particular, we have the following
proposition, whose proof is an exercise.

Proposition 0.3.24. If R is an equivalence relation on a set A, then every a ∈ A is in exactly one
equivalence class. In particular, aR b if and only [a] = [b].

Example 0.3.25: The set of rational numbers can be defined as equivalence classes of a pair of an
integer and a natural number, that is elements of Z×N. The relation is defined by (a,b)∼ (c,d)
whenever ad = bc. It is left as an exercise to prove that ‘∼’ is an equivalence relation. Usually the
equivalence class

[
(a,b)

]
is written as a/b.

0.3.5 Cardinality
A subtle issue in set theory and one generating a considerable amount of confusion among students is
that of cardinality, or “size” of sets. The concept of cardinality is important in modern mathematics
in general and in analysis in particular. In this section, we will see the first really unexpected
theorem.

Definition 0.3.26. Let A and B be sets. We say A and B have the same cardinality when there exists
a bijection f : A→ B. We denote by |A| the equivalence class of all sets with the same cardinality
as A and we simply call |A| the cardinality of A.

For example, {1,2,3} has the same cardinality as {a,b,c} by defining a bijection f (1) := a,
f (2) := b, f (3) := c. Clearly the bijection is not unique.

The existence of a bijection really is an equivalence relation. The identity, f (x) := x, is a
bijection showing reflexivity. If f is a bijection, then so is f−1 showing symmetricity. If f : A→ B
and g : B→C are bijections, then g◦ f is a bijection of A and C showing transitivity. A set A has
the same cardinality as the empty set if and only if A itself is the empty set: If B is nonempty, then
no function f : B→ /0 can exist. In particular, there is no bijection of B and /0.

16



0.3. BASIC SET THEORY 17

Definition 0.3.27. Suppose A has the same cardinality as {1,2,3, . . . ,n} for some n ∈ N. We then
write |A| := n. If A is empty, we write |A| := 0. In either case, we say that A is finite.

We say A is infinite or “of infinite cardinality” if A is not finite.

That the notation |A|= n is justified we leave as an exercise. That is, for each nonempty finite set
A, there exists a unique natural number n such that there exists a bijection from A to {1,2,3, . . . ,n}.

We can order sets by size.

Definition 0.3.28. We write
|A| ≤ |B|

if there exists an injection from A to B. We write |A|= |B| if A and B have the same cardinality. We
write |A|< |B| if |A| ≤ |B|, but A and B do not have the same cardinality.

We state without proof that A and B have the same cardinality if and only if |A| ≤ |B| and
|B| ≤ |A|. This is the so-called Cantor–Bernstein–Schröder theorem. Furthermore, if A and B are
any two sets, we can always write |A| ≤ |B| or |B| ≤ |A|. The issues surrounding this last statement
are very subtle. As we do not require either of these two statements, we omit proofs.

The truly interesting cases of cardinality are infinite sets. We will distinguish two types of
infinite cardinality.

Definition 0.3.29. If |A| = |N|, then A is said to be countably infinite. If A is finite or countably
infinite, then we say A is countable. If A is not countable, then A is said to be uncountable.

The cardinality of N is usually denoted as ℵ0 (read as aleph-naught) 

*
 .

Example 0.3.30: The set of even natural numbers has the same cardinality as N. Proof: Let E ⊂ N
be the set of even natural numbers. Given k ∈ E, write k = 2n for some n ∈ N. Then f (n) := 2n
defines a bijection f : N→ E.

In fact, let us mention without proof the following characterization of infinite sets: A set is
infinite if and only if it is in one-to-one correspondence with a proper subset of itself.

Example 0.3.31: N×N is a countably infinite set. Proof: Arrange the elements of N×N as follows
(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), . . . . That is, always write down first all the elements whose
two entries sum to k, then write down all the elements whose entries sum to k+1 and so on. Define
a bijection with N by letting 1 go to (1,1), 2 go to (1,2), and so on. See  Figure 4 .

Example 0.3.32: The set of rational numbers is countable. Proof: (informal) Follow the same
procedure as in the previous example, writing 1/1, 1/2, 2/1, etc. However, leave out any fraction
(such as 2/2) that has already appeared. So the list would continue: 1/3, 3/1, 1/4, 2/3, etc.

For completeness, we mention the following statements from the exercises. If A⊂ B and B is
countable, then A is countable. The contrapositive of the statement is that if A is uncountable, then
B is uncountable. As a consequence, if |A|< |N|, then A is finite. Similarly, if B is finite and A⊂ B,
then A is finite.

*For the fans of the TV show Futurama, there is a movie theater in one episode called an ℵ0-plex.
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18 INTRODUCTION

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) . . .

(3,1) (3,2) . . .

(4,1) . . .

Figure 4: Showing N×N is countable.

We give the first truly striking result. First, we need a notation for the set of all subsets of a set.

Definition 0.3.33. The power set of a set A, denoted by P(A), is the set of all subsets of A.

For example, if A := {1,2}, then P(A) =
{

/0,{1},{2},{1,2}
}

. In particular, |A| = 2 and
|P(A)|= 4 = 22. In general, for a finite set A of cardinality n, the cardinality of P(A) is 2n. This
fact is left as an exercise. Hence, for a finite set A, the cardinality of P(A) is strictly larger than the
cardinality of A. What is an unexpected and striking fact is that this statement is still true for infinite
sets.

Theorem 0.3.34 (Cantor 

*
 ). |A| < |P(A)|. In particular, there exists no surjection from A onto

P(A).

Proof. There exists an injection f : A→P(A). For any x ∈ A, define f (x) := {x}. Therefore,
|A| ≤ |P(A)|.

To finish the proof, we must show that no function g : A→P(A) is a surjection. Suppose
g : A→P(A) is a function. So for x ∈ A, g(x) is a subset of A. Define the set

B :=
{

x ∈ A : x /∈ g(x)
}
.

We claim that B is not in the range of g and hence g is not a surjection. Suppose for contradiction
that there exists an x0 such that g(x0) = B. Either x0 ∈ B or x0 /∈ B. If x0 ∈ B, then x0 /∈ g(x0) = B,
which is a contradiction. If x0 /∈ B, then x0 ∈ g(x0) = B, which is again a contradiction. Thus such
an x0 does not exist. Therefore, B is not in the range of g, and g is not a surjection. As g was an
arbitrary function, no surjection exists.

One particular consequence of this theorem is that there do exist uncountable sets, as P(N) must
be uncountable. A related fact is that the set of real numbers (which we study in the next chapter)
is uncountable. The existence of uncountable sets may seem unintuitive, and the theorem caused
quite a controversy at the time it was announced. The theorem not only says that uncountable sets
exist, but that there in fact exist progressively larger and larger infinite sets N, P(N), P(P(N)),
P(P(P(N))), etc.

*Named after the German mathematician  Georg Ferdinand Ludwig Philipp Cantor (1845–1918).
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0.3.6 Exercises
Exercise 0.3.1: Show A\ (B∩C) = (A\B)∪ (A\C).

Exercise 0.3.2: Prove that the principle of strong induction is equivalent to the standard induction.

Exercise 0.3.3: Finish the proof of  Proposition 0.3.15 .

Exercise 0.3.4:

a) Prove  Proposition 0.3.16 .

b) Find an example for which equality of sets in f (C∩D)⊂ f (C)∩ f (D) fails. That is, find an f , A, B, C,
and D such that f (C∩D) is a proper subset of f (C)∩ f (D).

Exercise 0.3.5 (Tricky): Prove that if A is nonempty and finite, then there exists a unique n ∈ N such that
there exists a bijection between A and {1,2,3, . . . ,n}. In other words, the notation |A| := n is justified. Hint:
Show that if n > m, then there is no injection from {1,2,3, . . . ,n} to {1,2,3, . . . ,m}.

Exercise 0.3.6: Prove:

a) A∩ (B∪C) = (A∩B)∪ (A∩C).

b) A∪ (B∩C) = (A∪B)∩ (A∪C).

Exercise 0.3.7: Let A∆B denote the symmetric difference, that is, the set of all elements that belong to either
A or B, but not to both A and B.

a) Draw a Venn diagram for A∆B.

b) Show A∆B = (A\B)∪ (B\A).

c) Show A∆B = (A∪B)\ (A∩B).

Exercise 0.3.8: For each n ∈ N, let An := {(n+1)k : k ∈ N}.
a) Find A1∩A2.

b) Find
⋃∞

n=1 An.

c) Find
⋂∞

n=1 An.

Exercise 0.3.9: Determine P(S) (the power set) for each of the following:

a) S = /0,

b) S = {1},
c) S = {1,2},
d) S = {1,2,3,4}.

Exercise 0.3.10: Let f : A→ B and g : B→C be functions.

a) Prove that if g◦ f is injective, then f is injective.

b) Prove that if g◦ f is surjective, then g is surjective.

c) Find an explicit example where g◦ f is bijective, but neither f nor g is bijective.

Exercise 0.3.11: Prove by induction that n < 2n for all n ∈ N.

Exercise 0.3.12: Show that for a finite set A of cardinality n, the cardinality of P(A) is 2n.
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Exercise 0.3.13: Prove 1
1·2 +

1
2·3 + · · ·+ 1

n(n+1) =
n

n+1 for all n ∈ N.

Exercise 0.3.14: Prove 13 +23 + · · ·+n3 =
(

n(n+1)
2

)2
for all n ∈ N.

Exercise 0.3.15: Prove that n3 +5n is divisible by 6 for all n ∈ N.

Exercise 0.3.16: Find the smallest n ∈ N such that 2(n+5)2 < n3 and call it n0. Show that 2(n+5)2 < n3

for all n≥ n0.

Exercise 0.3.17: Find all n ∈ N such that n2 < 2n.

Exercise 0.3.18: Prove the  well ordering property of N using the  principle of induction .

Exercise 0.3.19: Give an example of a countably infinite collection of finite sets A1,A2, . . ., whose union is
not a finite set.

Exercise 0.3.20: Give an example of a countably infinite collection of infinite sets A1,A2, . . ., with A j ∩Ak
being infinite for all j and k, such that

⋂∞
j=1 A j is nonempty and finite.

Exercise 0.3.21: Suppose A⊂ B and B is finite. Prove that A is finite. That is, if A is nonempty, construct a
bijection of A to {1,2, . . . ,n}.

Exercise 0.3.22: Prove  Proposition 0.3.24 . That is, prove that if R is an equivalence relation on a set A,
then every a ∈ A is in exactly one equivalence class. Then prove that aR b if and only if [a] = [b].

Exercise 0.3.23: Prove that the relation ‘∼’ in  Example 0.3.25 is an equivalence relation.

Exercise 0.3.24:

a) Suppose A⊂ B and B is countably infinite. By constructing a bijection, show that A is countable (that is,
A is empty, finite, or countably infinite).

b) Use part a) to show that if |A|< |N|, then A is finite.

Exercise 0.3.25 (Challenging): Suppose |N| ≤ |S|, or in other words, S contains a countably infinite subset.
Show that there exists a countably infinite subset A⊂ S and a bijection between S\A and S.
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Chapter 1

Real Numbers

1.1 Basic properties
Note: 1.5 lectures

The main object we work with in analysis is the set of real numbers. As this set is so fundamental,
often much time is spent on formally constructing the set of real numbers. However, we take an
easier approach here and just assume that a set with the correct properties exists. We start with the
definitions of those properties.

Definition 1.1.1. An ordered set is a set S, together with a relation < such that

(i) For any x,y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) If x < y and y < z, then x < z.

We write x≤ y if x < y or x = y. We define > and ≥ in the obvious way.

The set of rational numbers Q is an ordered set by letting x < y if and only if y− x is a positive
rational number, that is if y− x = p/q where p,q ∈ N. Similarly, N and Z are also ordered sets.

There are other ordered sets than sets of numbers. For example, the set of countries can be
ordered by landmass, so India > Lichtenstein. A typical ordered set that you have used since
primary school is the dictionary. It is the ordered set of words where the order is the so-called
lexicographic ordering. Such ordered sets often appear, for example, in computer science. In this
book we will mostly be interested in ordered sets of numbers.

Definition 1.1.2. Let E ⊂ S, where S is an ordered set.

(i) If there exists a b ∈ S such that x≤ b for all x ∈ E, then we say E is bounded above and b is
an upper bound of E.

(ii) If there exists a b ∈ S such that x≥ b for all x ∈ E, then we say E is bounded below and b is a
lower bound of E.

(iii) If there exists an upper bound b0 of E such that whenever b is any upper bound for E we have
b0 ≤ b, then b0 is called the least upper bound or the supremum of E. See  Figure 1.1 . We
write

sup E := b0.
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22 CHAPTER 1. REAL NUMBERS

(iv) Similarly, if there exists a lower bound b0 of E such that whenever b is any lower bound for
E we have b0 ≥ b, then b0 is called the greatest lower bound or the infimum of E. We write

inf E := b0.

When a set E is both bounded above and bounded below, we say simply that E is bounded.

upper bounds of E

smaller bigger

least upper bound of E

E

Figure 1.1: A set E bounded above and the least upper bound of E.

A simple example: Let S := {a,b,c,d,e} be ordered as a < b < c < d < e, and let E := {a,c}.
Then c, d, and e are upper bounds of E, and c is the least upper bound or supremum of E.

Supremum (or infimum) is automatically unique (if it exists): If b and b′ are suprema of E, then
b≤ b′ and b′ ≤ b, because both b and b′ are the least upper bounds, so b = b′.

A supremum or infimum for E (even if they exist) need not be in E. For example, the set
E := {x ∈Q : x < 1} has a least upper bound of 1, but 1 is not in the set E itself. The set G := {x ∈
Q : x≤ 1} also has an upper bound of 1, and in this case 1 ∈ G. The set P := {x ∈Q : x≥ 0} has
no upper bound (why?) and therefore it cannot have a least upper bound. The set P does have a
greatest lower bound: 0.

Definition 1.1.3. An ordered set S has the least-upper-bound property if every nonempty subset
E ⊂ S that is bounded above has a least upper bound, that is sup E exists in S.

The least-upper-bound property is sometimes called the completeness property or the Dedekind
completeness property 

*
 . As we will note in the next section, the real numbers have this property.

Example 1.1.4: The set Q of rational numbers does not have the least-upper-bound property. The
subset {x ∈Q : x2 < 2} does not have a supremum in Q. We will see later (  Example 1.2.3 ) that the
supremum is

√
2, which is not rational 

†
 . Suppose x ∈Q such that x2 = 2. Write x = m/n in lowest

terms. So (m/n)2 = 2 or m2 = 2n2. Hence, m2 is divisible by 2, and so m is divisible by 2. Write
m = 2k and so (2k)2 = 2n2. Divide by 2 and note that 2k2 = n2, and hence n is divisible by 2. But
that is a contradiction as m/n is in lowest terms.

That Q does not have the least-upper-bound property is one of the most important reasons
why we work with R in analysis. The set Q is just fine for algebraists. But us analysts require
the least-upper-bound property to do any work. We also require our real numbers to have many
algebraic properties. In particular, we require that they are a field.

*Named after the German mathematician  Julius Wilhelm Richard Dedekind (1831–1916).
†This is true for all other roots of 2, and interestingly, the fact that k

√
2 is never rational for k > 1 implies no piano

can ever be perfectly tuned in all keys. See for example:  https://youtu.be/1Hqm0dYKUx4 .
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Definition 1.1.5. A set F is called a field if it has two operations defined on it, addition x+ y and
multiplication xy, and if it satisfies the following axioms:

(A1) If x ∈ F and y ∈ F , then x+ y ∈ F .

(A2) (commutativity of addition) x+ y = y+ x for all x,y ∈ F .

(A3) (associativity of addition) (x+ y)+ z = x+(y+ z) for all x,y,z ∈ F .

(A4) There exists an element 0 ∈ F such that 0+ x = x for all x ∈ F .

(A5) For every element x ∈ F , there exists an element −x ∈ F such that x+(−x) = 0.

(M1) If x ∈ F and y ∈ F , then xy ∈ F .

(M2) (commutativity of multiplication) xy = yx for all x,y ∈ F .

(M3) (associativity of multiplication) (xy)z = x(yz) for all x,y,z ∈ F .

(M4) There exists an element 1 ∈ F (and 1 6= 0) such that 1x = x for all x ∈ F .

(M5) For every x ∈ F such that x 6= 0 there exists an element 1/x ∈ F such that x(1/x) = 1.

(D) (distributive law) x(y+ z) = xy+ xz for all x,y,z ∈ F .

Example 1.1.6: The set Q of rational numbers is a field. On the other hand Z is not a field, as it
does not contain multiplicative inverses. For example, there is no x ∈ Z such that 2x = 1, so (M5) is
not satisfied. You can check that (M5) is the only property that fails 

*
 .

We will assume the basic facts about fields that are easily proved from the axioms. For example,
0x = 0 is easily proved by noting that xx = (0+ x)x = 0x+ xx, using (A4), (D), and (M2). Then
using (A5) on xx, along with (A2), (A3), and (A4), we obtain 0 = 0x.

Definition 1.1.7. A field F is said to be an ordered field if F is also an ordered set such that:

(i) For x,y,z ∈ F , x < y implies x+ z < y+ z.

(ii) For x,y ∈ F , x > 0 and y > 0 implies xy > 0.

If x > 0, we say x is positive. If x < 0, we say x is negative. We also say x is nonnegative if x≥ 0,
and x is nonpositive if x≤ 0.

It can be checked that the rational numbers Q with the standard ordering is an ordered field.

Proposition 1.1.8. Let F be an ordered field and x,y,z,w ∈ F. Then:

(i) If x > 0, then −x < 0 (and vice versa).

(ii) If x > 0 and y < z, then xy < xz.

(iii) If x < 0 and y < z, then xy > xz.

(iv) If x 6= 0, then x2 > 0.

(v) If 0 < x < y, then 0 < 1/y < 1/x.

(vi) If 0 < x < y, then x2 < y2.

(vii) If x≤ y and z≤ w, then x+ z≤ y+w.
*An algebraist would say that Z is an ordered ring, or perhaps more precisely a commutative ordered ring.
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Note that  (iv) implies in particular that 1 > 0.

Proof. Let us prove  (i) . The inequality x > 0 implies by item  (i) of definition of ordered field that
x+(−x) > 0+(−x). Now apply the algebraic properties of fields to obtain 0 > −x. The “vice
versa” follows by similar calculation.

For  (ii) , first notice that y < z implies 0 < z− y by applying item  (i) of the definition of ordered
fields. Now apply item  (ii) of the definition of ordered fields to obtain 0 < x(z− y). By algebraic
properties we get 0 < xz− xy, and again applying item  (i) of the definition we obtain xy < xz.

Part  (iii) is left as an exercise.
To prove part  (iv)  first suppose x > 0. Then by item  (ii) of the definition of ordered fields we

obtain that x2 > 0 (use y = x). If x < 0, we use part  (iii) of this proposition. Plug in y = x and z = 0.
Finally, to prove part  (v) , notice that 1/x cannot be equal to zero (why?). Suppose 1/x < 0, then

−1/x > 0 by  (i) . Then apply part  (ii) (as x > 0) to obtain x(−1/x)> 0x or −1 > 0, which contradicts
1 > 0 by using part  (i) again. Hence 1/x > 0. Similarly, 1/y > 0. Thus (1/x)(1/y)> 0 by definition of
ordered field and by part  (ii) 

(1/x)(1/y)x < (1/x)(1/y)y.

By algebraic properties we get 1/y < 1/x.
Parts  (vi) and  (vii) are left as exercises.

The product of two positive numbers (elements of an ordered field) is positive. However, it is
not true that if the product is positive, then each of the two factors must be positive.

Proposition 1.1.9. Let x,y ∈ F where F is an ordered field. Suppose xy > 0. Then either both x
and y are positive, or both are negative.

Proof. Clearly both of the conclusions can happen. If either x and y are zero, then xy is zero and
hence not positive. Hence we assume that x and y are nonzero, and we simply need to show that if
they have opposite signs, then xy < 0. Without loss of generality suppose x > 0 and y < 0. Multiply
y < 0 by x to get xy < 0x = 0. The result follows by contrapositive.

Example 1.1.10: The reader may also know about the complex numbers, usually denoted by C.
That is, C is the set of numbers of the form x+ iy, where x and y are real numbers, and i is the
imaginary number, a number such that i2 =−1. The reader may remember from algebra that C is
also a field, however, it is not an ordered field. While one can make C into an ordered set in some
way, it is not possible to put an order on C that would make it an ordered field: In any ordered field
−1 < 0 and x2 > 0 for all nonzero x, but in C, i2 =−1.

Finally, an ordered field that has the least-upper-bound property has the corresponding property
for greatest lower bounds.

Proposition 1.1.11. Let F be an ordered field with the least-upper-bound property. Let A⊂ F be a
nonempty set that is bounded below. Then inf A exists.

Proof. Let B := {−x : x ∈ A}. Let b ∈ F be a lower bound for A: if x ∈ A, then x ≥ b. In other
words, −x ≤ −b. So −b is an upper bound for B. Since F has the least-upper-bound property,
c := sup B exists, and c≤−b. As y≤ c for all y ∈ B, then −c≤ x for all x ∈ A. So −c is a lower
bound for A. As −c≥ b, −c is the greatest lower bound of A.
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1.1.1 Exercises
Exercise 1.1.1: Prove part  (iii) of  Proposition 1.1.8 . That is, let F be an ordered field and x,y,z ∈ F. Prove
If x < 0 and y < z, then xy > xz.

Exercise 1.1.2: Let S be an ordered set. Let A ⊂ S be a nonempty finite subset. Then A is bounded.
Furthermore, inf A exists and is in A and sup A exists and is in A. Hint: Use  induction .

Exercise 1.1.3: Prove part  (vi) of  Proposition 1.1.8  . That is, let x,y ∈ F, where F is an ordered field, such
that 0 < x < y. Show that x2 < y2.

Exercise 1.1.4: Let S be an ordered set. Let B⊂ S be bounded (above and below). Let A⊂ B be a nonempty
subset. Suppose all the infs and sups exist. Show that

inf B≤ inf A≤ sup A≤ sup B.

Exercise 1.1.5: Let S be an ordered set. Let A⊂ S and suppose b is an upper bound for A. Suppose b ∈ A.
Show that b = sup A.

Exercise 1.1.6: Let S be an ordered set. Let A⊂ S be a nonempty subset that is bounded above. Suppose
sup A exists and sup A /∈ A. Show that A contains a countably infinite subset.

Exercise 1.1.7: Find a (nonstandard) ordering of the set of natural numbers N such that there exists a
nonempty proper subset A (N and such that sup A exists in N, but sup A /∈ A. To keep things straight it might
be a good idea to use a different notation for the nonstandard ordering such as n≺ m.

Exercise 1.1.8: Let F := {0,1,2}.
a) Prove that there is exactly one way to define addition and multiplication so that F is a field if 0 and 1

have their usual meaning of (A4) and (M4).

b) Show that F cannot be an ordered field.

Exercise 1.1.9: Let S be an ordered set and A is a nonempty subset such that sup A exists. Suppose there is a
B⊂ A such that whenever x ∈ A there is a y ∈ B such that x≤ y. Show that sup B exists and sup B = sup A.

Exercise 1.1.10: Let D be the ordered set of all possible words (not just English words, all strings of letters
of arbitrary length) using the Latin alphabet using only lower case letters. The order is the lexicographic
order as in a dictionary (e.g. aa < aaa < dog < door). Let A be the subset of D containing the words whose
first letter is ‘a’ (e.g. a ∈ A, abcd ∈ A). Show that A has a supremum and find what it is.

Exercise 1.1.11: Let F be an ordered field and x,y,z,w ∈ F.

a) Prove part  (vii) of  Proposition 1.1.8 . That is, if x≤ y and z≤ w, then x+ z≤ y+w.

b) Prove that if x < y and z≤ w, then x+ z < y+w.

Exercise 1.1.12: Prove that any ordered field must contain a countably infinite set.

Exercise 1.1.13: Let N∞ := N∪{∞}, where elements of N are ordered in the usual way amongst themselves,
and k < ∞ for every k ∈ N. Show N∞ is an ordered set and that every subset E ⊂ N∞ has a supremum in N∞
(make sure to also handle the case of an empty set).

Exercise 1.1.14: Let S := {ak : k ∈ N}∪{bk : k ∈ N}, ordered such that ak < b j for any k and j, ak < am

whenever k < m, and bk > bm whenever k < m.

a) Show that S is an ordered set.

b) Show that any subset of S is bounded (both above and below).

c) Find a bounded subset of S which has no least upper bound.
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1.2 The set of real numbers
Note: 2 lectures, the extended real numbers are optional

1.2.1 The set of real numbers
We finally get to the real number system. To simplify matters, instead of constructing the real
number set from the rational numbers, we simply state their existence as a theorem without proof.
Notice that Q is an ordered field.

Theorem 1.2.1. There exists a unique  

*
 ordered field R with the  least-upper-bound property such

that Q⊂ R.

Note that also N⊂Q. We saw that 1 > 0. By  induction (exercise) we can prove that n > 0 for
all n ∈ N. Similarly, we verify simple statements about rational numbers. For example, we proved
that if n > 0, then 1/n > 0. Then m < k implies m/n < k/n.

Let us prove one of the most basic but useful results about the real numbers. The following
proposition is essentially how an analyst proves an inequality.

Proposition 1.2.2. If x ∈ R is such that x≤ ε for all ε ∈ R where ε > 0, then x≤ 0.

Proof. If x > 0, then 0 < x/2 < x (why?). Taking ε = x/2 obtains a contradiction. Thus x≤ 0.

Another useful version of this idea is the following equivalent statement for nonnegative numbers:
If x ≥ 0 is such that x ≤ ε for all ε > 0, then x = 0. And to prove that x ≥ 0 in the first place, an
analyst might prove that all x≥−ε for all ε > 0. From now on, when we say x≥ 0 or ε > 0, we
automatically mean that x ∈ R and ε ∈ R.

A related simple fact is that any time we have two real numbers a < b, then there is another real
number c such that a < c < b. Take, for example, c = a+b

2 (why?). In fact, there are infinitely many
real numbers between a and b. We will use this fact in the next example.

The most useful property of R for analysts is not just that it is an ordered field, but that it has the
 least-upper-bound property . Essentially, we want Q, but we also want to take suprema (and infima)
willy-nilly. So what we do is take Q and throw in enough numbers to obtain R.

We mentioned already that R contains elements that are not in Q because of the  least-upper-
bound property  . Let us prove it. We saw there is no rational square root of two. The set {x ∈Q :
x2 < 2} implies the existence of the real number

√
2, although this fact requires a bit of work. See

also  Exercise 1.2.14 .

Example 1.2.3: Claim: There exists a unique positive r ∈ R such that r2 = 2. We denote r by
√

2.

Proof. Take the set A := {x ∈ R : x2 < 2}. We first show that it is bounded above and nonempty.
The equation x≥ 2 implies x2 ≥ 4 (see  Exercise 1.1.3 ), so if x2 < 2, then x < 2, and A is bounded
above. As 1 ∈ A, the set A is nonempty. We can therefore find the supremum.

Let r := sup A. We will show that r2 = 2 by showing that r2 ≥ 2 and r2 ≤ 2. This is the way
analysts show equality, by showing two inequalities. We already know that r ≥ 1 > 0.

*Uniqueness is up to isomorphism, but we wish to avoid excessive use of algebra. For us, it is simply enough to
assume that a set of real numbers exists. See Rudin [ R2 ] for the construction and more details.
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In the following, it may seem we are pulling certain expressions out of a hat. When writing a
proof such as this we would, of course, come up with the expressions only after playing around
with what we wish to prove. The order in which we write the proof is not necessarily the order in
which we come up with the proof.

Let us first show that r2 ≥ 2. Take a positive number s such that s2 < 2. We wish to find an
h > 0 such that (s+h)2 < 2. As 2− s2 > 0, we have 2−s2

2s+1 > 0. We choose an h ∈ R such that

0 < h < 2−s2

2s+1 . Furthermore, we assume h < 1.

(s+h)2− s2 = h(2s+h)

< h(2s+1)
(
since h < 1

)
< 2− s2 (

since h < 2−s2

2s+1

)
.

Therefore, (s+h)2 < 2. Hence s+h ∈ A, but as h > 0 we have s+h > s. So s < r = sup A. As s
was an arbitrary positive number such that s2 < 2, it follows that r2 ≥ 2.

Now take a positive number s such that s2 > 2. We wish to find an h > 0 such that (s−h)2 > 2.
As s2−2 > 0 we have s2−2

2s > 0. Let h := s2−2
2s .

s2− (s−h)2 = 2sh−h2

< 2sh
(
since h > 0 so h2 > 0

)
≤ s2−2

(
since h = s2−2

2s

)
.

By subtracting s2 from both sides and multiplying by−1, we find (s−h)2 > 2. Therefore, s−h /∈ A.
Moreover, if x≥ s−h, then x2 ≥ (s−h)2 > 2 (as x > 0 and s−h > 0) and so x /∈ A. Thus, s−h

is an upper bound for A. However, s−h < s, or in other words, s > r = sup A. Hence, r2 ≤ 2.

Together, r2 ≥ 2 and r2 ≤ 2 imply r2 = 2. The existence part is finished. We still need to handle
uniqueness. Suppose s ∈ R such that s2 = 2 and s > 0. Thus s2 = r2. However, if 0 < s < r, then
s2 < r2. Similarly, 0 < r < s implies r2 < s2. Hence s = r.

The number
√

2 /∈Q. The set R\Q is called the set of irrational numbers. We just saw that
R\Q is nonempty. Not only is it nonempty, we will see later that is it very large indeed.

Using the same technique as above, we can show that a positive real number x1/n exists for all
n ∈ N and all x > 0. That is, for each x > 0, there exists a unique positive real number r such that
rn = x. The proof is left as an exercise.

1.2.2 Archimedean property

As we have seen, there are plenty of real numbers in any interval. But there are also infinitely
many rational numbers in any interval. The following is one of the fundamental facts about the real
numbers. The two parts of the next theorem are actually equivalent, even though it may not seem
like that at first sight.
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Theorem 1.2.4.
(i) (Archimedean property) 

*
 If x,y ∈ R and x > 0, then there exists an n ∈ N such that

nx > y.

(ii) (Q is dense in R) If x,y ∈ R and x < y, then there exists an r ∈Q such that x < r < y.

Proof. Let us prove  (i) . Divide through by x. Then  (i) says that for any real number t := y/x, we can
find n ∈ N such that n > t. In other words,  (i) says that N⊂ R is not bounded above. Suppose for
contradiction that N is bounded above. Let b := supN. The number b−1 cannot possibly be an
upper bound for N as it is strictly less than b (the least upper bound). Thus there exists an m ∈ N
such that m > b−1. Add one to obtain m+1 > b, contradicting b being an upper bound.

m−1
n

m
n

1
n

m+1
n

yx

Figure 1.2: Idea of the proof of the density of Q: Find n such that y− x > 1/n, then take the least m such
that m/n > x.

Let us tackle  (ii) . See  Figure 1.2  for a picture of the idea behind the proof. First assume x≥ 0.
Note that y− x > 0. By  (i) , there exists an n ∈ N such that

n(y− x)> 1 or y− x > 1/n.

Again by  (i) the set A := {k ∈ N : k > nx} is nonempty. By the  well ordering property of N, A has a
least element m, and as m ∈ A, then m > nx. Divide through by n to get x < m/n. As m is the least
element of A, m−1 /∈ A. If m > 1, then m−1 ∈N, but m−1 /∈ A and so m−1≤ nx. If m = 1, then
m−1 = 0, and m−1≤ nx still holds as x≥ 0. In other words,

m−1≤ nx or m≤ nx+1.

On the other hand from n(y− x)> 1 we obtain ny > 1+nx. Hence ny > 1+nx≥ m, and therefore
y > m/n. Putting everything together we obtain x < m/n < y. So let r = m/n.

Now assume x < 0. If y > 0, then just take r = 0. If y ≤ 0, then 0 ≤−y <−x, and we find a
rational q such that −y < q <−x. Then take r =−q.

Let us state and prove a simple but useful corollary of the  Archimedean property .

Corollary 1.2.5. inf{1/n : n ∈ N}= 0.

Proof. Let A := {1/n : n ∈ N}. Obviously A is not empty. Furthermore, 1/n > 0 and so 0 is a lower
bound, and b := inf A exists. As 0 is a lower bound, then b≥ 0. Take an arbitrary a > 0. By the

 Archimedean property there exists an n such that na > 1, or in other words a > 1/n ∈ A. Therefore,
a cannot be a lower bound for A. Hence b = 0.

*Named after the Ancient Greek mathematician  Archimedes of Syracuse (c. 287 BC – c. 212 BC). This property is
Axiom V from Archimedes’ “On the Sphere and Cylinder” 225 BC.
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1.2.3 Using supremum and infimum
Suprema and infima are compatible with algebraic operations. For a set A⊂ R and x ∈ R define

x+A := {x+ y ∈ R : y ∈ A},
xA := {xy ∈ R : y ∈ A}.

For example, if A = {1,2,3}, then 5+A = {6,7,8} and 3A = {3,6,9}.
Proposition 1.2.6. Let A⊂ R be nonempty.

(i) If x ∈ R and A is bounded above, then sup(x+A) = x+ sup A.

(ii) If x ∈ R and A is bounded below, then inf(x+A) = x+ inf A.

(iii) If x > 0 and A is bounded above, then sup(xA) = x(sup A).

(iv) If x > 0 and A is bounded below, then inf(xA) = x(inf A).

(v) If x < 0 and A is bounded below, then sup(xA) = x(inf A).

(vi) If x < 0 and A is bounded above, then inf(xA) = x(sup A).

Do note that multiplying a set by a negative number switches supremum for an infimum and
vice versa. Also, as the proposition implies that supremum (resp. infimum) of x+A or xA exists, it
also implies that x+A or xA is nonempty and bounded above (resp. below).

Proof. Let us only prove the first statement. The rest are left as exercises.
Suppose b is an upper bound for A. That is, y≤ b for all y ∈ A. Then x+ y≤ x+b for all y ∈ A,

and so x+b is an upper bound for x+A. In particular, if b = sup A, then

sup(x+A)≤ x+b = x+ sup A.

The other direction is similar. If b is an upper bound for x+A, then x+ y≤ b for all y ∈ A and
so y≤ b− x for all y ∈ A. So b− x is an upper bound for A. If b = sup(x+A), then

sup A≤ b− x = sup(x+A)− x.

The result follows.

Sometimes we need to apply supremum or infimum twice. Here is an example.

Proposition 1.2.7. Let A,B⊂ R be nonempty sets such that x≤ y whenever x ∈ A and y ∈ B. Then
A is bounded above, B is bounded below, and sup A≤ inf B.

Proof. Any x ∈ A is a lower bound for B. Therefore x ≤ inf B for all x ∈ A, so inf B is an upper
bound for A. Hence, sup A≤ inf B.

We must be careful about strict inequalities and taking suprema and infima. Note that x < y
whenever x ∈ A and y ∈ B still only implies sup A ≤ inf B, and not a strict inequality. This is an
important subtle point that comes up often. For example, take A := {0} and take B := {1/n : n ∈ N}.
Then 0 < 1/n for all n ∈ N. However, sup A = 0 and inf B = 0.

The proof of the following often used elementary fact is left to the reader. A similar statement
holds for infima.
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Proposition 1.2.8. If S ⊂ R is a nonempty set, bounded above, then for every ε > 0 there exists
x ∈ S such that (sup S)− ε < x≤ sup S.

To make using suprema and infima even easier, we may want to write sup A and inf A without
worrying about A being bounded and nonempty. We make the following natural definitions.

Definition 1.2.9. Let A⊂ R be a set.

(i) If A is empty, then sup A :=−∞.

(ii) If A is not bounded above, then sup A := ∞.

(iii) If A is empty, then inf A := ∞.

(iv) If A is not bounded below, then inf A :=−∞.

For convenience, ∞ and −∞ are sometimes treated as if they were numbers, except we do not
allow arbitrary arithmetic with them. We make R∗ := R∪{−∞,∞} into an ordered set by letting

−∞ < ∞ and −∞ < x and x < ∞ for all x ∈ R.

The set R∗ is called the set of extended real numbers. It is possible to define some arithmetic on
R∗. Most operations are extended in an obvious way, but we must leave ∞−∞, 0 · (±∞), and ±∞

±∞
undefined. We refrain from using this arithmetic, it leads to easy mistakes as R∗ is not a field. Now
we can take suprema and infima without fear of emptiness or unboundedness. In this book, we
mostly avoid using R∗ outside of exercises, and leave such generalizations to the interested reader.

1.2.4 Maxima and minima
By  Exercise 1.1.2 , a finite set of numbers always has a supremum or an infimum that is contained in
the set itself. In this case we usually do not use the words supremum or infimum.

When a set A of real numbers is bounded above, such that sup A ∈ A, then we can use the word
maximum and the notation max A to denote the supremum. Similarly for infimum: When a set A
is bounded below and inf A ∈ A, then we can use the word minimum and the notation min A. For
example,

max{1,2.4,π,100}= 100,
min{1,2.4,π,100}= 1.

While writing sup and inf may be technically correct in this situation, max and min are generally
used to emphasize that the supremum or infimum is in the set itself.

1.2.5 Exercises

Exercise 1.2.1: Prove that if t > 0 (t ∈ R), then there exists an n ∈ N such that
1
n2 < t.

Exercise 1.2.2: Prove that if t ≥ 0 (t ∈ R), then there exists an n ∈ N such that n−1≤ t < n.

Exercise 1.2.3: Finish the proof of  Proposition 1.2.6 .
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Exercise 1.2.4: Let x,y ∈ R. Suppose x2 + y2 = 0. Prove that x = 0 and y = 0.

Exercise 1.2.5: Show that
√

3 is irrational.

Exercise 1.2.6: Let n ∈ N. Show that either
√

n is either an integer or it is irrational.

Exercise 1.2.7: Prove the arithmetic-geometric mean inequality. That is, for two positive real numbers x,y
we have

√
xy≤ x+ y

2
.

Furthermore, equality occurs if and only if x = y.

Exercise 1.2.8: Show that for any two real numbers x and y such that x < y, there exists an irrational number
s such that x < s < y. Hint: Apply the density of Q to

x√
2

and
y√
2

.

Exercise 1.2.9: Let A and B be two nonempty bounded sets of real numbers. Let C := {a+b : a ∈ A,b ∈ B}.
Show that C is a bounded set and that

sup C = sup A+ sup B and inf C = inf A+ inf B.

Exercise 1.2.10: Let A and B be two nonempty bounded sets of nonnegative real numbers. Define the set
C := {ab : a ∈ A,b ∈ B}. Show that C is a bounded set and that

sup C = (sup A)(sup B) and inf C = (inf A)(inf B).

Exercise 1.2.11 (Hard): Given x > 0 and n ∈ N, show that there exists a unique positive real number r such
that x = rn. Usually r is denoted by x1/n.

Exercise 1.2.12 (Easy): Prove  Proposition 1.2.8 .

Exercise 1.2.13: Prove the so-called Bernoulli’s inequality 

*
 : If 1+ x > 0, then for all n ∈ N we have

(1+ x)n ≥ 1+nx.

Exercise 1.2.14: Prove sup{x ∈Q : x2 < 2}= sup{x ∈ R : x2 < 2}.

Exercise 1.2.15:

a) Prove that given any y ∈ R, we have sup{x ∈Q : x < y}= y.

b) Let A ⊂ Q be a set that is bounded above such that whenever x ∈ A and t ∈ Q with t < x, then t ∈ A.
Further suppose sup A 6∈ A. Show that there exists a y ∈R such that A = {x ∈Q : x < y}. A set such as A
is called a Dedekind cut.

c) Show that there is a bijection between R and Dedekind cuts.

Note: Dedekind used sets as in part b) in his construction of the real numbers.

Exercise 1.2.16: Prove that if A⊂ Z is a nonempty subset bounded below, then there exists a least element
in A. Now describe why this statement would simplify the proof of  Theorem 1.2.4 part  (ii) so that you do not
have to assume x≥ 0.

*Named after the Swiss mathematician  Jacob Bernoulli (1655–1705).
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Exercise 1.2.17: Let us suppose we know x1/n exists for every x > 0 and every n ∈ N (see  Exercise 1.2.11  

above). For integers p and q > 0 where p/q is in lowest terms, define xp/q := (x1/q)
p
.

a) Show that the power is well-defined even if the fraction is not in lowest terms: If p/q = m/k where m and
k > 0 are integers, then (x1/q)

p
= (x1/m)

k
.

b) Let x and y be two positive numbers and r a rational number. Assuming r > 0, show x < y if and only if
xr < yr. Then suppose r < 0 and show: x < y if and only if xr > yr.

c) Suppose x > 1 and r,s are rational where r < s. Show xr < xs. If 0 < x < 1 and r < s, show that xr > xs.
Hint: Write r and s with the same denominator.

d) (Challenging) 

*
 For an irrational z ∈ R\Q and x > 1 define xz := sup{xr : r ≤ z,r ∈Q}, for x = 1 define

1z = 1, and for 0 < x < 1 define xz := inf{xr : r ≤ z,r ∈Q}. Prove the two assertions of part b) for all
real z.

*In  §5.4 we will define exponential and the logarithm and define xz := exp(z lnx). We will then have sufficient
machinery to make proofs of these assertions far easier. At this point, however, we do not yet have these tools.
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1.3 Absolute value and bounded functions
Note: 0.5–1 lecture

A concept we will encounter over and over is the concept of absolute value. You want to think
of the absolute value as the “size” of a real number. Let us give a formal definition.

|x| :=
{

x if x≥ 0,
−x if x < 0.

Let us give the main features of the absolute value as a proposition.

Proposition 1.3.1.
(i) |x| ≥ 0, and |x|= 0 if and only if x = 0.

(ii) |−x|= |x| for all x ∈ R.

(iii) |xy|= |x| |y| for all x,y ∈ R.

(iv) |x|2 = x2 for all x ∈ R.

(v) |x| ≤ y if and only if −y≤ x≤ y.

(vi) −|x| ≤ x≤ |x| for all x ∈ R.

Proof.  (i) : If x≥ 0, then |x|= x≥ 0. Also |x|= x= 0 if and only if x= 0. If x< 0, then |x|=−x> 0,
which is never zero.

 (ii) : Suppose x > 0, then |−x|=−(−x) = x = |x|. Similarly when x < 0, or x = 0.

 (iii) : If x or y is zero, then the result is immediate. When x and y are both positive, then |x| |y|= xy.
xy is also positive and hence xy = |xy|. If x and y are both negative, then xy is still positive and
xy = |xy|, and |x| |y|= (−x)(−y) = xy. Next assume x > 0 and y < 0. Then |x| |y|= x(−y) =−(xy).
Now xy is negative and hence |xy|=−(xy). Similarly if x < 0 and y > 0.

 (iv) : Immediate if x≥ 0. If x < 0, then |x|2 = (−x)2 = x2.

 (v) : Suppose |x| ≤ y. If x ≥ 0, then x ≤ y. It follows that y ≥ 0, leading to −y ≤ 0 ≤ x. So
−y≤ x≤ y holds. If x < 0, then |x| ≤ y means −x≤ y. Negating both sides we get x≥−y. Again
y≥ 0 and so y≥ 0 > x. Hence, −y≤ x≤ y.

On the other hand, suppose −y≤ x≤ y is true. If x≥ 0, then x≤ y is equivalent to |x| ≤ y. If
x < 0, then −y≤ x implies (−x)≤ y, which is equivalent to |x| ≤ y.

 (vi) : Apply  (v) with y = |x|.
A property used frequently enough to give it a name is the so-called triangle inequality.

Proposition 1.3.2 (Triangle Inequality). |x+ y| ≤ |x|+ |y| for all x,y ∈ R.

Proof.  Proposition 1.3.1  gives −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|. Add these two inequalities to
obtain

−(|x|+ |y|)≤ x+ y≤ |x|+ |y| .
Apply  Proposition 1.3.1 again to find |x+ y| ≤ |x|+ |y|.
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There are other often applied versions of the triangle inequality.

Corollary 1.3.3. Let x,y ∈ R
(i) (reverse triangle inequality)

∣∣(|x|− |y|)∣∣≤ |x− y|.
(ii) |x− y| ≤ |x|+ |y|.

Proof. Let us plug in x = a−b and y = b into the standard triangle inequality to obtain

|a|= |a−b+b| ≤ |a−b|+ |b| ,

or |a|− |b| ≤ |a−b|. Switching the roles of a and b we find |b|− |a| ≤ |b−a|= |a−b|. Applying
 Proposition 1.3.1 , we obtain the reverse triangle inequality.

The second version of the triangle inequality is obtained from the standard one by just replacing
y with −y, and noting |−y|= |y|.

Corollary 1.3.4. Let x1,x2, . . . ,xn ∈ R. Then

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn| .

Proof. We proceed by  induction . The conclusion holds trivially for n = 1, and for n = 2 it is the
standard triangle inequality. Suppose the corollary holds for n. Take n+1 numbers x1,x2, . . . ,xn+1
and first use the standard triangle inequality, then the induction hypothesis

|x1 + x2 + · · ·+ xn + xn+1| ≤ |x1 + x2 + · · ·+ xn|+ |xn+1|
≤ |x1|+ |x2|+ · · ·+ |xn|+ |xn+1|.

Let us see an example of the use of the triangle inequality.

Example 1.3.5: Find a number M such that |x2−9x+1| ≤M for all −1≤ x≤ 5.
Using the triangle inequality, write

|x2−9x+1| ≤ |x2|+ |9x|+ |1|= |x|2 +9|x|+1.

The expression |x|2 +9|x|+1 is largest when |x| is largest (why?). In the interval provided, |x| is
largest when x = 5 and so |x|= 5. One possibility for M is

M = 52 +9(5)+1 = 71.

There are, of course, other M that work. The bound of 71 is much higher than it need be, but we
didn’t ask for the best possible M, just one that works.

The last example leads us to the concept of bounded functions.

Definition 1.3.6. Suppose f : D→ R is a function. We say f is bounded if there exists a number
M such that | f (x)| ≤M for all x ∈ D.
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inf f (D)

sup f (D)
M

−M

f (D)

D

Figure 1.3: Example of a bounded function, a bound M, and its supremum and infimum.

In the example, we proved x2−9x+1 is bounded when considered as a function on D = {x :
−1≤ x≤ 5}. On the other hand, if we consider the same polynomial as a function on the whole
real line R, then it is not bounded.

For a function f : D→ R, we write (see  Figure 1.3 for an example)

sup
x∈D

f (x) := sup f (D),

inf
x∈D

f (x) := inf f (D).

We also sometimes replace the “x ∈ D” with an expression. For example if, as before, f (x) =
x2−9x+1, for −1≤ x≤ 5, a little bit of calculus shows

sup
x∈D

f (x) = sup
−1≤x≤5

(x2−9x+1) = 11, inf
x∈D

f (x) = inf
−1≤x≤5

(x2−9x+1) = −77/4.

Proposition 1.3.7. If f : D→ R and g : D→ R (D nonempty) are bounded 

*
 functions and

f (x)≤ g(x) for all x ∈ D,

then
sup
x∈D

f (x)≤ sup
x∈D

g(x) and inf
x∈D

f (x)≤ inf
x∈D

g(x). (1.1)

Be careful with the variables. The x on the left side of the inequality in ( 1.1 ) is different from
the x on the right. You should really think of, say, the first inequality as

sup
x∈D

f (x)≤ sup
y∈D

g(y).

Let us prove this inequality. If b is an upper bound for g(D), then f (x) ≤ g(x) ≤ b for all x ∈ D,
and hence b is also an upper bound for f (D), or f (x)≤ b for all x ∈ D. Take the least upper bound
of g(D) to get that for all x ∈ D

f (x)≤ sup
y∈D

g(y).

*The boundedness hypothesis is for simplicity, it can be dropped if we allow for the extended real numbers.
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Therefore, supy∈D g(y) is an upper bound for f (D) and thus greater than or equal to the least upper
bound of f (D).

sup
x∈D

f (x)≤ sup
y∈D

g(y).

The second inequality (the statement about the inf) is left as an exercise ( Exercise 1.3.4 ).

A common mistake is to conclude

sup
x∈D

f (x)≤ inf
y∈D

g(y). (1.2)

The inequality ( 1.2 ) is not true given the hypothesis of the proposition above. For this stronger
inequality we need the stronger hypothesis

f (x)≤ g(y) for all x ∈ D and y ∈ D.

The proof as well as a counterexample is left as an exercise ( Exercise 1.3.5 ).

1.3.1 Exercises
Exercise 1.3.1: Show that |x− y|< ε if and only if x− ε < y < x+ ε .

Exercise 1.3.2: Show: a) max{x,y}= x+y+|x−y|
2 b) min{x,y}= x+y−|x−y|

2

Exercise 1.3.3: Find a number M such that |x3− x2 +8x| ≤M for all −2≤ x≤ 10.

Exercise 1.3.4: Finish the proof of  Proposition 1.3.7 . That is, prove that given any set D, and two bounded
functions f : D→ R and g : D→ R such that f (x)≤ g(x) for all x ∈ D, then

inf
x∈D

f (x)≤ inf
x∈D

g(x).

Exercise 1.3.5: Let f : D→ R and g : D→ R be functions (D nonempty).

a) Suppose f (x)≤ g(y) for all x ∈ D and y ∈ D. Show that

sup
x∈D

f (x)≤ inf
x∈D

g(x).

b) Find a specific D, f , and g, such that f (x)≤ g(x) for all x ∈ D, but

sup
x∈D

f (x)> inf
x∈D

g(x).

Exercise 1.3.6: Prove  Proposition 1.3.7 without the assumption that the functions are bounded. Hint: You
need to use the extended real numbers.

Exercise 1.3.7: Let D be a nonempty set. Suppose f : D→ R and g : D→ R are bounded functions.

a) Show

sup
x∈D

(
f (x)+g(x)

)
≤ sup

x∈D
f (x)+ sup

x∈D
g(x) and inf

x∈D

(
f (x)+g(x)

)
≥ inf

x∈D
f (x)+ inf

x∈D
g(x).

b) Find examples where we obtain strict inequalities.
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Exercise 1.3.8: Suppose f : D→ R and g : D→ R are bounded functions and α ∈ R.

a) Show that α f : D→ R defined by (α f )(x) := α f (x) is a bounded function.

b) Show that f +g : D→ R defined by ( f +g)(x) := f (x)+g(x) is a bounded function.

Exercise 1.3.9: Let f : D→ R and g : D→ R be functions, α ∈ R, and recall what f + g and α f means
from the previous exercise.

a) Prove that if f +g and g are bounded, then f is bounded.

b) Find an example where f and g are both unbounded, but f +g is bounded.

c) Prove that if f is bounded but g is unbounded, then f +g is unbounded.

d) Find an example where f is unbounded but α f is bounded.
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1.4 Intervals and the size of R
Note: 0.5–1 lecture (proof of uncountability of R can be optional)

You surely saw the notation for intervals before, but let us give a formal definition here. For
a,b ∈ R such that a < b we define

[a,b] := {x ∈ R : a≤ x≤ b},
(a,b) := {x ∈ R : a < x < b},
(a,b] := {x ∈ R : a < x≤ b},
[a,b) := {x ∈ R : a≤ x < b}.

The interval [a,b] is called a closed interval and (a,b) is called an open interval. The intervals of
the form (a,b] and [a,b) are called half-open intervals.

The intervals above were all bounded intervals, since both a and b were real numbers. We define
unbounded intervals,

[a,∞) := {x ∈ R : a≤ x},
(a,∞) := {x ∈ R : a < x},
(−∞,b] := {x ∈ R : x≤ b},
(−∞,b) := {x ∈ R : x < b}.

For completeness, we define (−∞,∞) := R. The intervals [a,∞), (−∞,b], and R are sometimes
called unbounded closed intervals, and (a,∞), (−∞,b), and R are sometimes called unbounded
open intervals.

In short, an interval is a set with at least two points that contains all points between any two
points. 

*
 The proof of the following proposition is left as an exercise.

Proposition 1.4.1. A set I ⊂ R is an interval if and only if I contains at least 2 points and for all
a,c ∈ I and b ∈ R such that a < b < c we have b ∈ I.

We have already seen that any open interval (a,b) (where a < b of course) must be nonempty.
For example, it contains the number a+b

2 . An unexpected fact is that from a set-theoretic perspective,
all intervals have the same “size,” that is, they all have the same cardinality. For example the map
f (x) := 2x takes the interval [0,1] bijectively to the interval [0,2].

Maybe more interestingly, the function f (x) := tan(x) is a bijective map from (−π/2,π/2) to
R. Hence the bounded interval (−π/2,π/2) has the same cardinality as R. It is not completely
straightforward to construct a bijective map from [0,1] to (0,1), but it is possible.

And do not worry, there does exist a way to measure the “size” of subsets of real numbers that
“sees” the difference between [0,1] and [0,2]. However, its proper definition requires much more
machinery than we have right now.

Let us say more about the cardinality of intervals and hence about the cardinality of R. We
have seen that there exist irrational numbers, that is R \Q is nonempty. The question is: How

*Sometimes single point sets and the empty set are also called intervals, but in this book, intervals have at least 2
points.
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many irrational numbers are there? It turns out there are a lot more irrational numbers than rational
numbers. We have seen that Q is countable, and we will show that R is uncountable. In fact, the
cardinality of R is the same as the cardinality of P(N), although we will not prove this claim here.

Theorem 1.4.2 (Cantor). R is uncountable.

We give a modified version of Cantor’s original proof from 1874 as this proof requires the least
setup. Normally this proof is stated as a contradiction proof, but a proof by contrapositive is easier
to understand.

Proof. Let X ⊂ R be a countably infinite subset such that for any two real numbers a < b, there is
an x ∈ X such that a < x < b. Were R countable, then we could take X = R. If we show that X is
necessarily a proper subset, then X cannot equal R, and R must be uncountable.

As X is countably infinite, there is a bijection from N to X . Consequently, we write X as a
sequence of real numbers x1,x2,x3, . . ., such that each number in X is given by x j for some j ∈ N.

Let us inductively construct two sequences of real numbers a1,a2,a3, . . . and b1,b2,b3, . . .. Let
a1 := x1 and b1 := x1 +1. Note that a1 < b1 and x1 /∈ (a1,b1). For k > 1, suppose ak−1 and bk−1
have been defined. Let us also suppose (ak−1,bk−1) does not contain any x j for any j = 1, . . . ,k−1.

(i) Define ak := x j, where j is the smallest j ∈ N such that x j ∈ (ak−1,bk−1). Such an x j exists
by our assumption on X .

(ii) Next, define bk := x j where j is the smallest j ∈ N such that x j ∈ (ak,bk−1).

Notice that ak < bk and ak−1 < ak < bk < bk−1. Also notice that (ak,bk) does not contain xk and
hence does not contain any x j for j = 1, . . . ,k.

Claim: a j < bk for all j and k in N. Let us first assume j < k. Then a j < a j+1 < · · ·< ak−1 <
ak < bk. Similarly for j > k. The claim follows.

Let A = {a j : j ∈ N} and B = {b j : j ∈ N}. By  Proposition 1.2.7 and the claim above we have

sup A≤ inf B.

Define y := sup A. The number y cannot be a member of A. If y = a j for some j, then y < a j+1,
which is impossible. Similarly, y cannot be a member of B. Therefore, a j < y for all j ∈ N and
y < b j for all j ∈ N. In other words y ∈ (a j,b j) for all j ∈ N.

Finally, we must show that y /∈ X . If we do so, then we will have constructed a real number not
in X showing that X must have been a proper subset. Take any xk ∈ X . By the construction above
xk /∈ (ak,bk), so xk 6= y as y ∈ (ak,bk).

Therefore, the sequence x1,x2, . . . cannot contain all elements of R and thus R is uncountable.

1.4.1 Exercises
Exercise 1.4.1: For a < b, construct an explicit bijection from (a,b] to (0,1].

Exercise 1.4.2: Suppose f : [0,1]→ (0,1) is a bijection. Using f , construct a bijection from [−1,1] to R.

Exercise 1.4.3: Prove  Proposition 1.4.1 . That is, suppose I ⊂R is a subset with at least 2 elements such that
if a < b < c and a,c ∈ I, then b ∈ I. Prove that I is one of the nine types of intervals explicitly given in this
section. Furthermore, prove that the intervals given in this section all satisfy this property.
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Exercise 1.4.4 (Hard): Construct an explicit bijection from (0,1] to (0,1). Hint: One approach is as follows:
First map (1/2,1] to (0, 1/2], then map (1/4, 1/2] to (1/2, 3/4], etc. Write down the map explicitly, that is, write
down an algorithm that tells you exactly what number goes where. Then prove that the map is a bijection.

Exercise 1.4.5 (Hard): Construct an explicit bijection from [0,1] to (0,1).

Exercise 1.4.6:

a) Show that every closed interval [a,b] is the intersection of countably many open intervals.

b) Show that every open interval (a,b) is a countable union of closed intervals.

c) Show that an intersection of a possibly infinite family of bounded closed intervals,
⋂

λ∈I
[aλ ,bλ ], is either

empty, a single point, or a bounded closed interval.

Exercise 1.4.7: Suppose S is a set of disjoint open intervals in R. That is, if (a,b) ∈ S and (c,d) ∈ S, then
either (a,b) = (c,d) or (a,b)∩ (c,d) = /0. Prove S is a countable set.

Exercise 1.4.8: Prove that the cardinality of [0,1] is the same as the cardinality of (0,1) by showing that
|[0,1]| ≤ |(0,1)| and |(0,1)| ≤ |[0,1]|. See  Definition 0.3.28  . This proof requires the Cantor–Bernstein–
Schröder theorem we stated without proof. Note that this proof does not give you an explicit bijection.

Exercise 1.4.9 (Challenging): A number x is algebraic if x is a root of a polynomial with integer coefficients,
in other words, anxn +an−1xn−1 + · · ·+a1x+a0 = 0 where all an ∈ Z.

a) Show that there are only countably many algebraic numbers.

b) Show that there exist non-algebraic numbers (follow in the footsteps of Cantor, use uncountability of R).

Hint: Feel free to use the fact that a polynomial of degree n has at most n real roots.

Exercise 1.4.10 (Challenging): Let F be the set of all functions f : R→ R. Prove |R|< |F | using Cantor’s
 Theorem 0.3.34 . 

*
 

*Interestingly, if C is the set of continuous functions, then |R|= |C|.
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1.5 Decimal representation of the reals

Note: 1 lecture (optional)

We often think of real numbers as their decimal representation. For a positive integer n, we find
the digits dK,dK−1, . . . ,d2,d1,d0 for some K, where each d j is an integer between 0 and 9, then

n = dK10K +dK−110K−1 + · · ·+d2102 +d110+d0.

We often assume dK 6= 0. To represent n we write the sequence of digits: n = dKdK−1 · · ·d2d1d0.
By a (decimal) digit, we mean an integer between 0 and 9.

Similarly, we represent some rational numbers. That is, for certain numbers x, we can find
negative integer −M, a positive integer K, and digits dK,dK−1, . . . ,d1,d0,d−1, . . . ,d−M, such that

x = dK10K +dK−110K−1 + · · ·+d2102 +d110+d0 +d−110−1 +d−210−2 + · · ·+d−M10−M.

We write x = dKdK−1 · · ·d1d0 .d−1d−2 · · ·d−M.
Not every real number has such a representation, even the simple rational number 1/3 does not.

The irrational number
√

2 does not have such a representation either. To get a representation for all
real numbers, we must allow infinitely many digits.

Let us consider only real numbers in the interval (0,1]. If we find a representation for these,
adding integers to them obtains a representation for all real numbers. Take an infinite sequence of
decimal digits:

0.d1d2d3 . . . .

That is, we have a digit d j for every j ∈ N. We renumbered the digits to avoid the negative signs.
We call the number

Dn :=
d1

10
+

d2

102 +
d3

103 + · · ·+
dn

10n .

the truncation of x to n decimal digits. We say this sequence of digits represents a real number x if

x = sup
n∈N

(
d1

10
+

d2

102 +
d3

103 + · · ·+
dn

10n

)
= sup

n∈N
Dn.

Proposition 1.5.1.

(i) Every infinite sequence of digits 0.d1d2d3 . . . represents a unique real number x ∈ [0,1], and

Dn ≤ x≤ Dn +
1

10n for all n ∈ N.

(ii) For every x ∈ (0,1] there exists an infinite sequence of digits 0.d1d2d3 . . . that represents x.
There exists a unique representation such that

Dn < x≤ Dn +
1

10n for all n ∈ N.
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Proof. We start with the first item. Take an arbitrary infinite sequence of digits 0.d1d2d3 . . .. Use
the geometric sum formula to write

Dn =
d1

10
+

d2

102 +
d3

103 + · · ·+
dn

10n ≤
9

10
+

9
102 +

9
103 + · · ·+

9
10n

=
9

10
(
1+ 1/10+(1/10)2 + · · ·+(1/10)n−1)

=
9

10

(
1− (1/10)n

1− 1/10

)
= 1− (1/10)n < 1.

In particular, Dn < 1 for all n. A sum of nonnegative numbers is nonnegative so Dn ≥ 0, and hence

0≤ sup
n∈N

Dn ≤ 1.

Therefore, 0.d1d2d3 . . . represents a unique number x := supn∈NDn ∈ [0,1]. As x is a supremum,
then Dn ≤ x. Take m ∈ N. If m < n, then Dm−Dn ≤ 0. If m > n, then computing as above

Dm−Dn =
dn+1

10n+1 +
dn+2

10n+2 +
dn+3

10n+3 + · · ·+
dm

10m ≤
1

10n
(
1− (1/10)m−n)< 1

10n .

Take the supremum over m to find

x−Dn ≤
1

10n .

We move on to the second item. Take any x ∈ (0,1]. First let us tackle the existence. For
convenience let D0 := 0. Then, D0 < x≤ D0 +10−0. Suppose we defined the digits d1,d2, . . . ,dn,
and that Dk < x≤ Dk +10−k, for k = 0,1,2, . . . ,n. We need to define dn+1.

By the  Archimedean property of the real numbers, find an integer j such that x−Dn≤ j10−(n+1).
Take the least such j and obtain

( j−1)10−(n+1) < x−Dn ≤ j10−(n+1). (1.3)

Let dn+1 := j− 1. As Dn < x, then dn+1 = j− 1 ≥ 0. On the other hand since x−Dn ≤ 10−n

we have that j is at most 10, and therefore dn+1 ≤ 9. So dn+1 is a decimal digit. Since Dn+1 =
Dn +dn+110−(n+1) add Dn to the inequality ( 1.3 ) above:

Dn+1 = Dn +( j−1)10−(n+1) < x≤ Dn + j10−(n+1)

= Dn +( j−1)10−(n+1)+10−(n+1) = Dn+1 +10−(n+1).

And so Dn+1 < x≤ Dn+1 +10−(n+1) holds. We inductively defined an infinite sequence of digits
0.d1d2d3 . . ..

Consider Dn < x ≤ Dn + 10−n. As Dn < x for all n, then sup{Dn : n ∈ N} ≤ x. The second
inequality for Dn implies

x− sup{Dm : m ∈ N} ≤ x−Dn ≤ 10−n.

As the inequality holds for all n and 10−n can be made arbitrarily small (see  Exercise 1.5.8 ) we
have x≤ sup{Dm : m ∈ N}. Therefore, sup{Dm : m ∈ N}= x.
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What is left to show is the uniqueness. Suppose 0.e1e2e3 . . . is another representation of x. Let
En be the n-digit truncation of 0.e1e2e3 . . ., and suppose En < x≤ En +10−n for all n ∈ N. Suppose
for some K ∈ N, en = dn for all n < K, so DK−1 = EK−1. Then

EK = DK−1 + eK10−K < x≤ EK +10−K = DK−1 + eK10−K +10−K.

Subtracting DK−1 and multiplying by 10K we get

eK < (x−DK−1)10K ≤ eK +1.

Similarly,
dK < (x−DK−1)10K ≤ dK +1.

Hence, both eK and dK are the largest integer j such that j < (x−DK−1)10K , and therefore eK = dK .
That is, the representation is unique.

The representation is not unique if we do not require Dn < x for all n. For example, for the
number 1/2 the method in the proof obtains the representation

0.49999 . . . .

However, we also have the representation 0.50000 . . ..
The only numbers that have nonunique representations are ones that end either in an infinite

sequence of 0s or 9s, because the only representation for which Dn = x is one where all digits past
the nth digit are zero. In this case there are exactly two representations of x (see the exercises).

Let us give another proof of the uncountability of the reals using decimal representations. This is
Cantor’s second proof, and is probably better known. This proof may seem shorter, but it is because
we already did the hard part above and we are left with a slick trick to prove that R is uncountable.
This trick is called Cantor diagonalization and finds use in other proofs as well.

Theorem 1.5.2 (Cantor). The set (0,1] is uncountable.

Proof. Let X := {x1,x2,x3, . . .} be any countable subset of real numbers in (0,1]. We will construct
a real number not in X . Let

xn = 0.dn
1dn

2dn
3 . . .

be the unique representation from the proposition, that is, dn
j is the jth digit of the nth number. Let

en :=

{
1 if dn

n 6= 1,
2 if dn

n = 1.

Let En be the n-digit truncation of y = 0.e1e2e3 . . .. Because all the digits are nonzero we get
En < En+1 ≤ y. Therefore

En < y≤ En +10−n

for all n, and the representation is the unique one for y from the proposition. For every n, the nth
digit of y is different from the nth digit of xn, so y 6= xn. Therefore y /∈ X , and as X was an arbitrary
countable subset, (0,1] must be uncountable. See  Figure 1.4 for an example.
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x1 = 0. 1 3 2 1 0 · · ·
x2 = 0. 7 9 4 1 3 · · ·
x3 = 0. 3 0 1 3 4 · · ·
x4 = 0. 8 9 2 5 6 · · ·
x5 = 0. 1 6 0 2 4 · · ·

...
...

...
...

...
...

... . . .

Number not in the list:
y = 0.21211 . . .

Figure 1.4: Example of Cantor diagonalization, the diagonal digits dn
n marked.

Using decimal digits we can also find lots of numbers that are not rational. The following
proposition is true for every rational number, but we give it only for x ∈ (0,1] for simplicity.

Proposition 1.5.3. If x ∈ (0,1] is a rational number and x = 0.d1d2d3 . . ., then the decimal digits
eventually start repeating. That is, there are positive integers N and P, such that for all n ≥ N,
dn = dn+P.

Proof. Let x = p/q for positive integers p and q. Suppose x is a number with a unique representation,
as otherwise we have seen above that both its representations are repeating, see also  Exercise 1.5.3 .
This also means that x 6= 1 so p < q.

To compute the first digit we take 10p and divide by q. Let d1 be the quotient, and the remainder
r1 is some integer between 0 and q−1. That is, d1 is the largest integer such that d1q≤ 10p and
then r1 = 10p−d1q. As p < q, then d1 < 10, so d1 is a digit. Furthermore,

d1

10
≤ p

q
=

d1

10
+

r1

10q
≤ d1

10
+

1
10

.

The first inequality must be strict since x has a unique representation. That is, d1 really is the first
digit. What is left is r1/(10q). This is the same as computing the first digit of r1/q. To compute d2
divide 10r1 by q, and so on. After computing n−1 digits, we have p/q = Dn−1 + rn−1/(10nq). To get
the nth digit, divide 10rn−1 by q to get quotient dn, remainder rn, and the inequalities

dn

10
≤ rn−1

q
=

dn

10
+

rn

10q
≤ dn

10
+

1
10

.

Dividing by 10n−1 and adding Dn−1 we find

Dn ≤ Dn−1 +
rn−1

10nq
=

p
q
≤ Dn +

1
10n .

By uniqueness we really have the nth digit dn from the construction.
The new digit depends only the remainder from the previous step. There are at most q possible

remainders and hence at some step the process must start repeating itself, and P is at most q.

The converse of the proposition is also true and is left as an exercise.
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Example 1.5.4: The number

x = 0.101001000100001000001 . . . ,

is irrational. That is, the digits are n zeros, then a one, then n+1 zeros, then a one, and so on and so
forth. The fact that x is irrational follows from the proposition; the digits never start repeating. For
every P, if we go far enough, we find a 1 followed by at least P+1 zeros.

1.5.1 Exercises
Exercise 1.5.1 (Easy): What is the decimal representation of 1 guaranteed by  Proposition 1.5.1  ? Make sure
to show that it does satisfy the condition.

Exercise 1.5.2: Prove the converse of  Proposition 1.5.3 , that is, if the digits in the decimal representation of
x are eventually repeating, then x must be rational.

Exercise 1.5.3: Show that real numbers x ∈ (0,1) with nonunique decimal representation are exactly the
rational numbers that can be written as m

10n for some integers m and n. In this case show that there exist
exactly two representations of x.

Exercise 1.5.4: Let b≥ 2 be an integer. Define a representation of a real number in [0,1] in terms of base b
rather than base 10 and prove  Proposition 1.5.1 for base b.

Exercise 1.5.5: Using the previous exercise with b = 2 (binary), show that cardinality of R is the same as
the cardinality of P(N), obtaining yet another (though related) proof that R is uncountable. Hint: Construct
two injections, one from [0,1] to P(N) and one from P(N) to [0,1]. Hint 2: Given a set A⊂ N, let the nth
binary digit of x be 1 if n ∈ A.

Exercise 1.5.6 (Challenging): Construct a bijection between [0,1] and [0,1]× [0,1]. 

*
 Hint: Consider even

and odd digits to construct a bijection between [0,1]\A and [0,1]× [0,1] for a countable set A (be careful
about uniqueness of representation). Then construct a bijection between ([0,1]× [0,1])\B and [0,1]× [0,1]
for a countable set B (e.g. use that N and the even natural numbers are bijective).

Exercise 1.5.7: Prove that if x = p/q ∈ (0,1] is a rational number, q > 1, then the period P of repeating digits
in the decimal representation of x is in fact less than or equal to q−1.

Exercise 1.5.8: Prove that if b ∈ N and b ≥ 2, then for any ε > 0, there is an n ∈ N such that we have
b−n < ε . Hint: One possibility is to first prove that bn > n for all n ∈ N by induction.

Exercise 1.5.9: Explicitly construct an injection f : R→ R\Q using  Proposition 1.5.3 .

*If you can’t do it, try to at least construct an injection from [0,1]× [0,1] to [0,1].
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Chapter 2

Sequences and Series

2.1 Sequences and limits
Note: 2.5 lectures

Analysis is essentially about taking limits. The most basic type of a limit is a limit of a sequence
of real numbers. We have already seen sequences used informally. Let us give the formal definition.

Definition 2.1.1. A sequence (of real numbers) is a function x : N→R. Instead of x(n), we usually
denote the nth element in the sequence by xn. We use the notation {xn}, or more precisely

{xn}∞
n=1,

to denote a sequence.
A sequence {xn} is bounded if there exists a B ∈ R such that

|xn| ≤ B for all n ∈ N.

In other words, the sequence {xn} is bounded whenever the set {xn : n ∈ N} is bounded, or
equivalently when it is bounded as a function.

When we need to give a concrete sequence we often give each term as a formula in terms
of n. For example, {1/n}∞

n=1, or simply {1/n}, stands for the sequence 1,1/2,1/3,1/4,1/5, . . .. The
sequence {1/n} is a bounded sequence (B = 1 suffices). On the other hand the sequence {n} stands
for 1,2,3,4, . . ., and this sequence is not bounded (why?).

While the notation for a sequence is similar 

*
 to that of a set, the notions are distinct. For example,

the sequence {(−1)n} is the sequence −1,1,−1,1,−1,1, . . ., whereas the set of values, the range
of the sequence, is just the set {−1,1}. We can write this set as {(−1)n : n ∈ N}. When ambiguity
can arise, we use the words sequence or set to distinguish the two concepts.

Another example of a sequence is the so-called constant sequence. That is a sequence {c}=
c,c,c,c, . . . consisting of a single constant c ∈ R repeating indefinitely.

We now get to the idea of a limit of a sequence. We will see in  Proposition 2.1.6  that the notation
below is well-defined. That is, if a limit exists, then it is unique. So it makes sense to talk about the
limit of a sequence.

*[ BS ] use the notation (xn) to denote a sequence instead of {xn}, which is what [ R2 ] uses. Both are common.
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Definition 2.1.2. A sequence {xn} is said to converge to a number x ∈ R, if for every ε > 0, there
exists an M ∈ N such that |xn− x|< ε for all n≥M. The number x is said to be the limit of {xn}.
We write

lim
n→∞

xn := x.

A sequence that converges is said to be convergent. Otherwise, we say the sequence diverges or
that it is divergent.

It is good to know intuitively what a limit means. It means that eventually every number in the
sequence is close to the number x. More precisely, we can get arbitrarily close to the limit, provided
we go far enough in the sequence. It does not mean we ever reach the limit. It is possible, and quite
common, that there is no xn in the sequence that equals the limit x. We illustrate the concept in

 Figure 2.1 . In the figure we first think of the sequence as a graph, as it is a function of N. Secondly
we also plot it as a sequence of labeled points on the real line.

x

x+ ε

x− ε

1 2 3 4 5 6 7 8 9 10

· · ·

M

x x+ εx− ε

x1x2 x3x4x5
x6

x7x8
x9x10

Figure 2.1: Illustration of convergence. On top, the first ten points of the sequence as a graph with M
and the interval around the limit x marked. On bottom, the points of the same sequence marked on the
number line.

When we write lim xn = x for some real number x, we are saying two things. First, that {xn} is
convergent, and second that the limit is x.

The definition above is one of the most important definitions in analysis, and it is necessary to
understand it perfectly. The key point in the definition is that given any ε > 0, we can find an M.
The M can depend on ε , so we only pick an M once we know ε . Let us illustrate this concept on a
few examples.

Example 2.1.3: The constant sequence 1,1,1,1, . . . is convergent and the limit is 1. For every
ε > 0, we pick M = 1.
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Example 2.1.4: Claim: The sequence {1/n} is convergent and

lim
n→∞

1
n
= 0.

Proof: Given an ε > 0, we find an M ∈ N such that 0 < 1/M < ε ( Archimedean property  at work).
Then for all n≥M we have that

|xn−0|=
∣∣∣∣1n
∣∣∣∣= 1

n
≤ 1

M
< ε.

Example 2.1.5: The sequence {(−1)n} is divergent. Proof: If there were a limit x, then for ε = 1
2

we expect an M that satisfies the definition. Suppose such an M exists, then for an even n≥M we
compute

1/2 > |xn− x|= |1− x| and 1/2 > |xn+1− x|= |−1− x| .
But

2 = |1− x− (−1− x)| ≤ |1− x|+ |−1− x|< 1/2+ 1/2 = 1,

and that is a contradiction.

Proposition 2.1.6. A convergent sequence has a unique limit.

The proof of this proposition exhibits a useful technique in analysis. Many proofs follow the
same general scheme. We want to show a certain quantity is zero. We write the quantity using the
triangle inequality as two quantities, and we estimate each one by arbitrarily small numbers.

Proof. Suppose the sequence {xn} has limits x and y. Take an arbitrary ε > 0. From the definition
find an M1 such that for all n≥M1, |xn− x|< ε/2. Similarly, find an M2 such that for all n≥M2 we
have |xn− y|< ε/2. Now take an n such that n≥M1 and also n≥M2, and estimate

|y− x|= |xn− x− (xn− y)|
≤ |xn− x|+ |xn− y|
<

ε

2
+

ε

2
= ε.

As |y− x|< ε for all ε > 0, then |y− x|= 0 and y = x. Hence the limit (if it exists) is unique.

Proposition 2.1.7. A convergent sequence {xn} is bounded.

Proof. Suppose {xn} converges to x. Thus there exists an M ∈ N such that for all n≥M we have
|xn− x|< 1. Let B1 := |x|+1 and note that for n≥M we have

|xn|= |xn− x+ x|
≤ |xn− x|+ |x|
< 1+ |x|= B1.

The set {|x1| , |x2| , . . . , |xM−1|} is a finite set and hence let

B2 := max{|x1| , |x2| , . . . , |xM−1|}.
Let B := max{B1,B2}. Then for all n ∈ N we have

|xn| ≤ B.
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The sequence {(−1)n} shows that the converse does not hold. A bounded sequence is not
necessarily convergent.

Example 2.1.8: Let us show the sequence
{

n2+1
n2+n

}
converges and

lim
n→∞

n2 +1
n2 +n

= 1.

Given ε > 0, find M ∈ N such that 1
M < ε . Then for any n≥M we have∣∣∣∣n2 +1

n2 +n
−1
∣∣∣∣= ∣∣∣∣n2 +1− (n2 +n)

n2 +n

∣∣∣∣= ∣∣∣∣ 1−n
n2 +n

∣∣∣∣
=

n−1
n2 +n

≤ n
n2 +n

=
1

n+1

≤ 1
n
≤ 1

M
< ε.

Therefore, lim n2+1
n2+n = 1. This example shows that sometimes to get what you want, you must throw

away some information to get a simpler estimate.

2.1.1 Monotone sequences
The simplest type of a sequence is a monotone sequence. Checking that a monotone sequence
converges is as easy as checking that it is bounded. It is also easy to find the limit for a convergent
monotone sequence, provided we can find the supremum or infimum of a countable set of numbers.

Definition 2.1.9. A sequence {xn} is monotone increasing if xn ≤ xn+1 for all n ∈ N. A sequence
{xn} is monotone decreasing if xn ≥ xn+1 for all n ∈ N. If a sequence is either monotone increasing
or monotone decreasing, we can simply say the sequence is monotone. Some authors also use the
word monotonic.

For example, {1/n} is monotone decreasing, the constant sequence {1} is both monotone
increasing and monotone decreasing, and {(−1)n} is not monotone. First few terms of a sample
monotone increasing sequence are shown in  Figure 2.2 .

Proposition 2.1.10. A monotone sequence {xn} is bounded if and only if it is convergent.
Furthermore, if {xn} is monotone increasing and bounded, then

lim
n→∞

xn = sup{xn : n ∈ N}.

If {xn} is monotone decreasing and bounded, then

lim
n→∞

xn = inf{xn : n ∈ N}.
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1 2 3 4 5 6 7 8 9 10

Figure 2.2: First few terms of a monotone increasing sequence as a graph.

Proof. Let us suppose the sequence is monotone increasing. Suppose the sequence is bounded, so
there exists a B such that xn ≤ B for all n, that is the set {xn : n ∈ N} is bounded above. Let

x := sup{xn : n ∈ N}.

Let ε > 0 be arbitrary. As x is the supremum, then there must be at least one M ∈ N such that
xM > x− ε (because x is the supremum). As {xn} is monotone increasing, then it is easy to see (by

 induction ) that xn ≥ xM for all n≥M. Hence

|xn− x|= x− xn ≤ x− xM < ε.

Therefore, the sequence converges to x. We already know that a convergent sequence is bounded,
which completes the other direction of the implication.

The proof for monotone decreasing sequences is left as an exercise.

Example 2.1.11: Take the sequence
{ 1√

n

}
.

The sequence is bounded below as 1√
n > 0 for all n ∈ N. Let us show that it is monotone

decreasing. We start with
√

n+1≥√n (why is that true?). From this inequality we obtain

1√
n+1

≤ 1√
n
.

So the sequence is monotone decreasing and bounded below (hence bounded). We apply the
theorem to note that the sequence is convergent and in fact

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ N
}
.

We already know that the infimum is greater than or equal to 0, as 0 is a lower bound. Take a number
b≥ 0 such that b≤ 1√

n for all n. We square both sides to obtain

b2 ≤ 1
n

for all n ∈ N.
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We have seen before that this implies that b2 ≤ 0 (a consequence of the  Archimedean property  ).
As we also have b2 ≥ 0, then b2 = 0 and so b = 0. Hence, b = 0 is the greatest lower bound, and
lim 1√

n = 0.

Example 2.1.12: A word of caution: We must show that a monotone sequence is bounded in order
to use  Proposition 2.1.10 to conclude a sequence converges. The sequence {1+ 1/2+ · · ·+ 1/n} is a
monotone increasing sequence that grows very slowly. We will see, once we get to series, that this
sequence has no upper bound and so does not converge. It is not at all obvious that this sequence
has no upper bound.

A common example of where monotone sequences arise is the following proposition. The proof
is left as an exercise.

Proposition 2.1.13. Let S⊂ R be a nonempty bounded set. Then there exist monotone sequences
{xn} and {yn} such that xn,yn ∈ S and

sup S = lim
n→∞

xn and inf S = lim
n→∞

yn.

2.1.2 Tail of a sequence
Definition 2.1.14. For a sequence {xn}, the K-tail (where K ∈ N) or just the tail of the sequence is
the sequence starting at K +1, usually written as

{xn+K}∞
n=1 or {xn}∞

n=K+1.

For example, the 4-tail of {1/n} is 1/5,1/6,1/7,1/8, . . .. The 0-tail of a sequence is the sequence
itself. The convergence and the limit of a sequence only depends on its tail.

Proposition 2.1.15. Let {xn}∞
n=1 be a sequence. Then the following statements are equivalent:

(i) The sequence {xn}∞
n=1 converges.

(ii) The K-tail {xn+K}∞
n=1 converges for all K ∈ N.

(iii) The K-tail {xn+K}∞
n=1 converges for some K ∈ N.

Furthermore, if any (and hence all) of the limits exist, then for any K ∈ N

lim
n→∞

xn = lim
n→∞

xn+K.

Proof. It is clear that  (ii) implies  (iii) . We will therefore show first that  (i) implies  (ii) , and then we
will show that  (iii) implies  (i) . That is,

 (ii) 

 (i)  (iii) 

to prove

to prove

In the process we will also show that the limits are equal.
Let us start with  (i) implies  (ii) . Suppose {xn} converges to some x ∈ R. Let K ∈ N be arbitrary,

and define yn := xn+K . We wish to show that {yn} converges to x. Given an ε > 0, there exists an
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M ∈ N such that |x− xn|< ε for all n≥M. Note that n≥M implies n+K ≥M. Therefore, for all
n≥M we have that

|x− yn|= |x− xn+K|< ε.

Consequently, {yn} converges to x.
Let us move to  (iii) implies  (i) . Let K ∈ N be given, define yn := xn+K , and suppose that {yn}

converges to x ∈ R. That is, given an ε > 0, there exists an M′ ∈ N such that |x− yn| < ε for all
n≥M′. Let M := M′+K. Then n≥M implies n−K ≥M′. Thus, whenever n≥M we have

|x− xn|= |x− yn−K|< ε.

Therefore {xn} converges to x.

Essentially, the limit does not care about how the sequence begins, it only cares about the tail of
the sequence. The beginning of the sequence may be arbitrary.

For example, the sequence defined by xn := n
n2+16 is decreasing if we start at n = 4 (it is

increasing before). That is: {xn}= 1/17,1/10,3/25,1/8,5/41,3/26,7/65,1/10,9/97,5/58, . . ., and

1/17 < 1/10 < 3/25 < 1/8 > 5/41 > 3/26 > 7/65 > 1/10 > 9/97 > 5/58 > .. . .

If we throw away the first 3 terms and look at the 3-tail, it is decreasing. The proof is left as an
exercise. Since the 3-tail is monotone and bounded below by zero, it is convergent, and therefore
the sequence is convergent.

2.1.3 Subsequences
It is useful to sometimes consider only some terms of a sequence. A subsequence of {xn} is a
sequence that contains only some of the numbers from {xn} in the same order.

Definition 2.1.16. Let {xn} be a sequence. Let {ni} be a strictly increasing sequence of natural
numbers, that is ni < ni+1 for all i (in other words n1 < n2 < n3 < · · · ). The sequence

{xni}∞
i=1

is called a subsequence of {xn}.

Consider the sequence {1/n}. The sequence {1/3n} is a subsequence. To see how these two
sequences fit in the definition, take ni := 3i. The numbers in the subsequence must come from
the original sequence. So 1,0,1/3,0,1/5, . . . is not a subsequence of {1/n}. Similarly, order must be
preserved. So the sequence 1,1/3,1/2,1/5, . . . is not a subsequence of {1/n}.

A tail of a sequence is one special type of a subsequence. For an arbitrary subsequence, we have
the following proposition about convergence.

Proposition 2.1.17. If {xn} is a convergent sequence, then any subsequence {xni} is also convergent
and

lim
n→∞

xn = lim
i→∞

xni.
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Proof. Suppose limn→∞ xn = x. That means that for every ε > 0 we have an M ∈N such that for all
n≥M

|xn− x|< ε.

It is not hard to prove (do it!) by  induction that ni ≥ i. Hence i≥M implies ni ≥M. Thus, for all
i≥M we have

|xni− x|< ε,

and we are done.

Example 2.1.18: Existence of a convergent subsequence does not imply convergence of the se-
quence itself. Take the sequence 0,1,0,1,0,1, . . .. That is, xn = 0 if n is odd, and xn = 1 if n is
even. The sequence {xn} is divergent, however, the subsequence {x2n} converges to 1 and the
subsequence {x2n+1} converges to 0. Compare  Proposition 2.3.7 .

2.1.4 Exercises
In the following exercises, feel free to use what you know from calculus to find the limit, if it exists. But you
must prove that you found the correct limit, or prove that the series is divergent.

Exercise 2.1.1: Is the sequence {3n} bounded? Prove or disprove.

Exercise 2.1.2: Is the sequence {n} convergent? If so, what is the limit?

Exercise 2.1.3: Is the sequence
{
(−1)n

2n

}
convergent? If so, what is the limit?

Exercise 2.1.4: Is the sequence {2−n} convergent? If so, what is the limit?

Exercise 2.1.5: Is the sequence
{

n
n+1

}
convergent? If so, what is the limit?

Exercise 2.1.6: Is the sequence
{

n
n2 +1

}
convergent? If so, what is the limit?

Exercise 2.1.7: Let {xn} be a sequence.

a) Show that lim xn = 0 (that is, the limit exists and is zero) if and only if lim |xn|= 0.

b) Find an example such that {|xn|} converges and {xn} diverges.

Exercise 2.1.8: Is the sequence
{

2n

n!

}
convergent? If so, what is the limit?

Exercise 2.1.9: Show that the sequence
{

1
3
√

n

}
is monotone and bounded. Then use  Proposition 2.1.10 to

find the limit.

Exercise 2.1.10: Show that the sequence
{

n+1
n

}
is monotone and bounded. Then use  Proposition 2.1.10 

to find the limit.

Exercise 2.1.11: Finish the proof of  Proposition 2.1.10 for monotone decreasing sequences.
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Exercise 2.1.12: Prove  Proposition 2.1.13 .

Exercise 2.1.13: Let {xn} be a convergent monotone sequence. Suppose there exists a k ∈ N such that

lim
n→∞

xn = xk.

Show that xn = xk for all n≥ k.

Exercise 2.1.14: Find a convergent subsequence of the sequence {(−1)n}.

Exercise 2.1.15: Let {xn} be a sequence defined by

xn :=

{
n if n is odd,
1/n if n is even.

a) Is the sequence bounded? (prove or disprove)

b) Is there a convergent subsequence? If so, find it.

Exercise 2.1.16: Let {xn} be a sequence. Suppose there are two convergent subsequences {xni} and {xmi}.
Suppose

lim
i→∞

xni = a and lim
i→∞

xmi = b,

where a 6= b. Prove that {xn} is not convergent, without using  Proposition 2.1.17 .

Exercise 2.1.17 (Tricky): Find a sequence {xn} such that for any y ∈ R, there exists a subsequence {xni}
converging to y.

Exercise 2.1.18 (Easy): Let {xn} be a sequence and x ∈ R. Suppose for any ε > 0, there is an M such that
for all n≥M, |xn− x| ≤ ε . Show that lim xn = x.

Exercise 2.1.19 (Easy): Let {xn} be a sequence and x ∈ R such that there exists a k ∈ N such that for all
n≥ k, xn = x. Prove that {xn} converges to x.

Exercise 2.1.20: Let {xn} be a sequence and define a sequence {yn} by y2k := xk2 and y2k−1 := xk for all
k ∈ N. Prove that {xn} converges if and only if {yn} converges. Furthermore, prove that if they converge,
then lim xn = lim yn.

Exercise 2.1.21: Show that the 3-tail of the sequence defined by xn := n
n2+16 is monotone decreasing. Hint:

Suppose n≥ m≥ 4 and consider the numerator of the expression xn− xm.

Exercise 2.1.22: Suppose that {xn} is a sequence such that the subsequences {x2n}, {x2n−1}, and {x3n} all
converge. Show that {xn} is convergent.
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2.2 Facts about limits of sequences
Note: 2–2.5 lectures, recursively defined sequences can safely be skipped

In this section we go over some basic results about the limits of sequences. We start by looking
at how sequences interact with inequalities.

2.2.1 Limits and inequalities
A basic lemma about limits and inequalities is the so-called squeeze lemma. It allows us to show
convergence of sequences in difficult cases if we find two other simpler convergent sequences that
“squeeze” the original sequence.

Lemma 2.2.1 (Squeeze lemma). Let {an}, {bn}, and {xn} be sequences such that

an ≤ xn ≤ bn for all n ∈ N.

Suppose {an} and {bn} converge and

lim
n→∞

an = lim
n→∞

bn.

Then {xn} converges and
lim
n→∞

xn = lim
n→∞

an = lim
n→∞

bn.

Proof. Let x := lim an = lim bn. Let ε > 0 be given. Find an M1 such that for all n≥M1 we have
that |an− x|< ε , and an M2 such that for all n≥M2 we have |bn− x|< ε . Set M := max{M1,M2}.
Suppose n≥M. In particular, we have x−an < ε or x− ε < an. Similarly we have that bn < x+ ε .
Putting everything together, we find

x− ε < an ≤ xn ≤ bn < x+ ε.

In other words, −ε < xn− x < ε or |xn− x|< ε . So {xn} converges to x. See  Figure 2.3 .

x xn bnx− ε an x+ ε

εε

Figure 2.3: Squeeze lemma proof in picture.

Example 2.2.2: One application of the  squeeze lemma is to compute limits of sequences using
limits that we already know. For example, consider the sequence { 1

n
√

n}. Since
√

n ≥ 1 for all
n ∈ N, we have

0≤ 1
n
√

n
≤ 1

n
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for all n ∈ N. We already know lim 1/n = 0. Hence, using the constant sequence {0} and the
sequence {1/n} in the squeeze lemma, we conclude

lim
n→∞

1
n
√

n
= 0.

Limits, when they exist, preserve non-strict inequalities.

Lemma 2.2.3. Let {xn} and {yn} be convergent sequences and

xn ≤ yn,

for all n ∈ N. Then
lim
n→∞

xn ≤ lim
n→∞

yn.

Proof. Let x := lim xn and y := lim yn. Let ε > 0 be given. Find an M1 such that for all n≥M1 we
have |xn− x| < ε/2. Find an M2 such that for all n ≥M2 we have |yn− y| < ε/2. In particular, for
some n≥max{M1,M2} we have x− xn < ε/2 and yn− y < ε/2. We add these inequalities to obtain

yn− xn + x− y < ε, or yn− xn < y− x+ ε.

Since xn ≤ yn we have 0≤ yn− xn and hence 0 < y− x+ ε . In other words,

x− y < ε.

Because ε > 0 was arbitrary, we obtain x− y≤ 0. Therefore, x≤ y.

The next corollary follows by using constant sequences in  Lemma 2.2.3  . The proof is left as an
exercise.

Corollary 2.2.4.
(i) Let {xn} be a convergent sequence such that xn ≥ 0, then

lim
n→∞

xn ≥ 0.

(ii) Let a,b ∈ R and let {xn} be a convergent sequence such that

a≤ xn ≤ b,

for all n ∈ N. Then
a≤ lim

n→∞
xn ≤ b.

In  Lemma 2.2.3 and  Corollary 2.2.4 we cannot simply replace all the non-strict inequalities with
strict inequalities. For example, let xn := −1/n and yn := 1/n. Then xn < yn, xn < 0, and yn > 0 for
all n. However, these inequalities are not preserved by the limit operation as lim xn = lim yn = 0.
The moral of this example is that strict inequalities may become non-strict inequalities when limits
are applied; if we know xn < yn for all n, we may only conclude

lim
n→∞

xn ≤ lim
n→∞

yn.

This issue is a common source of errors.
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2.2.2 Continuity of algebraic operations
Limits interact nicely with algebraic operations.

Proposition 2.2.5. Let {xn} and {yn} be convergent sequences.

(i) The sequence {zn}, where zn := xn + yn, converges and

lim
n→∞

(xn + yn) = lim
n→∞

zn = lim
n→∞

xn + lim
n→∞

yn.

(ii) The sequence {zn}, where zn := xn− yn, converges and

lim
n→∞

(xn− yn) = lim
n→∞

zn = lim
n→∞

xn− lim
n→∞

yn.

(iii) The sequence {zn}, where zn := xnyn, converges and

lim
n→∞

(xnyn) = lim
n→∞

zn =
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
.

(iv) If lim yn 6= 0 and yn 6= 0 for all n ∈N, then the sequence {zn}, where zn :=
xn

yn
, converges and

lim
n→∞

xn

yn
= lim

n→∞
zn =

lim xn

lim yn
.

Proof. Let us start with  (i) . Suppose {xn} and {yn} are convergent sequences and write zn := xn+yn.
Let x := lim xn, y := lim yn, and z := x+ y.

Let ε > 0 be given. Find an M1 such that for all n≥M1 we have |xn− x|< ε/2. Find an M2 such
that for all n≥M2 we have |yn− y|< ε/2. Take M := max{M1,M2}. For all n≥M we have

|zn− z|= |(xn + yn)− (x+ y)|
= |xn− x+ yn− y|
≤ |xn− x|+ |yn− y|
<

ε

2
+

ε

2
= ε.

Therefore  (i) is proved. Proof of  (ii) is almost identical and is left as an exercise.
Let us tackle  (iii) . Suppose again that {xn} and {yn} are convergent sequences and write

zn := xnyn. Let x := lim xn, y := lim yn, and z := xy.
Let ε > 0 be given. Let K := max{|x| , |y| , ε/3,1}. Find an M1 such that for all n≥M1 we have

|xn− x|< ε

3K . Find an M2 such that for all n≥M2 we have |yn− y|< ε

3K . Take M := max{M1,M2}.
For all n≥M we have

|zn− z|= |(xnyn)− (xy)|
= |(xn− x+ x)(yn− y+ y)− xy|
= |(xn− x)y+ x(yn− y)+(xn− x)(yn− y)|
≤ |(xn− x)y|+ |x(yn− y)|+ |(xn− x)(yn− y)|
= |xn− x| |y|+ |x| |yn− y|+ |xn− x| |yn− y|
<

ε

3K
K +K

ε

3K
+

ε

3K
ε

3K
(now notice that ε

3K ≤ 1 and K ≥ 1)

≤ ε

3
+

ε

3
+

ε

3
= ε.
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Finally, let us tackle  (iv) . Instead of proving  (iv) directly, we prove the following simpler claim:
Claim: If {yn} is a convergent sequence such that lim yn 6= 0 and yn 6= 0 for all n ∈ N, then

{1/yn} converges and

lim
n→∞

1
yn

=
1

lim yn
.

Once the claim is proved, we take the sequence {1/yn}, multiply it by the sequence {xn} and
apply item  (iii) .

Proof of claim: Let ε > 0 be given. Let y := lim yn. As |y| 6= 0, then min
{
|y|2 ε

2 ,
|y|
2

}
> 0. Find

an M such that for all n≥M we have

|yn− y|< min
{
|y|2 ε

2
,
|y|
2

}
.

For all n≥M we have |y− yn|< |y|
2 , and so

|y|= |y− yn + yn| ≤ |y− yn|+ |yn|<
|y|
2
+ |yn| .

Subtracting |y|/2 from both sides we obtain |y|/2 < |yn|, or in other words,

1
|yn|

<
2
|y| .

We finish the proof of the claim: ∣∣∣∣ 1
yn
− 1

y

∣∣∣∣= ∣∣∣∣y− yn

yyn

∣∣∣∣
=
|y− yn|
|y| |yn|

≤ |y− yn|
|y|

2
|y|

<
|y|2 ε

2
|y|

2
|y| = ε.

And we are done.

By plugging in constant sequences, we get several easy corollaries. If c ∈ R and {xn} is a
convergent sequence, then for example

lim
n→∞

cxn = c
(

lim
n→∞

xn

)
and lim

n→∞
(c+ xn) = c+ lim

n→∞
xn.

Similarly, we find such equalities for constant subtraction and division.
As we can take limits past multiplication we can show (exercise) that lim xk

n = (lim xn)
k for all

k ∈ N. That is, we can take limits past powers. Let us see if we can do the same with roots.
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Proposition 2.2.6. Let {xn} be a convergent sequence such that xn ≥ 0. Then

lim
n→∞

√
xn =

√
lim
n→∞

xn.

Of course to even make this statement, we need to apply  Corollary 2.2.4  to show that lim xn ≥ 0,
so that we can take the square root without worry.

Proof. Let {xn} be a convergent sequence and let x := lim xn. As we just mentioned, x≥ 0.
First suppose x = 0. Let ε > 0 be given. Then there is an M such that for all n≥M we have

xn = |xn|< ε2, or in other words
√

xn < ε . Hence∣∣√xn−
√

x
∣∣=√xn < ε.

Now suppose x > 0 (and hence
√

x > 0).∣∣√xn−
√

x
∣∣= ∣∣∣∣ xn− x√

xn +
√

x

∣∣∣∣
=

1√
xn +
√

x
|xn− x|

≤ 1√
x
|xn− x| .

We leave the rest of the proof to the reader.

A similar proof works for the kth root. That is, we also obtain lim x1/k
n = (lim xn)

1/k. We leave
this to the reader as a challenging exercise.

We may also want to take the limit past the absolute value sign. The converse of this proposition
is not true, see  Exercise 2.1.7 part b).

Proposition 2.2.7. If {xn} is a convergent sequence, then {|xn|} is convergent and

lim
n→∞
|xn|=

∣∣∣ lim
n→∞

xn

∣∣∣ .
Proof. We simply note the reverse triangle inequality∣∣ |xn|− |x|

∣∣≤ |xn− x| .
Hence if |xn− x| can be made arbitrarily small, so can

∣∣ |xn|− |x|
∣∣. Details are left to the reader.

Let us see an example putting the propositions above together. Since lim 1/n = 0, then

lim
n→∞

∣∣∣√1+ 1/n− 100/n2
∣∣∣= ∣∣∣√1+(lim 1/n)−100(lim 1/n)(lim 1/n)

∣∣∣= 1.

That is, the limit on the left hand side exists because the right hand side exists. You really should
read the equality above from right to left.

On the other hand you must apply the propositions carefully. For example, by rewriting the
expression with common denominator first we find

lim
n→∞

(
n2

n+1
−n
)
=−1.

However,
{ n2

n+1

}
and {n} are not convergent, so

(
lim n2

n+1

)
−
(
lim n

)
is nonsense.
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2.2.3 Recursively defined sequences
Now that we know we can interchange limits and algebraic operations, we can compute the limits
of many sequences. One such class are recursively defined sequences, that is, sequences where
the next number in the sequence is computed using a formula from a fixed number of preceding
elements in the sequence.

Example 2.2.8: Let {xn} be defined by x1 := 2 and

xn+1 := xn−
x2

n−2
2xn

.

We must first find out if this sequence is well-defined; we must show we never divide by zero. Then
we must find out if the sequence converges. Only then can we attempt to find the limit.

So let us prove xn exists and xn > 0 for all n (so the sequence is well-defined and bounded
below). Let us show this by  induction . We know that x1 = 2 > 0. For the induction step, suppose
xn > 0. Then

xn+1 = xn−
x2

n−2
2xn

=
2x2

n− x2
n +2

2xn
=

x2
n +2
2xn

.

It is always true that x2
n +2 > 0, and as xn > 0, then x2

n+2
2xn

> 0 and hence xn+1 > 0.
Next let us show that the sequence is monotone decreasing. If we show that x2

n−2≥ 0 for all n,
then xn+1 ≤ xn for all n. Obviously x2

1−2 = 4−2 = 2 > 0. For an arbitrary n we have

x2
n+1−2 =

(
x2

n +2
2xn

)2

−2 =
x4

n +4x2
n +4−8x2

n
4x2

n
=

x4
n−4x2

n +4
4x2

n
=

(
x2

n−2
)2

4x2
n

.

Since any square is nonnegative, x2
n+1−2≥ 0 for all n. Therefore, {xn} is monotone decreasing

and bounded (xn > 0 for all n), and so the limit exists. It remains to find the limit.
Write

2xnxn+1 = x2
n +2.

Since {xn+1} is the 1-tail of {xn}, it converges to the same limit. Let us define x := lim xn. Take the
limit of both sides to obtain

2x2 = x2 +2,

or x2 = 2. As xn > 0 for all n we get x≥ 0, and therefore x =
√

2.

You may have seen the sequence above before. It is Newton’s method  

*
 for finding the square

root of 2. This method comes up often in practice and converges very rapidly. We used the fact
that x2

1−2 > 0, although it was not strictly needed to show convergence by considering a tail of the
sequence. The sequence converges as long as x1 6= 0, although with a negative x1 we would arrive
at x =−

√
2. By replacing the 2 in the numerator we obtain the square root of any positive number.

These statements are left as an exercise.
You should, however, be careful. Before taking any limits, you must make sure the sequence

converges. Let us see an example.

*Named after the English physicist and mathematician  Isaac Newton (1642–1726/7).
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Example 2.2.9: Suppose x1 := 1 and xn+1 := x2
n + xn. If we blindly assumed that the limit exists

(call it x), then we would get the equation x = x2+x, from which we might conclude x = 0. However,
it is not hard to show that {xn} is unbounded and therefore does not converge.

The thing to notice in this example is that the method still works, but it depends on the initial
value x1. If we set x1 := 0, then the sequence converges and the limit really is 0. An entire branch
of mathematics, called dynamics, deals precisely with these issues. See  Exercise 2.2.14 .

2.2.4 Some convergence tests
It is not always necessary to go back to the definition of convergence to prove that a sequence is
convergent. We first give a simple convergence test. The main idea is that {xn} converges to x if
and only if {|xn− x|} converges to zero.

Proposition 2.2.10. Let {xn} be a sequence. Suppose there is an x ∈ R and a convergent sequence
{an} such that

lim
n→∞

an = 0

and
|xn− x| ≤ an

for all n. Then {xn} converges and lim xn = x.

Proof. Let ε > 0 be given. Note that an ≥ 0 for all n. Find an M ∈ N such that for all n≥M we
have an = |an−0|< ε . Then, for all n≥M we have

|xn− x| ≤ an < ε.

As the proposition shows, to study when a sequence has a limit is the same as studying when
another sequence goes to zero. In general, it may be hard to decide if a sequence converges, but for
certain sequences there exist easy to apply tests that tell us if the sequence converges or not. Let us
see one such test. First, let us compute the limit of a certain specific sequence.

Proposition 2.2.11. Let c > 0.

(i) If c < 1, then
lim
n→∞

cn = 0.

(ii) If c > 1, then {cn} is unbounded.

Proof. First consider c < 1. As c > 0, then cn > 0 for all n ∈ N by  induction . As c < 1, then
cn+1 < cn for all n. So we have a decreasing sequence that is bounded below. Hence, it is
convergent. Let L := lim cn. The 1-tail {cn+1} also converges to L. Taking the limit of both sides of
cn+1 = c · cn, we obtain L = cL, or (1− c)L = 0. It follows that L = 0 as c 6= 1.

Now consider c > 1. Suppose for contradiction that the sequence is bounded above by B > 0,
that is, cn ≤ B for all n ∈ N. Then for all n,(

1
c

)n

=
1
cn ≥

1
B
> 0.

As 1/c < 1, then
{
(1/c)n} converges to 0, contradicts the bound above.
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In the proposition above, the ratio of the (n+1)th term and the nth term is c. We generalize this
simple result to a larger class of sequences. The following lemma will come up again once we get
to series.

Lemma 2.2.12 (Ratio test for sequences). Let {xn} be a sequence such that xn 6= 0 for all n and
such that the limit

L := lim
n→∞

|xn+1|
|xn|

exists.

(i) If L < 1, then {xn} converges and lim xn = 0.

(ii) If L > 1, then {xn} is unbounded (hence diverges).

If L exists, but L = 1, the lemma says nothing. We cannot make any conclusion based on that
information alone. For example, the sequence {1/n} converges to zero, but L = 1. The constant
sequence {1} converges to 1, not zero, and L = 1. The sequence {(−1)n} does not converge at all,
and L = 1 as well. Finally, the sequence {n} is unbounded, yet again L = 1. The statement may be
strengthened, see exercises  2.2.13 and  2.3.15 .

Proof. Suppose L < 1. As |xn+1|
|xn| ≥ 0 for all n, then L≥ 0. Pick r such that L < r < 1. We wish to

compare the sequence {xn} to the sequence {rn}. The idea is that while the ratio |xn+1|
|xn| is not going

to be less than L eventually, it will eventually be less than r, which is still less than 1. The intuitive
idea of the proof is illustrated in  Figure 2.4 .

1L r

Figure 2.4: Proof of ratio test in picture. The short lines represent the ratios |xn+1|
|xn| approaching L.

As r−L > 0, there exists an M ∈ N such that for all n≥M we have∣∣∣∣ |xn+1|
|xn|

−L
∣∣∣∣< r−L

Therefore, for n≥M,
|xn+1|
|xn|

−L < r−L or
|xn+1|
|xn|

< r.

For n > M (that is for n≥M+1) write

|xn|= |xM|
|xM+1|
|xM|

|xM+2|
|xM+1|

· · · |xn|
|xn−1|

< |xM|rr · · ·r = |xM|rn−M = (|xM|r−M)rn.

The sequence {rn} converges to zero and hence |xM|r−Mrn converges to zero. By  Proposition 2.2.10 ,
the M-tail of {xn} converges to zero and therefore {xn} converges to zero.

Now suppose L > 1. Pick r such that 1 < r < L. As L− r > 0, there exists an M ∈ N such that
for all n≥M ∣∣∣∣ |xn+1|

|xn|
−L
∣∣∣∣< L− r.
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Therefore,
|xn+1|
|xn|

> r.

Again for n > M, write

|xn|= |xM|
|xM+1|
|xM|

|xM+2|
|xM+1|

· · · |xn|
|xn−1|

> |xM|rr · · ·r = |xM|rn−M = (|xM|r−M)rn.

The sequence {rn} is unbounded (since r > 1), and therefore {xn} cannot be bounded (if |xn| ≤ B
for all n, then rn < B

|xM |r
M for all n, which is impossible). Consequently, {xn} cannot converge.

Example 2.2.13: A simple application of the lemma above is to prove

lim
n→∞

2n

n!
= 0.

Proof: Compute
2n+1/(n+1)!

2n/n!
=

2n+1

2n
n!

(n+1)!
=

2
n+1

.

It is not hard to see that
{ 2

n+1

}
converges to zero. The conclusion follows by the lemma.

Example 2.2.14: A more complicated (and useful) application of the ratio test is to prove

lim
n→∞

n1/n = 1.

Proof: Let ε > 0 be given. Consider the sequence
{ n
(1+ε)n

}
. Compute

(n+1)/(1+ ε)n+1

n/(1+ ε)n =
n+1

n
1

1+ ε
.

The limit of n+1
n = 1+ 1

n as n→ ∞ is 1, and so

lim
n→∞

(n+1)/(1+ ε)n+1

n/(1+ ε)n =
1

1+ ε
< 1.

Therefore,
{ n
(1+ε)n

}
converges to 0. In particular, there exists an N such that for n≥ N, we have

n
(1+ε)n < 1, or n < (1+ ε)n, or n1/n < 1+ ε . As n ≥ 1, then n1/n ≥ 1, and so 0 ≤ n1/n− 1 < ε .

Consequently, lim n1/n = 1.

2.2.5 Exercises
Exercise 2.2.1: Prove  Corollary 2.2.4 . Hint: Use constant sequences and  Lemma 2.2.3 .

Exercise 2.2.2: Prove part  (ii) of  Proposition 2.2.5 .
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Exercise 2.2.3: Prove that if {xn} is a convergent sequence, k ∈ N, then

lim
n→∞

xk
n =

(
lim
n→∞

xn

)k
.

Hint: Use  induction .

Exercise 2.2.4: Suppose x1 := 1
2 and xn+1 := x2

n. Show that {xn} converges and find lim xn. Hint: You cannot
divide by zero!

Exercise 2.2.5: Let xn := n−cos(n)
n . Use the  squeeze lemma to show that {xn} converges and find the limit.

Exercise 2.2.6: Let xn := 1
n2 and yn := 1

n . Define zn := xn
yn

and wn := yn
xn

. Do {zn} and {wn} converge? What
are the limits? Can you apply  Proposition 2.2.5 ? Why or why not?

Exercise 2.2.7: True or false, prove or find a counterexample. If {xn} is a sequence such that {x2
n} converges,

then {xn} converges.

Exercise 2.2.8: Show that

lim
n→∞

n2

2n = 0.

Exercise 2.2.9: Suppose {xn} is a sequence and suppose for some x ∈ R, the limit

L := lim
n→∞

|xn+1− x|
|xn− x|

exists and L < 1. Show that {xn} converges to x.

Exercise 2.2.10 (Challenging): Let {xn} be a convergent sequence such that xn ≥ 0 and k ∈ N. Then

lim
n→∞

x1/k
n =

(
lim
n→∞

xn

)1/k
.

Hint: Find an expression q such that x1/k
n −x1/k

xn−x = 1
q .

Exercise 2.2.11: Let r > 0. Show that starting with any x1 6= 0, the sequence defined by

xn+1 := xn−
x2

n− r
2xn

converges to
√

r if x1 > 0 and −√r if x1 < 0.

Exercise 2.2.12:

a) Suppose {an} is a bounded sequence and {bn} is a sequence converging to 0. Show that {anbn} converges
to 0.

b) Find an example where {an} is unbounded, {bn} converges to 0, and {anbn} is not convergent.

c) Find an example where {an} is bounded, {bn} converges to some x 6= 0, and {anbn} is not convergent.
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Exercise 2.2.13 (Easy): Prove the following stronger version of  Lemma 2.2.12 , the ratio test. Suppose {xn}
is a sequence such that xn 6= 0 for all n.

a) Prove that if there exists an r < 1 and M ∈ N such that for all n≥M we have

|xn+1|
|xn|

≤ r,

then {xn} converges to 0.

b) Prove that if there exists an r > 1 and M ∈ N such that for all n≥M we have

|xn+1|
|xn|

≥ r,

then {xn} is unbounded.

Exercise 2.2.14: Suppose x1 := c and xn+1 := x2
n + xn. Show that {xn} converges if and only if −1≤ c≤ 0,

in which case it converges to 0.

Exercise 2.2.15: Prove lim
n→∞

(n2 +1)1/n
= 1.

Exercise 2.2.16: Prove that
{
(n!)1/n} is unbounded. Hint: Show that

{Cn

n!

}
converges to zero for any C > 0.
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2.3 Limit superior, limit inferior, and Bolzano–Weierstrass
Note: 1–2 lectures, alternative proof of BW optional

In this section we study bounded sequences and their subsequences. In particular, we define
the so-called limit superior and limit inferior of a bounded sequence and talk about limits of
subsequences. Furthermore, we prove the Bolzano–Weierstrass theorem 

*
 , which is an indispensable

tool in analysis.
We have seen that every convergent sequence is bounded, although there exist many bounded

divergent sequences. For example, the sequence {(−1)n} is bounded, but it is divergent. All is not
lost however and we can still compute certain limits with a bounded divergent sequence.

2.3.1 Upper and lower limits
There are ways of creating monotone sequences out of any sequence, and in this fashion we get the
so-called limit superior and limit inferior. These limits always exist for bounded sequences.

If a sequence {xn} is bounded, then the set {xk : k ∈ N} is bounded. For every n, the set
{xk : k ≥ n} is also bounded (as it is a subset), so we take its supremum and infimum.

Definition 2.3.1. Let {xn} be a bounded sequence. Define the sequences {an} and {bn} by an :=
sup{xk : k ≥ n} and bn := inf{xk : k ≥ n}. Define, if the limits exist,

limsup
n→∞

xn := lim
n→∞

an,

liminf
n→∞

xn := lim
n→∞

bn.

For a bounded sequence, liminf and limsup always exist (see below). It is possible to define
liminf and limsup for unbounded sequences if we allow ∞ and −∞. It is not hard to generalize
the following results to include unbounded sequences, however, we first restrict our attention to
bounded ones.

Proposition 2.3.2. Let {xn} be a bounded sequence. Let an and bn be as in the definition above.

(i) The sequence {an} is bounded monotone decreasing and {bn} is bounded monotone increas-
ing. In particular, liminfxn and limsupxn exist.

(ii) limsup
n→∞

xn = inf{an : n ∈ N} and liminf
n→∞

xn = sup{bn : n ∈ N}.

(iii) liminf
n→∞

xn ≤ limsup
n→∞

xn.

Proof. Let us see why {an} is a decreasing sequence. As an is the least upper bound for {xk : k≥ n},
it is also an upper bound for the subset {xk : k ≥ (n+1)}. Therefore an+1, the least upper bound
for {xk : k ≥ (n+1)}, has to be less than or equal to an, that is, an ≥ an+1. Similarly (an exercise),
{bn} is an increasing sequence. It is left as an exercise to show that if {xn} is bounded, then {an}
and {bn} must be bounded.

The second item in the proposition follows as the sequences {an} and {bn} are monotone.

*Named after the Czech mathematician  Bernhard Placidus Johann Nepomuk Bolzano (1781–1848), and the German
mathematician  Karl Theodor Wilhelm Weierstrass (1815–1897).
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For the third item, note that bn ≤ an, as the inf of a nonempty set is less than or equal to its
sup. The sequences {an} and {bn} converge to the limsup and the liminf respectively. Apply

 Lemma 2.2.3 to obtain
lim
n→∞

bn ≤ lim
n→∞

an.

limsup
n→∞

xn

liminf
n→∞

xn

⋄⋄⋄⋄⋄⋄⋄
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

⋄⋄⋄
⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄⋄

Figure 2.5: First 50 terms of an example sequence. Terms xn of the sequence are marked with dots (•),
an are marked with circles (◦), and bn are marked with diamonds (�).

Example 2.3.3: Let {xn} be defined by

xn :=

{
n+1

n if n is odd,
0 if n is even.

Let us compute the liminf and limsup of this sequence. See also  Figure 2.6  . First the limit inferior:

liminf
n→∞

xn = lim
n→∞

(
inf{xk : k ≥ n}

)
= lim

n→∞
0 = 0.

For the limit superior, we write

limsup
n→∞

xn = lim
n→∞

(
sup{xk : k ≥ n}

)
.

It is not hard to see that

sup{xk : k ≥ n}=
{

n+1
n if n is odd,

n+2
n+1 if n is even.

We leave it to the reader to show that the limit is 1. That is,

limsup
n→∞

xn = 1.

Do note that the sequence {xn} is not a convergent sequence.
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limsup
n→∞

xn

liminf
n→∞

xn ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

Figure 2.6: First 20 terms of the sequence in  Example 2.3.3 . The marking is the same as in  Figure 2.5 .

We associate certain subsequences with limsup and liminf. It is important to notice that {an}
and {bn} are not necessarily subsequences of {xn}, nor do they have to even consist of the same
numbers. For example, for the sequence {1/n}, bn = 0 for all n ∈ N.

Theorem 2.3.4. If {xn} is a bounded sequence, then there exists a subsequence {xnk} such that

lim
k→∞

xnk = limsup
n→∞

xn.

Similarly, there exists a (perhaps different) subsequence {xmk} such that

lim
k→∞

xmk = liminf
n→∞

xn.

Proof. Define an := sup{xk : k ≥ n}. Write x := limsup xn = lim an. We define the subsequence
inductively. Pick n1 := 1 and suppose we have defined the subsequence until nk for some k. Now
pick some m > nk such that

a(nk+1)− xm <
1

k+1
.

We can do this as a(nk+1) is a supremum of the set {xn : n≥ nk +1} and hence there are elements
of the sequence arbitrarily close (or even possibly equal) to the supremum. Set nk+1 := m. The
subsequence {xnk} is defined. Next we need to prove that it converges and has the right limit.

Note that a(nk−1+1) ≥ ank (why?) and that ank ≥ xnk . Therefore, for every k ≥ 2 we have

|ank− xnk |= ank− xnk

≤ a(nk−1+1)− xnk

<
1
k
.

Let us show that {xnk} converges to x. Note that the subsequence need not be monotone. Let
ε > 0 be given. As {an} converges to x, then the subsequence {ank} converges to x. Thus there
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exists an M1 ∈ N such that for all k ≥M1 we have

|ank− x|< ε

2
.

Find an M2 ∈ N such that
1

M2
≤ ε

2
.

Take M := max{M1,M2,2} and compute. For all k ≥M we have

|x− xnk |= |ank− xnk + x−ank |
≤ |ank− xnk |+ |x−ank |

<
1
k
+

ε

2

≤ 1
M2

+
ε

2
≤ ε

2
+

ε

2
= ε.

We leave the statement for liminf as an exercise.

2.3.2 Using limit inferior and limit superior
The advantage of liminf and limsup is that we can always write them down for any (bounded)
sequence. If we could somehow compute them, we could also compute the limit of the sequence
if it exists, or show that the sequence diverges. Working with liminf and limsup is a little bit like
working with limits, although there are subtle differences.

Proposition 2.3.5. Let {xn} be a bounded sequence. Then {xn} converges if and only if

liminf
n→∞

xn = limsup
n→∞

xn.

Furthermore, if {xn} converges, then

lim
n→∞

xn = liminf
n→∞

xn = limsup
n→∞

xn.

Proof. Let an and bn be as in  Definition 2.3.1 . In particular, for all n ∈ N,

bn ≤ xn ≤ an.

If liminf xn = limsup xn, then we know that {an} and {bn} both converge to the same limit. By the
squeeze lemma ( Lemma 2.2.1 ), {xn} converges and

lim
n→∞

bn = lim
n→∞

xn = lim
n→∞

an.

Now suppose {xn} converges to x. We know by  Theorem 2.3.4 that there exists a subsequence
{xnk} that converges to limsup xn. As {xn} converges to x, every subsequence converges to x and
therefore limsup xn = lim xnk = x. Similarly, liminf xn = x.
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Limit superior and limit inferior behave nicely with subsequences.

Proposition 2.3.6. Suppose {xn} is a bounded sequence and {xnk} is a subsequence. Then

liminf
n→∞

xn ≤ liminf
k→∞

xnk ≤ limsup
k→∞

xnk ≤ limsup
n→∞

xn.

Proof. The middle inequality has been proved already. We will prove the third inequality, and leave
the first inequality as an exercise.

We want to prove that limsup xnk ≤ limsup xn. Define a j := sup{xk : k ≥ j} as usual. Also
define c j := sup{xnk : k≥ j}. It is not true that {c j} is necessarily a subsequence of {a j}. However,
as nk ≥ k for all k, we have that {xnk : k ≥ j} ⊂ {xk : k ≥ j}. A supremum of a subset is less than or
equal to the supremum of the set and therefore

c j ≤ a j.

 Lemma 2.2.3 gives
lim
j→∞

c j ≤ lim
j→∞

a j,

which is the desired conclusion.

Limit superior and limit inferior are the largest and smallest subsequential limits. If the
subsequence {xnk} in the previous proposition is convergent, then liminf xnk = lim xnk = limsup xnk .
Therefore,

liminf
n→∞

xn ≤ lim
k→∞

xnk ≤ limsup
n→∞

xn.

Similarly, we get the following useful test for convergence of a bounded sequence. We leave the
proof as an exercise.

Proposition 2.3.7. A bounded sequence {xn} is convergent and converges to x if and only if every
convergent subsequence {xnk} converges to x.

2.3.3 Bolzano–Weierstrass theorem
While it is not true that a bounded sequence is convergent, the Bolzano–Weierstrass theorem tells us
that we can at least find a convergent subsequence. The version of Bolzano–Weierstrass that we
present in this section is the Bolzano–Weierstrass for sequences.

Theorem 2.3.8 (Bolzano–Weierstrass). Suppose a sequence {xn} of real numbers is bounded. Then
there exists a convergent subsequence {xni}.

Proof. We use  Theorem 2.3.4 . It says that there exists a subsequence whose limit is limsup xn.

The reader might complain right now that  Theorem 2.3.4 is strictly stronger than the Bolzano–
Weierstrass theorem as presented above. That is true. However,  Theorem 2.3.4 only applies to the
real line, but Bolzano–Weierstrass applies in more general contexts (that is, in Rn) with pretty much
the exact same statement.

As the theorem is so important to analysis, we present an explicit proof. The idea of the
following proof also generalizes to different contexts.
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Alternate proof of Bolzano–Weierstrass. As the sequence is bounded, then there exist two numbers
a1 < b1 such that a1 ≤ xn ≤ b1 for all n ∈N. We will define a subsequence {xni} and two sequences
{ai} and {bi}, such that {ai} is monotone increasing, {bi} is monotone decreasing, ai ≤ xni ≤ bi
and such that lim ai = lim bi. That xni converges then follows by the  squeeze lemma .

We define the sequences inductively. We will always have that ai < bi, and that xn ∈ [ai,bi]
for infinitely many n ∈ N. We have already defined a1 and b1. We take n1 := 1, that is xn1 = x1.
Suppose that up to some k ∈ N we have defined the subsequence xn1,xn2, . . . ,xnk , and the sequences
a1,a2, . . . ,ak and b1,b2, . . . ,bk. Let y := ak+bk

2 . Clearly ak < y < bk. If there exist infinitely many
j ∈N such that x j ∈ [ak,y], then set ak+1 := ak, bk+1 := y, and pick nk+1 > nk such that xnk+1 ∈ [ak,y].
If there are not infinitely many j such that x j ∈ [ak,y], then it must be true that there are infinitely
many j ∈ N such that x j ∈ [y,bk]. In this case pick ak+1 := y, bk+1 := bk, and pick nk+1 > nk such
that xnk+1 ∈ [y,bk].

We now have the sequences defined. What is left to prove is that lim ai = lim bi. The limits exist
as the sequences are monotone. In the construction, bi−ai is cut in half in each step. Therefore,
bi+1−ai+1 =

bi−ai
2 . By  induction ,

bi−ai =
b1−a1

2i−1 .

Let x := lim ai. As {ai} is monotone,

x = sup{ai : i ∈ N}.

Let y := lim bi = inf{bi : i ∈ N}. Since ai < bi for all i, then x≤ y. As the sequences are monotone,
then for any i we have (why?)

y− x≤ bi−ai =
b1−a1

2i−1 .

Because b1−a1
2i−1 is arbitrarily small and y−x≥ 0, we have y−x= 0. Finish by the  squeeze lemma .

Yet another proof of the Bolzano–Weierstrass theorem is to show the following claim, which is
left as a challenging exercise. Claim: Every sequence has a monotone subsequence.

2.3.4 Infinite limits
Just as for infima and suprema, it is possible to allow certain limits to be infinite. That is, we write
lim xn = ∞ or lim xn =−∞ for certain divergent sequences.

Definition 2.3.9. We say {xn} diverges to infinity  

*
 if for every K ∈ R, there exists an M ∈ N such

that for all n≥M we have xn > K. In this case we write

lim
n→∞

xn := ∞.

Similarly, if for every K ∈ R there exists an M ∈ N such that for all n≥M we have xn < K, we say
{xn} diverges to minus infinity and we write

lim
n→∞

xn :=−∞.

*Sometimes it is said that {xn} converges to infinity.
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With this definition and allowing ∞ and −∞, we can write lim xn for any monotone sequence.

Proposition 2.3.10. Suppose {xn} is a monotone unbounded sequence. Then

lim
n→∞

xn =

{
∞ if {xn} is increasing,
−∞ if {xn} is decreasing.

Proof. The case of monotone increasing follows from  Exercise 2.3.14  part c) below. Let us
do monotone decreasing. Suppose {xn} is decreasing and unbounded, that is, for every K ∈ R,
there is an M ∈ N such that xM < K. By monotonicity xn ≤ xM < K for all n ≥ M. Therefore,
lim xn =−∞.

Example 2.3.11:
lim
n→∞

n = ∞, lim
n→∞

n2 = ∞, lim
n→∞
−n =−∞.

We leave verification to the reader.

We may also allow liminf and limsup to take on the values ∞ and −∞, so that we can apply
liminf and limsup to absolutely any sequence, not just a bounded one. Unfortunately, the sequences
{an} and {bn} are not sequences of real numbers but of extended real numbers. In particular, an
can equal ∞ for some n, and bn can equal −∞. So we have no definition for the limits. But since the
extended real numbers are still an ordered set, we can take suprema and infima.

Definition 2.3.12. Let {xn} be an unbounded sequence of real numbers. Define sequences of
extended real numbers by an := sup{xk : k ≥ n} and bn := inf{xk : k ≥ n}. Define

limsup
n→∞

xn := inf{an : n ∈ N}, and liminf
n→∞

xn := sup{bn : n ∈ N}.

This definition agrees with the definition for bounded sequences whenever liman or limbn
makes sense including possibly ∞ and −∞.

Proposition 2.3.13. Let {xn} be an unbounded sequence. Define {an} and {bn} as above. Then
{an} is decreasing, and {bn} is increasing. If an is a real number for every n, then limsup xn =
lim an. If bn is a real number for every n, then liminf xn = lim bn.

Proof. As before, an = sup{xk : k ≥ n} ≥ sup{xk : k ≥ n+ 1} = an+1. So {an} is decreasing.
Similarly, {bn} is increasing.

If the sequence {an} is a sequence of real numbers, then liman = inf{an : n ∈ N}. This follows
from  Proposition 2.1.10 if {an} is bounded and  Proposition 2.3.10 if {an} is unbounded. We
proceed similarly with {bn}.

The definition behaves as expected with limsup and liminf, see exercises  2.3.13 and  2.3.14 .

Example 2.3.14: Suppose xn := 0 for odd n and xn := n for even n. Then an = ∞ for every n, since
for any M, there exists an even k such that xk = k ≥M. On the other hand, bn = 0 for all n, as for
any n, {bk : k ≥ n} consists of 0 and nonnegative numbers. So,

lim
n→∞

xn does not exist, limsup
n→∞

xn = ∞, liminf
n→∞

xn = 0.
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2.3.5 Exercises
Exercise 2.3.1: Suppose {xn} is a bounded sequence. Define an and bn as in  Definition 2.3.1 . Show that
{an} and {bn} are bounded.

Exercise 2.3.2: Suppose {xn} is a bounded sequence. Define bn as in  Definition 2.3.1 . Show that {bn} is an
increasing sequence.

Exercise 2.3.3: Finish the proof of  Proposition 2.3.6  . That is, suppose {xn} is a bounded sequence and {xnk}
is a subsequence. Prove liminf

n→∞
xn ≤ liminf

k→∞
xnk .

Exercise 2.3.4: Prove  Proposition 2.3.7 .

Exercise 2.3.5:

a) Let xn :=
(−1)n

n
. Find limsup xn and liminf xn.

b) Let xn :=
(n−1)(−1)n

n
. Find limsup xn and liminf xn.

Exercise 2.3.6: Let {xn} and {yn} be bounded sequences such that xn ≤ yn for all n. Then show that

limsup
n→∞

xn ≤ limsup
n→∞

yn

and
liminf

n→∞
xn ≤ liminf

n→∞
yn.

Exercise 2.3.7: Let {xn} and {yn} be bounded sequences.

a) Show that {xn + yn} is bounded.

b) Show that
(liminf

n→∞
xn)+(liminf

n→∞
yn)≤ liminf

n→∞
(xn + yn).

Hint: Find a subsequence {xni + yni} of {xn + yn} that converges. Then find a subsequence {xnmi
} of

{xni} that converges. Then apply what you know about limits.

c) Find an explicit {xn} and {yn} such that

(liminf
n→∞

xn)+(liminf
n→∞

yn)< liminf
n→∞

(xn + yn).

Hint: Look for examples that do not have a limit.

Exercise 2.3.8: Let {xn} and {yn} be bounded sequences (from the previous exercise we know that {xn +yn}
is bounded).

a) Show that
(limsup

n→∞
xn)+(limsup

n→∞
yn)≥ limsup

n→∞
(xn + yn).

Hint: See previous exercise.

b) Find an explicit {xn} and {yn} such that

(limsup
n→∞

xn)+(limsup
n→∞

yn)> limsup
n→∞

(xn + yn).

Hint: See previous exercise.
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Exercise 2.3.9: If S⊂R is a set, then x ∈R is a cluster point if for every ε > 0, the set (x−ε,x+ε)∩S\{x}
is not empty. That is, if there are points of S arbitrarily close to x. For example, S := {1/n : n ∈ N} has a
unique (only one) cluster point 0, but 0 /∈ S. Prove the following version of the Bolzano–Weierstrass theorem:

Theorem. Let S⊂ R be a bounded infinite set, then there exists at least one cluster point of S.

Hint: If S is infinite, then S contains a countably infinite subset. That is, there is a sequence {xn} of
distinct numbers in S.

Exercise 2.3.10 (Challenging):

a) Prove that any sequence contains a monotone subsequence. Hint: Call n ∈ N a peak if am ≤ an for all
m≥ n. There are two possibilities: Either the sequence has at most finitely many peaks, or it has infinitely
many peaks.

b) Conclude the Bolzano–Weierstrass theorem.

Exercise 2.3.11: Prove a stronger version of  Proposition 2.3.7 . Suppose {xn} is a sequence such that every
subsequence {xni} has a subsequence {xnmi

} that converges to x.

a) First show that {xn} is bounded.

b) Now show that {xn} converges to x.

Exercise 2.3.12: Let {xn} be a bounded sequence.

a) Prove that there exists an s such that for any r > s there exists an M ∈ N such that for all n≥M we have
xn < r.

b) If s is a number as in a), then prove limsup xn ≤ s.

c) Show that if S is the set of all s as in a), then limsup xn = inf S.

Exercise 2.3.13 (Easy): Suppose {xn} is such that liminf xn =−∞, limsup xn = ∞.

a) Show that {xn} is not convergent, and also that neither lim xn = ∞ nor lim xn =−∞ is true.

b) Find an example of such a sequence.

Exercise 2.3.14: Let {xn} be a sequence.

a) Show that lim xn = ∞ if and only if liminf xn = ∞.

b) Then show that lim xn =−∞ if and only if limsup xn =−∞.

c) If {xn} is monotone increasing, show that either lim xn exists and is finite or lim xn = ∞. In either case,
lim xn = sup{xn : n ∈ N}.

Exercise 2.3.15: Prove the following stronger version of  Lemma 2.2.12 , the ratio test. Suppose {xn} is a
sequence such that xn 6= 0 for all n.

a) Prove that if

limsup
n→∞

|xn+1|
|xn|

< 1,

then {xn} converges to 0.

b) Prove that if

liminf
n→∞

|xn+1|
|xn|

> 1,

then {xn} is unbounded.
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Exercise 2.3.16: Suppose {xn} is a bounded sequence, an := sup{xk : k ≥ n} as before. Suppose that for
some ` ∈ N, a` /∈ {xk : k ≥ `}. Then show that a j = a` for all j ≥ `, and hence limsup xn = a`.

Exercise 2.3.17: Suppose {xn} is a sequence, and an := sup{xk : k≥ n} and bn := sup{xk : k≥ n} as before.

a) Prove that if a` = ∞ for some ` ∈ N, then limsup xn = ∞.

b) Prove that if b` =−∞ for some ` ∈ N, then liminf xn =−∞.

Exercise 2.3.18: Suppose {xn} is a sequence such that both liminf xn and limsup xn are finite. Prove that
{xn} is bounded.

Exercise 2.3.19: Suppose {xn} is a bounded sequence, and ε > 0 is given. Prove that there exists an M such
that for all k ≥M we have

xk−
(

limsup
n→∞

xn

)
< ε and

(
liminf

n→∞
xn

)
− xk < ε.
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2.4 Cauchy sequences
Note: 0.5–1 lecture

Often we wish to describe a certain number by a sequence that converges to it. In this case, it is
impossible to use the number itself in the proof that the sequence converges. It would be nice if we
could check for convergence without knowing the limit.

Definition 2.4.1. A sequence {xn} is a Cauchy sequence 

*
 if for every ε > 0 there exists an M ∈ N

such that for all n≥M and all k ≥M we have

|xn− xk|< ε.

Intuitively it means that the terms of the sequence are eventually all arbitrarily close to each
other. We might expect such a sequence to be convergent, and it turns out that we would be correct
because R has the  least-upper-bound property . Before we prove this, we look at some examples.

Example 2.4.2: The sequence {1/n} is a Cauchy sequence.
Proof: Given ε > 0, find M such that M > 2/ε. Then for n,k ≥M we have that 1/n < ε/2 and

1/k < ε/2. Therefore, for n,k ≥M we have∣∣∣∣1n − 1
k

∣∣∣∣≤ ∣∣∣∣1n
∣∣∣∣+ ∣∣∣∣1k

∣∣∣∣< ε

2
+

ε

2
= ε.

Example 2.4.3: The sequence {n+1
n } is a Cauchy sequence.

Proof: Given ε > 0, find M such that M > 2/ε. Then for n,k ≥M we have that 1/n < ε/2 and
1/k < ε/2. Therefore, for n,k ≥M we have∣∣∣∣n+1

n
− k+1

k

∣∣∣∣= ∣∣∣∣k(n+1)−n(k+1)
nk

∣∣∣∣
=

∣∣∣∣kn+ k−nk−n
nk

∣∣∣∣
=

∣∣∣∣k−n
nk

∣∣∣∣
≤
∣∣∣∣ k
nk

∣∣∣∣+ ∣∣∣∣−n
nk

∣∣∣∣
=

1
n
+

1
k
<

ε

2
+

ε

2
= ε.

Proposition 2.4.4. A Cauchy sequence is bounded.

Proof. Suppose {xn} is Cauchy. Pick M such that for all n,k ≥ M we have |xn− xk| < 1. In
particular, for all n≥M,

|xn− xM|< 1.

*Named after the French mathematician  Augustin-Louis Cauchy (1789–1857).
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By the reverse triangle inequality, |xn|− |xM| ≤ |xn− xM|< 1. Hence for n≥M,

|xn|< 1+ |xM| .

Let
B := max

{
|x1| , |x2| , . . . , |xM−1| ,1+ |xM|

}
.

Then |xn| ≤ B for all n ∈ N.

Theorem 2.4.5. A sequence of real numbers is Cauchy if and only if it converges.

Proof. Let ε > 0 be given and suppose {xn} converges to x. Then there exists an M such that for
n≥M,

|xn− x|< ε

2
.

Hence for n≥M and k ≥M,

|xn− xk|= |xn− x+ x− xk| ≤ |xn− x|+ |x− xk|<
ε

2
+

ε

2
= ε.

Alright, that direction was easy. Now suppose {xn} is Cauchy. We have shown that {xn}
is bounded. For a bounded sequence, liminf and limsup exist, and this is where we use the

 least-upper-bound property . If we show that

liminf
n→∞

xn = limsup
n→∞

xn,

then {xn} must be convergent by  Proposition 2.3.5 .
Define a := limsup xn and b := liminf xn. By  Theorem 2.3.4 , there exist subsequences {xni}

and {xmi}, such that
lim
i→∞

xni = a and lim
i→∞

xmi = b.

Given an ε > 0, there exists an M1 such that for all i≥M1 we have |xni−a|< ε/3 and an M2 such
that for all i≥M2 we have |xmi−b|< ε/3. There also exists an M3 such that for all n,k ≥M3 we
have |xn− xk|< ε/3. Let M := max{M1,M2,M3}. If i≥M, then ni ≥M and mi ≥M. Hence

|a−b|= |a− xni + xni− xmi + xmi−b|
≤ |a− xni|+ |xni− xmi|+ |xmi−b|
<

ε

3
+

ε

3
+

ε

3
= ε.

As |a−b|< ε for all ε > 0, then a = b and the sequence converges.

Remark 2.4.6. The statement of this proposition is sometimes used to define the completeness
property of the real numbers. We say a set is Cauchy-complete (or sometimes just complete) if every
Cauchy sequence converges. Above we proved that as R has the  least-upper-bound property , then R
is Cauchy-complete. We can “complete” Q by “throwing in” just enough points to make all Cauchy
sequences converge (we omit the details). The resulting field has the least-upper-bound property.
The advantage of using Cauchy sequences to define completeness is that this idea generalizes to
more abstract settings such as metric spaces, see  chapter 7 .
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The Cauchy criterion is stronger than |xn+1− xn| (or
∣∣xn+ j− xn

∣∣ for a fixed j) going to zero as n
goes to infinity. When we get to the partial sums of the harmonic series (see  Example 2.5.11 in the
next section), we will have a sequence such that xn+1− xn = 1/n, yet {xn} is divergent. In fact, for
that sequence, limn→∞

∣∣xn+ j− xn
∣∣= 0 for any j ∈ N (confer  Exercise 2.5.12  ). The key point in the

definition of Cauchy is that n and k vary independently and can be arbitrarily far apart.

2.4.1 Exercises
Exercise 2.4.1: Prove that {n2−1

n2 } is Cauchy using directly the definition of Cauchy sequences.

Exercise 2.4.2: Let {xn} be a sequence such that there exists a 0 <C < 1 such that

|xn+1− xn| ≤C |xn− xn−1| .

Prove that {xn} is Cauchy. Hint: You can freely use the formula (for C 6= 1)

1+C+C2 + · · ·+Cn =
1−Cn+1

1−C
.

Exercise 2.4.3 (Challenging): Suppose F is an ordered field that contains the rational numbers Q, such that
Q is dense, that is: Whenever x,y ∈ F are such that x < y, then there exists a q ∈Q such that x < q < y. Say
a sequence {xn}∞

n=1 of rational numbers is Cauchy if given any ε ∈Q with ε > 0, there exists an M such that
for all n,k ≥M we have |xn− xk|< ε . Suppose any Cauchy sequence of rational numbers has a limit in F.
Prove that F has the  least-upper-bound property .

Exercise 2.4.4: Let {xn} and {yn} be sequences such that lim yn = 0. Suppose that for all k ∈ N and for all
m≥ k we have

|xm− xk| ≤ yk.

Show that {xn} is Cauchy.

Exercise 2.4.5: Suppose a Cauchy sequence {xn} is such that for every M ∈ N, there exists a k ≥M and an
n≥M such that xk < 0 and xn > 0. Using simply the definition of a Cauchy sequence and of a convergent
sequence, show that the sequence converges to 0.

Exercise 2.4.6: Suppose |xn− xk| ≤ n/k2 for all n and k. Show that {xn} is Cauchy.

Exercise 2.4.7: Suppose {xn} is a Cauchy sequence such that for infinitely many n, xn = c. Using only the
definition of Cauchy sequence prove that lim xn = c.

Exercise 2.4.8: True or false, prove or find a counterexample: If {xn} is a Cauchy sequence, then there exists
an M such that for all n≥M we have |xn+1− xn| ≤ |xn− xn−1|.

79



80 CHAPTER 2. SEQUENCES AND SERIES

2.5 Series
Note: 2 lectures

A fundamental object in mathematics is that of a series. In fact, when the foundations of analysis
were being developed, the motivation was to understand series. Understanding series is important
in applications of analysis. For example, solving differential equations often includes series, and
differential equations are the basis for understanding almost all of modern science.

2.5.1 Definition

Definition 2.5.1. Given a sequence {xn}, we write the formal object

∞

∑
n=1

xn or sometimes just ∑xn

and call it a series. A series converges, if the sequence {sk} defined by

sk :=
k

∑
n=1

xn = x1 + x2 + · · ·+ xk,

converges. The numbers sk are called partial sums. If x := lim sk, we write

∞

∑
n=1

xn = x.

In this case, we cheat a little and treat ∑∞
n=1 xn as a number.

If the sequence {sk} diverges, we say the series is divergent. In this case, ∑xn is simply a formal
object and not a number.

In other words, for a convergent series we have

∞

∑
n=1

xn = lim
k→∞

k

∑
n=1

xn.

We only have this equality if the limit on the right actually exists. If the series does not converge,
the right-hand side does not make sense (the limit does not exist). Therefore, be careful as ∑xn
means two different things (a notation for the series itself or the limit of the partial sums), and you
must use context to distinguish.

Remark 2.5.2. It is sometimes convenient to start the series at an index different from 1. For instance,
we can write

∞

∑
n=0

rn =
∞

∑
n=1

rn−1.

The left-hand side is more convenient to write.
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Remark 2.5.3. It is common to write the series ∑xn as

x1 + x2 + x3 + · · ·
with the understanding that the ellipsis indicates a series and not a simple sum. We do not use this
notation as it is the sort of informal notation that leads to mistakes in proofs.

Example 2.5.4: The series
∞

∑
n=1

1
2n

converges and the limit is 1. That is,
∞

∑
n=1

1
2n = lim

k→∞

k

∑
n=1

1
2n = 1.

Proof: First we prove the following equality(
k

∑
n=1

1
2n

)
+

1
2k = 1.

The equality is immediate when k = 1. The proof for general k follows by  induction , which we
leave to the reader. See  Figure 2.7 for an illustration.

1/2 1/81/4 1/8

1/2+ 1/4+ 1/80 1

Figure 2.7: The equality
(
∑k

n=1
1
2n

)
+ 1

2k = 1 illustrated for k = 3.

Let sk be the partial sum. We write

|1− sk|=
∣∣∣∣∣1− k

∑
n=1

1
2n

∣∣∣∣∣=
∣∣∣∣ 1
2k

∣∣∣∣= 1
2k .

The sequence
{ 1

2k

}
, and therefore

{
|1− sk|

}
, converges to zero. So, {sk} converges to 1.

Proposition 2.5.5. Suppose −1 < r < 1. Then the geometric series ∑∞
n=0 rn converges, and

∞

∑
n=0

rn =
1

1− r
.

Details of the proof are left as an exercise. The proof consists of showing
k−1

∑
n=0

rn =
1− rk

1− r
,

and then taking the limit as k goes to ∞. Geometric series is one of the most important series, and in
fact it is one of the few series for which we can so explicitly find the limit.

We have the following analogue of the tail of a sequence.
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Proposition 2.5.6. Let ∑xn be a series. Let M ∈ N. Then
∞

∑
n=1

xn converges if and only if
∞

∑
n=M

xn converges.

Proof. We look at partial sums of the two series (for k ≥M)

k

∑
n=1

xn =

(
M−1

∑
n=1

xn

)
+

k

∑
n=M

xn.

Note that ∑M−1
n=1 xn is a fixed number. Use  Proposition 2.2.5 to finish the proof.

2.5.2 Cauchy series
Definition 2.5.7. A series ∑xn is said to be Cauchy or a Cauchy series, if the sequence of partial
sums {sn} is a Cauchy sequence.

A sequence of real numbers converges if and only if it is Cauchy. Therefore, a series is
convergent if and only if it is Cauchy. The series ∑xn is Cauchy if for every ε > 0, there exists an
M ∈ N, such that for every n≥M and k ≥M we have∣∣∣∣∣

(
k

∑
j=1

x j

)
−
(

n

∑
j=1

x j

)∣∣∣∣∣< ε.

Without loss of generality we assume n < k. Then we write∣∣∣∣∣
(

k

∑
j=1

x j

)
−
(

n

∑
j=1

x j

)∣∣∣∣∣=
∣∣∣∣∣ k

∑
j=n+1

x j

∣∣∣∣∣< ε.

We have proved the following simple proposition.

Proposition 2.5.8. The series ∑xn is Cauchy if for every ε > 0, there exists an M ∈ N such that for
every n≥M and every k > n we have ∣∣∣∣∣ k

∑
j=n+1

x j

∣∣∣∣∣< ε.

2.5.3 Basic properties
Proposition 2.5.9. Let ∑xn be a convergent series. Then the sequence {xn} is convergent and

lim
n→∞

xn = 0.

Proof. Let ε > 0 be given. As ∑xn is convergent, it is Cauchy. Thus we find an M such that for
every n≥M we have

ε >

∣∣∣∣∣ n+1

∑
j=n+1

x j

∣∣∣∣∣= |xn+1| .

Hence for every n≥M+1 we have |xn|< ε .
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Example 2.5.10: If r ≥ 1 or r ≤−1, then the geometric series ∑∞
n=0 rn diverges.

Proof: |rn|= |r|n ≥ 1n = 1. So the terms do not go to zero and the series cannot converge.

So if a series converges, the terms of the series go to zero. The implication, however, goes only
one way. Let us give an example.

Example 2.5.11: The series ∑ 1
n diverges (despite the fact that lim 1

n = 0). This is the famous
harmonic series 

*
 .

Proof: We will show that the sequence of partial sums is unbounded, and hence cannot converge.
Write the partial sums sn for n = 2k as:

s1 = 1,

s2 = (1)+
(

1
2

)
,

s4 = (1)+
(

1
2

)
+

(
1
3
+

1
4

)
,

s8 = (1)+
(

1
2

)
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
,

...

s2k = 1+
k

∑
j=1

(
2 j

∑
m=2 j−1+1

1
m

)
.

Notice 1/3+ 1/4≥ 1/4+ 1/4 = 1/2 and 1/5+ 1/6+ 1/7+ 1/8≥ 1/8+ 1/8+ 1/8+ 1/8 = 1/2. More generally

2k

∑
m=2k−1+1

1
m
≥

2k

∑
m=2k−1+1

1
2k = (2k−1)

1
2k =

1
2
.

Therefore,

s2k = 1+
k

∑
j=1

(
2 j

∑
m=2 j−1+1

1
m

)
≥ 1+

k

∑
j=1

1
2
= 1+

k
2
.

As { k
2} is unbounded by the  Archimedean property , that means that {s2k} is unbounded, and

therefore {sn} is unbounded. Hence {sn} diverges, and consequently ∑ 1
n diverges.

Convergent series are linear. That is, we can multiply them by constants and add them and these
operations are done term by term.

Proposition 2.5.12 (Linearity of series). Let α ∈ R and ∑xn and ∑yn be convergent series. Then

(i) ∑αxn is a convergent series and

∞

∑
n=1

αxn = α

∞

∑
n=1

xn.

*The divergence of the harmonic series was known long before the theory of series was made rigorous. The proof
we give is the earliest proof and was given by  Nicole Oresme (1323?–1382).
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(ii) ∑(xn + yn) is a convergent series and

∞

∑
n=1

(xn + yn) =

(
∞

∑
n=1

xn

)
+

(
∞

∑
n=1

yn

)
.

Proof. For the first item, we simply write the kth partial sum

k

∑
n=1

αxn = α

(
k

∑
n=1

xn

)
.

We look at the right-hand side and note that the constant multiple of a convergent sequence is
convergent. Hence, we take the limit of both sides to obtain the result.

For the second item we also look at the kth partial sum

k

∑
n=1

(xn + yn) =

(
k

∑
n=1

xn

)
+

(
k

∑
n=1

yn

)
.

We look at the right-hand side and note that the sum of convergent sequences is convergent. Hence,
we take the limit of both sides to obtain the proposition.

An example of a useful application of the first item is the following formula. Suppose |r|< 1
and j ∈ N, then

∞

∑
n= j

rn =
r j

1− r
.

The formula follows by using the geometric series and multiplying by r j:

r j
∞

∑
n=0

rn =
∞

∑
n=0

rn+ j =
∞

∑
n= j

rn.

Multiplying series is not as simple as adding, see the next section. It is not true, of course, that we
multiply term by term. That strategy does not work even for finite sums: (a+b)(c+d) 6= ac+bd.

2.5.4 Absolute convergence
As monotone sequences are easier to work with than arbitrary sequences, it is usually easier to work
with series ∑xn, where xn ≥ 0 for all n. The sequence of partial sums is then monotone increasing
and converges if it is bounded above. Let us formalize this statement as a proposition.

Proposition 2.5.13. If xn ≥ 0 for all n, then ∑xn converges if and only if the sequence of partial
sums is bounded above.

As the limit of a monotone increasing sequence is the supremum, then when xn ≥ 0 for all n, we
have the inequality

k

∑
n=1

xn ≤
∞

∑
n=1

xn.
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If we allow infinite limits, the inequality still holds even when the series diverges to infinity, although
in that case it is not terribly useful.

We will see that the following common criterion for convergence of series has big implications
for how the series can be manipulated.

Definition 2.5.14. A series ∑xn converges absolutely if the series ∑ |xn| converges. If a series
converges, but does not converge absolutely, we say it is conditionally convergent.

Proposition 2.5.15. If the series ∑xn converges absolutely, then it converges.

Proof. A series is convergent if and only if it is Cauchy. Hence suppose ∑ |xn| is Cauchy. That is,
for every ε > 0, there exists an M such that for all k ≥M and all n > k we have

n

∑
j=k+1

∣∣x j
∣∣= ∣∣∣∣∣ n

∑
j=k+1

∣∣x j
∣∣∣∣∣∣∣< ε.

We apply the triangle inequality for a finite sum to obtain∣∣∣∣∣ n

∑
j=k+1

x j

∣∣∣∣∣≤ n

∑
j=k+1

∣∣x j
∣∣< ε.

Hence ∑xn is Cauchy and therefore it converges.

If ∑xn converges absolutely, the limits of ∑xn and ∑ |xn| may be different. Computing one does
not help us compute the other. However the computation above leads to a useful inequality for
absolutely convergent series, a series version of the triangle inequality, a proof of which we leave as
an exercise: ∣∣∣∣∣ ∞

∑
j=1

x j

∣∣∣∣∣≤ ∞

∑
j=1

∣∣x j
∣∣ .

Absolutely convergent series have many wonderful properties. For example, absolutely conver-
gent series can be rearranged arbitrarily, or we can multiply such series together easily. Conditionally
convergent series on the other hand often do not behave as one would expect. See the next section.

We leave as an exercise to show that

∞

∑
n=1

(−1)n

n

converges, although the reader should finish this section before trying. On the other hand we proved

∞

∑
n=1

1
n

diverges. Therefore, ∑ (−1)n

n is a conditionally convergent series.
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2.5.5 Comparison test and the p-series
We noted above that for a series to converge the terms not only have to go to zero, but they have to
go to zero “fast enough.” If we know about convergence of a certain series, we can use the following
comparison test to see if the terms of another series go to zero “fast enough.”

Proposition 2.5.16 (Comparison test). Let ∑xn and ∑yn be series such that 0 ≤ xn ≤ yn for all
n ∈ N.

(i) If ∑yn converges, then so does ∑xn.

(ii) If ∑xn diverges, then so does ∑yn.

Proof. As the terms of the series are all nonnegative, the sequences of partial sums are both
monotone increasing. Since xn ≤ yn for all n, the partial sums satisfy for all k

k

∑
n=1

xn ≤
k

∑
n=1

yn. (2.1)

If the series ∑yn converges, the partial sums for the series are bounded. Therefore, the right-hand
side of ( 2.1 ) is bounded for all k; there exists some B ∈ R such that ∑k

n=1 yn ≤ B for all k, and so

k

∑
n=1

xn ≤
k

∑
n=1

yn ≤ B.

Hence the partial sums for ∑xn are also bounded. Since the partial sums are a monotone increasing
sequence they are convergent. The first item is thus proved.

On the other hand if ∑xn diverges, the sequence of partial sums must be unbounded since it is
monotone increasing. That is, the partial sums for ∑xn are eventually bigger than any real number.
Putting this together with ( 2.1 ) we see that for any B ∈ R, there is a k such that

B≤
k

∑
n=1

xn ≤
k

∑
n=1

yn.

Hence the partial sums for ∑yn are also unbounded, and ∑yn also diverges.

A useful series to use with the comparison test is the p-series 

*
 .

Proposition 2.5.17 (p-series or the p-test). For p ∈ R, the series

∞

∑
n=1

1
np

converges if and only if p > 1.

*We have not yet defined xp for x > 0 and an arbitrary p ∈ R. The definition is xp := exp(p lnx). We will define
the logarithm and the exponential in  §5.4 . For now you can just think of rational p where xk/m = (x1/m)

k
. See also

 Exercise 1.2.17 .
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Proof. First suppose p ≤ 1. As n ≥ 1, we have 1
np ≥ 1

n . Since ∑ 1
n diverges, we see that the ∑ 1

np

must diverge for all p≤ 1 by the comparison test.
Now suppose p > 1. We proceed as we did for the harmonic series, but instead of showing that

the sequence of partial sums is unbounded, we show that it is bounded. The terms of the series
are positive, so the sequence of partial sums is monotone increasing and converges if it is bounded
above. Let sn denote the nth partial sum.

s1 = 1,

s3 = (1)+
(

1
2p +

1
3p

)
,

s7 = (1)+
(

1
2p +

1
3p

)
+

(
1
4p +

1
5p +

1
6p +

1
7p

)
,

...

s2k−1 = 1+
k−1

∑
j=1

(
2 j+1−1

∑
m=2 j

1
mp

)
.

Instead of estimating from below, we estimate from above. In particular, as p is positive, then
2p < 3p, and hence 1

2p +
1

3p <
1

2p +
1

2p . Similarly, 1
4p +

1
5p +

1
6p +

1
7p <

1
4p +

1
4p +

1
4p +

1
4p . Therefore,

s2k−1 = 1+
k−1

∑
j=1

(
2 j+1−1

∑
m=2 j

1
mp

)

< 1+
k−1

∑
j=1

(
2 j+1−1

∑
m=2 j

1
(2 j)p

)

= 1+
k−1

∑
j=1

(
2 j

(2 j)p

)

= 1+
k−1

∑
j=1

(
1

2p−1

) j

.

As p > 1, then 1
2p−1 < 1.  Proposition 2.5.5 says that

∞

∑
j=1

(
1

2p−1

) j

converges. Therefore,

s2k−1 < 1+
k−1

∑
j=1

(
1

2p−1

) j

≤ 1+
∞

∑
j=1

(
1

2p−1

) j

.

As {sn} is a monotone sequence, then sn ≤ s2k−1 for all n≤ 2k−1. Thus for all n,

sn < 1+
∞

∑
j=1

(
1

2p−1

) j

.

The sequence of partial sums is bounded and hence converges.
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Neither the p-series test nor the comparison test tell us what the sum converges to. They only
tell us that a limit of the partial sums exists. For instance, while we know that ∑ 1/n2 converges, it is
far harder to find 

*
 that the limit is π2/6. If we treat ∑ 1/np as a function of p, we get the so-called

Riemann ζ function. Understanding the behavior of this function contains one of the most famous
unsolved problems in mathematics today and has applications in seemingly unrelated areas such as
modern cryptography.

Example 2.5.18: The series ∑ 1
n2+1 converges.

Proof: First, 1
n2+1 < 1

n2 for all n ∈ N. The series ∑ 1
n2 converges by the p-series test. Therefore,

by the comparison test, ∑ 1
n2+1 converges.

2.5.6 Ratio test

Suppose r > 0. The ratio of two subsequent terms in the geometric series ∑rn is rn+1

rn = r, and
the series converges whenever r < 1. Just as for sequences, this fact can be generalized to more
arbitrary series as long as we have such a ratio “in the limit.” We then compare the tail of a series to
the geometric series.

Proposition 2.5.19 (Ratio test). Let ∑xn be a series, xn 6= 0 for all n, and such that

L := lim
n→∞

|xn+1|
|xn|

exists. Then

(i) If L < 1, then ∑xn converges absolutely.

(ii) If L > 1, then ∑xn diverges.

Proof. If L > 1, then  Lemma 2.2.12 says that the sequence {xn} diverges. Since it is a necessary
condition for the convergence of series that the terms go to zero, we know that ∑xn must diverge.

Thus suppose L < 1. We will argue that ∑ |xn| must converge. The proof is similar to that of
 Lemma 2.2.12 . Of course L≥ 0. Pick r such that L < r < 1. As r−L > 0, there exists an M ∈ N
such that for all n≥M ∣∣∣∣ |xn+1|

|xn|
−L
∣∣∣∣< r−L.

Therefore,
|xn+1|
|xn|

< r.

For n > M (that is for n≥M+1) write

|xn|= |xM|
|xM+1|
|xM|

|xM+2|
|xM+1|

· · · |xn|
|xn−1|

< |xM|rr · · ·r = |xM|rn−M = (|xM|r−M)rn.

*Demonstration of this fact is what made the Swiss mathematician  Leonhard Paul Euler (1707–1783) famous.
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For k > M we write the partial sum as

k

∑
n=1
|xn|=

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

|xn|
)

<

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

(|xM|r−M)rn

)

=

(
M

∑
n=1
|xn|
)
+(|xM|r−M)

(
k

∑
n=M+1

rn

)
.

As 0 < r < 1 the geometric series ∑∞
n=0 rn converges, so ∑∞

n=M+1 rn converges as well. We take the
limit as k goes to infinity on the right-hand side above to obtain

k

∑
n=1
|xn|<

(
M

∑
n=1
|xn|
)
+(|xM|r−M)

(
k

∑
n=M+1

rn

)

≤
(

M

∑
n=1
|xn|
)
+(|xM|r−M)

(
∞

∑
n=M+1

rn

)
.

The right-hand side is a number that does not depend on k. Hence the sequence of partial sums of
∑ |xn| is bounded and ∑ |xn| is convergent. Thus ∑xn is absolutely convergent.

Example 2.5.20: The series
∞

∑
n=1

2n

n!

converges absolutely.
Proof: We write

lim
n→∞

2(n+1)/(n+1)!
2n/n!

= lim
n→∞

2
n+1

= 0.

Therefore, the series converges absolutely by the ratio test.

2.5.7 Exercises

Exercise 2.5.1: Suppose the kth partial sum of
∞

∑
n=1

xn is sk =
k

k+1 . Find the series, that is find xn, prove that

the series converges, and then find the limit.

Exercise 2.5.2: Prove  Proposition 2.5.5 , that is for −1 < r < 1 prove

∞

∑
n=0

rn =
1

1− r
.

Hint: See  Example 0.3.8 .

Exercise 2.5.3: Decide the convergence or divergence of the following series.

a)
∞

∑
n=1

3
9n+1

b)
∞

∑
n=1

1
2n−1

c)
∞

∑
n=1

(−1)n

n2 d)
∞

∑
n=1

1
n(n+1)

e)
∞

∑
n=1

ne−n2
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Exercise 2.5.4:

a) Prove that if
∞

∑
n=1

xn converges, then
∞

∑
n=1

(x2n + x2n+1) also converges.

b) Find an explicit example where the converse does not hold.

Exercise 2.5.5: For j = 1,2, . . . ,n, let {x j,k}∞
k=1 denote n sequences. Suppose that for each j

∞

∑
k=1

x j,k

is convergent. Then show
n

∑
j=1

(
∞

∑
k=1

x j,k

)
=

∞

∑
k=1

(
n

∑
j=1

x j,k

)
.

Exercise 2.5.6: Prove the following stronger version of the ratio test: Let ∑xn be a series.

a) If there is an N and a ρ < 1 such that for all n ≥ N we have |xn+1|
|xn| < ρ , then the series converges

absolutely.

b) If there is an N such that for all n≥ N we have |xn+1|
|xn| ≥ 1, then the series diverges.

Exercise 2.5.7 (Challenging): Let {xn} be a decreasing sequence such that ∑xn converges. Show that
lim
n→∞

nxn = 0.

Exercise 2.5.8: Show that
∞

∑
n=1

(−1)n

n
converges. Hint: Consider the sum of two subsequent entries.

Exercise 2.5.9:

a) Prove that if ∑xn and ∑yn converge absolutely, then ∑xnyn converges absolutely.

b) Find an explicit example where the converse does not hold.

c) Find an explicit example where all three series are absolutely convergent, are not just finite sums, and
(∑xn)(∑yn) 6= ∑xnyn. That is, show that series are not multiplied term-by-term.

Exercise 2.5.10: Prove the triangle inequality for series, that is if ∑xn converges absolutely, then∣∣∣∣∣ ∞

∑
n=1

xn

∣∣∣∣∣≤ ∞

∑
n=1
|xn| .

Exercise 2.5.11: Prove the limit comparison test. That is, prove that if an > 0 and bn > 0 for all n, and

0 < lim
n→∞

an

bn
< ∞,

then either ∑an and ∑bn both converge or both diverge.

Exercise 2.5.12: Let xn = ∑n
j=1 1/j. Show that for every k we have lim

n→∞
|xn+k− xn|= 0, yet {xn} is not Cauchy.

Exercise 2.5.13: Let sk be the kth partial sum of ∑xn.

a) Suppose that there exists an m ∈ N such that lim
k→∞

smk exists and lim xn = 0. Show that ∑xn converges.

b) Find an example where lim
k→∞

s2k exists and lim xn 6= 0 (and therefore ∑xn diverges).

c) (Challenging) Find an example where lim xn = 0, and there exists a subsequence {sk j} such that lim
j→∞

sk j

exists, but ∑xn still diverges.
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Exercise 2.5.14: Suppose ∑xn converges and xn ≥ 0 for all n. Prove that ∑x2
n converges.

Exercise 2.5.15 (Challenging): Suppose {xn} is a decreasing sequence of positive numbers. The proof of
convergence/divergence for the p-series generalizes. Prove the so-called Cauchy condensation principle:

∞

∑
n=1

xn converges if and only if
∞

∑
n=1

2nx2n converges.

Exercise 2.5.16: Use the Cauchy condensation principle (see  Exercise 2.5.15 ) to decide the convergence of

a) ∑ lnn
n2 b) ∑ 1

n lnn
c) ∑ 1

n(lnn)2 d) ∑ 1

n(lnn)(ln lnn)2

Hint: Feel free to use the identity ln(2n) = n ln2.

Exercise 2.5.17 (Challenging): Prove Abel’s theorem:

Theorem. Suppose ∑xn is a series whose partial sums are a bounded sequence, {λn} is a sequence with
limλn = 0, and ∑ |λn+1−λn| is convergent. Then ∑λnxn is convergent.
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2.6 More on series

Note: up to 2–3 lectures (optional, can safely be skipped or covered partially)

2.6.1 Root test

A test similar to the ratio test is the so-called root test. In fact, the proof of this test is similar and
somewhat easier. Again, the idea is to generalize what happens for the geometric series.

Proposition 2.6.1 (Root test). Let ∑xn be a series and let

L := limsup
n→∞

|xn|1/n.

Then

(i) If L < 1, then ∑xn converges absolutely.

(ii) If L > 1, then ∑xn diverges.

Proof. If L > 1, then there exists a subsequence {xnk} such that L = limk→∞ |xnk |1/nk . Let r be such
that L > r > 1. There exists an M such that for all k ≥M, we have |xnk |1/nk > r > 1, or in other
words |xnk |> rnk > 1. The subsequence {|xnk |}, and therefore also {|xn|}, cannot possibly converge
to zero, and so the series diverges.

Now suppose L < 1. Pick r such that L < r < 1. By definition of limit supremum, pick M such
that for all n≥M we have

sup
{
|xk|1/k : k ≥ n

}
< r.

Therefore, for all n≥M we have

|xn|1/n < r, or in other words |xn|< rn.

Let k > M, and let us estimate the kth partial sum

k

∑
n=1
|xn|=

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

|xn|
)
≤
(

M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

rn

)
.

As 0 < r < 1, the geometric series ∑∞
n=M+1 rn converges to rM+1

1−r . As everything is positive we have

k

∑
n=1
|xn| ≤

(
M

∑
n=1
|xn|
)
+

rM+1

1− r
.

Thus the sequence of partial sums of ∑ |xn| is bounded, and the series converges. Therefore, ∑xn
converges absolutely.
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2.6.2 Alternating series test
The tests we have seen so far only addressed absolute convergence. The following test gives a large
supply of conditionally convergent series.

Proposition 2.6.2 (Alternating series). Let {xn} be a monotone decreasing sequence of positive
real numbers such that lim xn = 0. Then

∞

∑
n=1

(−1)nxn

converges.

Proof. Let sm := ∑m
k=1 (−1)kxk be the mth partial sum. Then write

s2n =
2n

∑
k=1

(−1)kxk = (−x1 + x2)+ · · ·+(−x2n−1 + x2n) =
n

∑
k=1

(−x2k−1 + x2k).

The sequence {xk} is decreasing and so (−x2k−1 + x2k)≤ 0 for all k. Therefore, the subsequence
{s2n} of partial sums is a decreasing sequence. Similarly, (x2k− x2k+1)≥ 0, and so

s2n =−x1 +(x2− x3)+ · · ·+(x2n−2− x2n−1)+ x2n ≥−x1.

The sequence {s2n} is decreasing and bounded below, so it converges. Let a := lim s2n.
We wish to show that lim sm = a (and not just for the subsequence). Notice

s2n+1 = s2n + x2n+1.

Given ε > 0, pick M such that |s2n−a|< ε/2 whenever 2n≥M. Since lim xn = 0, we also make M
possibly larger to obtain x2n+1 < ε/2 whenever 2n≥M. If 2n≥M, we have |s2n−a|< ε/2 < ε , so
we just need to check the situation for s2n+1:

|s2n+1−a|= |s2n−a+ x2n+1| ≤ |s2n−a|+ x2n+1 < ε/2+ ε/2 = ε.

Notably, there exist conditionally convergent series where the absolute values of the terms go to
zero arbitrarily slowly. The series

∞

∑
n=1

(−1)n

np

converges for arbitrarily small p > 0, but it does not converge absolutely when p≤ 1.

2.6.3 Rearrangements
Absolutely convergent series behave as we imagine they should. For example, absolutely convergent
series can be summed in any order whatsoever. Nothing of the sort holds for conditionally convergent
series (see  Example 2.6.4 and  Exercise 2.6.3 ).

Consider a series
∞

∑
n=1

xn.
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Given a bijective function σ : N→ N, the corresponding rearrangement is the following series:
∞

∑
k=1

xσ(k).

We simply sum the series in a different order.

Proposition 2.6.3. Let ∑xn be an absolutely convergent series converging to a number x. Let
σ : N→ N be a bijection. Then ∑xσ(n) is absolutely convergent and converges to x.

In other words, a rearrangement of an absolutely convergent series converges (absolutely) to the
same number.

Proof. Let ε > 0 be given. As ∑xn is absolutely convergent, take M such that∣∣∣∣∣
(

M

∑
n=1

xn

)
− x

∣∣∣∣∣< ε

2
and

∞

∑
n=M+1

|xn|<
ε

2
.

As σ is a bijection, there exists a number K such that for each n≤M, there exists k ≤ K such that
σ(k) = n. In other words {1,2, . . . ,M} ⊂ σ

(
{1,2, . . . ,K}

)
.

For any N ≥ K, let Q := maxσ
(
{1,2, . . . ,N}

)
. Compute∣∣∣∣∣

(
N

∑
n=1

xσ(n)

)
− x

∣∣∣∣∣=
∣∣∣∣∣∣∣
 M

∑
n=1

xn +
N

∑
n=1

σ(n)>M

xσ(n)

− x

∣∣∣∣∣∣∣
≤
∣∣∣∣∣
(

M

∑
n=1

xn

)
− x

∣∣∣∣∣+ N

∑
n=1

σ(n)>M

∣∣xσ(n)
∣∣

≤
∣∣∣∣∣
(

M

∑
n=1

xn

)
− x

∣∣∣∣∣+ Q

∑
n=M+1

|xn|

< ε/2+ ε/2 = ε.

So ∑xσ(n) converges to x. To see that the convergence is absolute, we apply the argument above to
∑ |xn| to show that ∑

∣∣xσ(n)
∣∣ converges.

Example 2.6.4: Let us show that the alternating harmonic series ∑ (−1)n+1

n , which does not converge
absolutely, can be rearranged to converge to anything. The odd terms and the even terms diverge to
plus infinity and minus infinity respectively (prove this!):

∞

∑
m=1

1
2m−1

= ∞, and
∞

∑
m=1

−1
2m

=−∞.

Let an := (−1)n+1

n for simplicity, let an arbitrary number L ∈R be given, and set σ(1) := 1. Suppose
we have defined σ(n) for all n≤ N. If

N

∑
n=1

aσ(n) ≤ L,
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then let σ(N +1) := k be the smallest odd k ∈ N that we have not used yet, that is σ(n) 6= k for all
n≤ N. Otherwise, let σ(N +1) := k be the smallest even k that we have not yet used.

By construction σ : N→ N is one-to-one. It is also onto, because if we keep adding either odd
(resp. even) terms, eventually we pass L and switch to the evens (resp. odds). So we switch infinitely
many times.

Finally, let N be the N where we just pass L and switch. For example, suppose we have just
switched from odd to even (so we start subtracting), and let N′ > N be where we first switch back
from even to odd. Then

L+
1

σ(N)
≥

N−1

∑
n=1

aσ(n) >
N′−1

∑
n=1

aσ(n) > L− 1
σ(N′)

.

And similarly for switching in the other direction. Therefore, the sum up to N′− 1 is within
1

min{σ(N),σ(N′)} of L. As we switch infinitely many times we obtain that σ(N)→ ∞ and σ(N′)→ ∞,
and hence

∞

∑
n=1

aσ(n) =
∞

∑
n=1

(−1)σ(n)+1

σ(n)
= L.

Here is an example to illustrate the proof. Suppose L = 1.2, then the order is

1+ 1/3− 1/2+ 1/5+ 1/7+ 1/9− 1/4+ 1/11+ 1/13− 1/6+ 1/15+ 1/17+ 1/19− 1/8+ · · · .

At this point we are no more than 1/8 from the limit.

2.6.4 Multiplication of series
As we have already mentioned, multiplication of series is somewhat harder than addition. If at least
one of the series converges absolutely, then we can use the following theorem. For this result, it is
convenient to start the series at 0, rather than at 1.

Theorem 2.6.5 (Mertens’ theorem 

*
 ). Suppose ∑∞

n=0 an and ∑∞
n=0 bn are two convergent series,

converging to A and B respectively. If at least one of the series converges absolutely, then the series
∑∞

n=0 cn where

cn = a0bn +a1bn−1 + · · ·+anb0 =
n

∑
j=0

a jbn− j,

converges to AB.

The series ∑cn is called the Cauchy product of ∑an and ∑bn.

Proof. Suppose ∑an converges absolutely, and let ε > 0 be given. In this proof instead of picking
complicated estimates just to make the final estimate come out as less than ε , let us simply obtain
an estimate that depends on ε and can be made arbitrarily small.

Write

Am :=
m

∑
n=0

an, Bm :=
m

∑
n=0

bn.

*Proved by the German mathematician  Franz Mertens (1840–1927).
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We rearrange the mth partial sum of ∑cn:∣∣∣∣∣
(

m

∑
n=0

cn

)
−AB

∣∣∣∣∣=
∣∣∣∣∣
(

m

∑
n=0

n

∑
j=0

a jbn− j

)
−AB

∣∣∣∣∣
=

∣∣∣∣∣
(

m

∑
n=0

Bnam−n

)
−AB

∣∣∣∣∣
=

∣∣∣∣∣
(

m

∑
n=0

(Bn−B)am−n

)
+BAm−AB

∣∣∣∣∣
≤
(

m

∑
n=0
|Bn−B| |am−n|

)
+ |B| |Am−A|

We can surely make the second term on the right hand side go to zero. The trick is to handle the
first term. Pick K such that for all m≥ K we have |Am−A|< ε and also |Bm−B|< ε . Finally, as
∑an converges absolutely, make sure that K is large enough such that for all m≥ K,

m

∑
n=K
|an|< ε.

As ∑bn converges, then we have that Bmax := sup{|Bn−B| : n = 0,1,2, . . .} is finite. Take m≥ 2K,
then in particular m−K +1 > K. So

m

∑
n=0
|Bn−B| |am−n|=

(
m−K

∑
n=0
|Bn−B| |am−n|

)
+

(
m

∑
n=m−K+1

|Bn−B| |am−n|
)

≤
(

m

∑
n=K
|an|
)

Bmax +

(
K−1

∑
n=0

ε |an|
)

≤ εBmax + ε

(
∞

∑
n=0
|an|
)
.

Therefore, for m≥ 2K we have∣∣∣∣∣
(

m

∑
n=0

cn

)
−AB

∣∣∣∣∣≤
(

m

∑
n=0
|Bn−B| |am−n|

)
+ |B| |Am−A|

≤ εBmax + ε

(
∞

∑
n=0
|an|
)
+ |B|ε = ε

(
Bmax +

(
∞

∑
n=0
|an|
)
+ |B|

)
.

The expression in the parenthesis on the right hand side is a fixed number. Hence, we can make the
right hand side arbitrarily small by picking a small enough ε > 0. So ∑∞

n=0 cn converges to AB.

Example 2.6.6: If both series are only conditionally convergent, the Cauchy product series need not
even converge. Suppose we take an = bn = (−1)n 1√

n+1
. The series ∑∞

n=0 an = ∑∞
n=0 bn converges
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by the alternating series test, however, it does not converge absolutely as can be seen from the p-test.
Let us look at the Cauchy product.

cn = (−1)n

(
1√

n+1
+

1√
2n

+
1√

3(n−1)
+ · · ·+ 1√

n+1

)
= (−1)n

n

∑
j=0

1√
( j+1)(n− j+1)

.

Therefore,

|cn|=
n

∑
j=0

1√
( j+1)(n− j+1)

≥
n

∑
j=0

1√
(n+1)(n+1)

= 1.

The terms do not go to zero and hence ∑cn cannot converge.

2.6.5 Power series
Fix x0 ∈ R. A power series about x0 is a series of the form

∞

∑
n=0

an(x− x0)
n.

A power series is really a function of x, and many important functions in analysis can be written as
a power series. We use the convention that 00 = 1 (if x = x0 and n = 0).

We say that a power series is convergent if there is at least one x 6= x0 that makes the series
converge. If x = x0, then the series always converges since all terms except the first are zero. If the
series does not converge for any point x 6= x0, we say that the series is divergent.

Example 2.6.7: The series
∞

∑
n=0

1
n!

xn

is absolutely convergent for all x ∈ R using the ratio test: For any x ∈ R

lim
n→∞

(
1/(n+1)!

)
xn+1

(1/n!)xn = lim
n→∞

x
n+1

= 0.

Recall from calculus that this series converges to ex.

Example 2.6.8: The series
∞

∑
n=1

1
n

xn

converges absolutely for all x ∈ (−1,1) via the ratio test:

lim
n→∞

∣∣∣∣∣
(
1/(n+1)

)
xn+1

(1/n)xn

∣∣∣∣∣= lim
n→∞
|x| n

n+1
= |x|< 1.

The series converges at x = −1, as ∑∞
n=1

(−1)n

n converges by the alternating series test. But the
power series does not converge absolutely at x =−1, because ∑∞

n=1
1
n does not converge. The series

diverges at x = 1. When |x|> 1, then the series diverges via the ratio test.
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Example 2.6.9: The series
∞

∑
n=1

nnxn

diverges for all x 6= 0. Let us apply the root test

limsup
n→∞

|nnxn|1/n = limsup
n→∞

n |x|= ∞.

Therefore, the series diverges for all x 6= 0.

Convergence of power series in general works analogously to one of the three examples above.

Proposition 2.6.10. Let ∑∞
n=0 an(x− x0)

n be a power series. If the series is convergent, then either
it converges at all x ∈ R, or there exists a number ρ , such that the series converges absolutely on
the interval (x0−ρ,x0 +ρ) and diverges when x < x0−ρ or x > x0 +ρ .

The number ρ is called the radius of convergence of the power series. We write ρ = ∞ if the
series converges for all x, and we write ρ = 0 if the series is divergent. At the endpoints, that is if
x = x0 +ρ or x = x0−ρ , the proposition says nothing, and the series might or might not converge.
See  Figure 2.8 . In  Example 2.6.8 the radius of convergence is ρ = 1. In  Example 2.6.7 the radius of
convergence is ρ = ∞, and in  Example 2.6.9 the radius of convergence is ρ = 0.

converges absolutely diverges

x0−ρ x0 x0 +ρ

diverges ? ?

Figure 2.8: Convergence of a power series.

Proof. Write
R := limsup

n→∞
|an|1/n.

We use the root test to prove the proposition:

L = limsup
n→∞

|an(x− x0)
n|1/n = |x− x0| limsup

n→∞
|an|1/n = |x− x0|R.

In particular, if R = ∞, then L = ∞ for any x 6= x0, and the series diverges by the root test. On the
other hand if R = 0, then L = 0 for any x, and the series converges absolutely for all x.

Suppose 0 < R < ∞. The series converges absolutely if 1 > L = R |x− x0|, or in other words
when

|x− x0|< 1/R.

The series diverges when 1 < L = R |x− x0|, or

|x− x0|> 1/R.

Letting ρ = 1/R completes the proof.
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It may be useful to restate what we have learned in the proof as a separate proposition.

Proposition 2.6.11. Let ∑∞
n=0 an(x− x0)

n be a power series, and let

R := limsup
n→∞

|an|1/n.

If R = ∞, the power series is divergent. If R = 0, then the power series converges everywhere.
Otherwise, the radius of convergence ρ = 1/R.

Often, radius of convergence is written as ρ = 1/R in all three cases, with the understanding of
what ρ should be if R = 0 or R = ∞.

Convergent power series can be added and multiplied together, and multiplied by constants. The
proposition has a straight forward proof using what we know about series in general, and power
series in particular. We leave the proof to the reader.

Proposition 2.6.12. Let ∑∞
n=0 an(x− x0)

n and ∑∞
n=0 bn(x− x0)

n be two convergent power series
with radius of convergence at least ρ > 0 and α ∈ R. Then for all x such that |x− x0|< ρ , we have(

∞

∑
n=0

an(x− x0)
n

)
+

(
∞

∑
n=0

bn(x− x0)
n

)
=

∞

∑
n=0

(an +bn)(x− x0)
n,

α

(
∞

∑
n=0

an(x− x0)
n

)
=

∞

∑
n=0

αan(x− x0)
n,

and (
∞

∑
n=0

an(x− x0)
n

)(
∞

∑
n=0

bn(x− x0)
n

)
=

∞

∑
n=0

cn(x− x0)
n,

where cn = a0bn +a1bn−1 + · · ·+anb0.

That is, after performing the algebraic operations, the radius of convergence of the resulting
series is at least ρ . For all x with |x− x0| < ρ , we have two convergent series so their term by
term addition and multiplication by constants follows by what we learned in the last section.
For multiplication of two power series, the series are absolutely convergent inside the radius of
convergence and that is why for those x we can apply Mertens’ theorem. Note that after applying an
algebraic operation the radius of convergence could increase. See the exercises.

Let us look at some examples of power series. Polynomials are simply finite power series.
That is, a polynomial is a power series where the an are zero for all n large enough. We expand
a polynomial as a power series about any point x0 by writing the polynomial as a polynomial in
(x− x0). For example, 2x2−3x+4 as a power series around x0 = 1 is

2x2−3x+4 = 3+(x−1)+2(x−1)2.

We can also expand rational functions (that is, ratios of polynomials) as power series, although
we will not completely prove this fact here. Notice that a series for a rational function only defines
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the function on an interval even if the function is defined elsewhere. For example, for the geometric
series we have that for x ∈ (−1,1)

1
1− x

=
∞

∑
n=0

xn.

The series diverges when |x|> 1, even though 1
1−x is defined for all x 6= 1.

We can use the geometric series together with rules for addition and multiplication of power
series to expand rational functions as power series around x0, as long as the denominator is not
zero at x0. We state without proof that this is always possible, and we give an example of such a
computation using the geometric series.

Example 2.6.13: Let us expand x
1+2x+x2 as a power series around the origin (x0 = 0) and find the

radius of convergence.
Write 1+2x+ x2 = (1+ x)2 =

(
1− (−x)

)2, and suppose |x|< 1. Compute

x
1+2x+ x2 = x

(
1

1− (−x)

)2

= x

(
∞

∑
n=0

(−1)nxn

)2

= x

(
∞

∑
n=0

cnxn

)

=
∞

∑
n=0

cnxn+1.

Using the formula for the product of series, we obtain c0 = 1, c1 =−1−1 =−2, c2 = 1+1+1 = 3,
etc. Hence, for |x|< 1,

x
1+2x+ x2 =

∞

∑
n=1

(−1)n+1nxn.

The radius of convergence is at least 1. We leave it to the reader to verify that the radius of
convergence is exactly equal to 1.

You can use the method of partial fractions you know from calculus. For example, to find the
power series for x3+x

x2−1 at 0, write

x3 + x
x2−1

= x+
1

1+ x
− 1

1− x
= x+

∞

∑
n=0

(−1)nxn−
∞

∑
n=0

xn.

2.6.6 Exercises
Exercise 2.6.1: Decide the convergence or divergence of the following series.

a)
∞

∑
n=1

1
22n+1 b)

∞

∑
n=1

(−1)n(n−1)
n

c)
∞

∑
n=1

(−1)n

n1/10 d)
∞

∑
n=1

nn

(n+1)2n
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Exercise 2.6.2: Suppose both ∑∞
n=0 an and ∑∞

n=0 bn converge absolutely. Show that the product series, ∑∞
n=0 cn

where cn = a0bn +a1bn−1 + · · ·+anb0, also converges absolutely.

Exercise 2.6.3 (Challenging): Let ∑an be conditionally convergent. Show that given any number x there
exists a rearrangement of ∑an such that the rearranged series converges to x. Hint: See  Example 2.6.4 .

Exercise 2.6.4:

a) Show that the alternating harmonic series ∑ (−1)n+1

n has a rearrangement such that for any x < y, there
exists a partial sum sn of the rearranged series such that x < sn < y.

b) Show that the rearrangement you found does not converge. See  Example 2.6.4 .

c) Show that for any x ∈ R, there exists a subsequence of partial sums {snk} of your rearrangement such
that lim snk = x.

Exercise 2.6.5: For the following power series, find if they are convergent or not, and if so find their radius
of convergence.

a)
∞

∑
n=0

2nxn b)
∞

∑
n=0

nxn c)
∞

∑
n=0

n!xn d)
∞

∑
n=0

1
(2n)!

(x−10)n e)
∞

∑
n=0

x2n f)
∞

∑
n=0

n!xn!

Exercise 2.6.6: Suppose ∑anxn converges for x = 1.

a) What can you say about the radius of convergence?

b) If you further know that at x = 1 the convergence is not absolute, what can you say?

Exercise 2.6.7: Expand
x

4− x2 as a power series around x0 = 0 and compute its radius of convergence.

Exercise 2.6.8:

a) Find an example where the radius of convergence of ∑anxn and ∑bnxn are 1, but the radius of convergence
of the sum of the two series is infinite.

b) (Trickier) Find an example where the radius of convergence of ∑anxn and ∑bnxn are 1, but the radius of
convergence of the product of the two series is infinite.

Exercise 2.6.9: Figure out how to compute the radius of convergence using the ratio test. That is, suppose
∑anxn is a power series and R := lim |an+1|

|an| exists or is ∞. Find the radius of convergence and prove your
claim.

Exercise 2.6.10:

a) Prove that lim n1/n = 1. Hint: Write n1/n = 1+bn and note bn > 0. Then show that (1+bn)
n ≥ n(n−1)

2 b2
n

and use this to show that lim bn = 0.

b) Use the result of part a) to show that if ∑anxn is a convergent power series with radius of convergence R,
then ∑nanxn is also convergent with the same radius of convergence.

There are different notions of summability (convergence) of a series than just the one we have seen. A
common one is Cesàro summability 

*
 . Let ∑an be a series and let sn be the nth partial sum. The series is said

to be Cesàro summable to a if
a = lim

n→∞

s1 + s2 + · · ·+ sn

n
.

*Named for the Italian mathematician  Ernesto Cesàro (1859–1906).
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Exercise 2.6.11 (Challenging):

a) If ∑an is convergent to a (in the usual sense), show that ∑an is Cesàro summable (see above) to a.

b) Show that in the sense of Cesàro ∑(−1)n is summable to 1/2.

c) Let an := k when n = k3 for some k ∈N, an :=−k when n = k3 +1 for some k ∈N, otherwise let an := 0.
Show that ∑an diverges in the usual sense, (partial sums are unbounded), but it is Cesàro summable to 0
(seems a little paradoxical at first sight).

Exercise 2.6.12 (Challenging): Show that the monotonicity in the alternating series test is necessary. That is,
find a sequence of positive real numbers {xn} with lim xn = 0 but such that ∑(−1)nxn diverges.

Exercise 2.6.13: Find a series such that ∑xn converges but ∑x2
n diverges. Hint: Compare  Exercise 2.5.14 .

Exercise 2.6.14: Suppose {cn} is any sequence. Prove that for any r ∈ (0,1) there exists a strictly increasing
sequence {nk} of natural numbers (nk+1 > nk) such that

∞

∑
k=1

ckxnk

converges absolutely for all x ∈ [−r,r].
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Chapter 3

Continuous Functions

3.1 Limits of functions
Note: 2–3 lectures

Before we define continuity of functions, we need to visit a somewhat more general notion of a
limit. That is, given a function f : S→ R, we want to see how f (x) behaves as x tends to a certain
point.

3.1.1 Cluster points
First, let us return to a concept we have previously seen in an exercise.

Definition 3.1.1. Let S ⊂ R be a set. A number x ∈ R is called a cluster point of S if for every
ε > 0, the set (x− ε,x+ ε)∩S\{x} is not empty.

That is, x is a cluster point of S if there are points of S arbitrarily close to x. Another way of
phrasing the definition is to say that x is a cluster point of S if for every ε > 0, there exists a y ∈ S
such that y 6= x and |x− y|< ε . Note that a cluster point of S need not lie in S.

Let us see some examples.

(i) The set {1/n : n ∈ N} has a unique cluster point zero.

(ii) The cluster points of the open interval (0,1) are all points in the closed interval [0,1].

(iii) For the set Q, the set of cluster points is the whole real line R.

(iv) For the set [0,1)∪{2}, the set of cluster points is the interval [0,1].

(v) The set N has no cluster points in R.

Proposition 3.1.2. Let S ⊂ R. Then x ∈ R is a cluster point of S if and only if there exists a
convergent sequence of numbers {xn} such that xn 6= x and xn ∈ S for all n, and lim xn = x.

Proof. First suppose x is a cluster point of S. For any n ∈ N, we pick xn to be an arbitrary point of
(x− 1/n,x+ 1/n)∩S\{x}, which we know is nonempty because x is a cluster point of S. Then xn is
within 1/n of x, that is,

|x− xn|< 1/n.
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As {1/n} converges to zero, {xn} converges to x.
On the other hand, if we start with a sequence of numbers {xn} in S converging to x such that

xn 6= x for all n, then for every ε > 0 there is an M such that in particular |xM− x| < ε . That is,
xM ∈ (x− ε,x+ ε)∩S\{x}.

3.1.2 Limits of functions
If a function f is defined on a set S and c is a cluster point of S, then we define the limit of f (x) as x
gets close to c. It is irrelevant for the definition if f is defined at c or not. Furthermore, even if the
function is defined at c, the limit of the function as x goes to c can very well be different from f (c).

Definition 3.1.3. Let f : S→ R be a function and c a cluster point of S⊂ R. Suppose there exists
an L ∈ R and for every ε > 0, there exists a δ > 0 such that whenever x ∈ S\{c} and |x− c|< δ ,
we have

| f (x)−L|< ε.

We then say f (x) converges to L as x goes to c. We say L is the limit of f (x) as x goes to c. We
write

lim
x→c

f (x) := L,

or
f (x)→ L as x→ c.

If no such L exists, then we say that the limit does not exist or that f diverges at c.

Again the notation and language we are using above assumes the limit is unique even though we
have not yet proved uniqueness. Let us do that now.

Proposition 3.1.4. Let c be a cluster point of S⊂ R and let f : S→ R be a function such that f (x)
converges as x goes to c. Then the limit of f (x) as x goes to c is unique.

Proof. Let L1 and L2 be two numbers that both satisfy the definition. Take an ε > 0 and find
a δ1 > 0 such that | f (x)−L1| < ε/2 for all x ∈ S \ {c} with |x− c| < δ1. Also find δ2 > 0 such
that | f (x)−L2| < ε/2 for all x ∈ S \ {c} with |x− c| < δ2. Put δ := min{δ1,δ2}. Suppose x ∈ S,
|x− c|< δ , and x 6= c. As δ > 0 and c is a cluster point, such an x exists. Then

|L1−L2|= |L1− f (x)+ f (x)−L2| ≤ |L1− f (x)|+ | f (x)−L2|<
ε

2
+

ε

2
= ε.

As |L1−L2|< ε for arbitrary ε > 0, then L1 = L2.

Example 3.1.5: Let f : R→ R be defined as f (x) := x2. Then

lim
x→c

f (x) = lim
x→c

x2 = c2.

Proof: First let c be fixed. Let ε > 0 be given. Take

δ := min
{

1,
ε

2 |c|+1

}
.
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Take x 6= c such that |x− c|< δ . In particular, |x− c|< 1. By reverse triangle inequality we get

|x|− |c| ≤ |x− c|< 1.

Adding 2 |c| to both sides we obtain |x|+ |c|< 2 |c|+1. We compute∣∣ f (x)− c2∣∣= ∣∣x2− c2∣∣
= |(x+ c)(x− c)|
= |x+ c| |x− c|
≤ (|x|+ |c|) |x− c|
< (2 |c|+1) |x− c|
< (2 |c|+1)

ε

2 |c|+1
= ε.

Example 3.1.6: Define f : [0,1)→ R by

f (x) :=

{
x if x > 0,
1 if x = 0.

Then
lim
x→0

f (x) = 0,

even though f (0) = 1.
Proof: Let ε > 0 be given. Let δ := ε . Then for x ∈ [0,1), x 6= 0, and |x−0|< δ we get

| f (x)−0|= |x|< δ = ε.

3.1.3 Sequential limits
Let us connect the limit as defined above with limits of sequences.

Lemma 3.1.7. Let S⊂ R and c be a cluster point of S. Let f : S→ R be a function.
Then f (x)→ L as x→ c if and only if for every sequence {xn} of numbers such that xn ∈ S\{c}

for all n, and such that lim xn = c, we have that the sequence { f (xn)} converges to L.

Proof. Suppose f (x)→ L as x→ c, and {xn} is a sequence such that xn ∈ S \{c} and lim xn = c.
We wish to show that { f (xn)} converges to L. Let ε > 0 be given. Find a δ > 0 such that if
x ∈ S \ {c} and |x− c| < δ , then | f (x)−L| < ε . As {xn} converges to c, find an M such that for
n≥M we have that |xn− c|< δ . Therefore, for n≥M,

| f (xn)−L|< ε.

Thus { f (xn)} converges to L.
For the other direction, we use proof by contrapositive. Suppose it is not true that f (x)→ L as

x→ c. The negation of the definition is that there exists an ε > 0 such that for every δ > 0 there
exists an x ∈ S\{c}, where |x− c|< δ and | f (x)−L| ≥ ε .

Let us use 1/n for δ in the statement above to construct a sequence {xn}. We have that there
exists an ε > 0 such that for every n, there exists a point xn ∈ S \ {c}, where |xn− c| < 1/n and
| f (xn)−L| ≥ ε . The sequence {xn} just constructed converges to c, but the sequence { f (xn)} does
not converge to L. And we are done.
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It is possible to strengthen the reverse direction of the lemma by simply stating that { f (xn)}
converges without requiring a specific limit. See  Exercise 3.1.11 .

Example 3.1.8: lim
x→0

sin(1/x) does not exist, but lim
x→0

xsin(1/x) = 0. See  Figure 3.1 .

Figure 3.1: Graphs of sin(1/x) and xsin(1/x). Note that the computer cannot properly graph sin(1/x) near
zero as it oscillates too fast.

Proof: We start with sin(1/x). Define a sequence by xn := 1
πn+π/2

. It is not hard to see that
lim xn = 0. Furthermore,

sin(1/xn) = sin(πn+ π/2) = (−1)n.

Therefore,
{

sin(1/xn)
}

does not converge. By  Lemma 3.1.7 , limx→0 sin(1/x) does not exist.
Now consider xsin(1/x). Let {xn} be a sequence such that xn 6= 0 for all n, and such that

lim xn = 0. Notice that |sin(t)| ≤ 1 for any t ∈ R. Therefore,

|xn sin(1/xn)−0|= |xn| |sin(1/xn)| ≤ |xn| .

As xn goes to 0, then |xn| goes to zero, and hence
{

xn sin(1/xn)
}

converges to zero. By  Lemma 3.1.7 ,
lim
x→0

xsin(1/x) = 0.

Keep in mind the phrase “for every sequence” in the lemma. For example, take sin(1/x) and
the sequence given by xn := 1/πn. Then

{
sin(1/xn)

}
is the constant zero sequence, and therefore

converges to zero, but the limit of sin(1/x) as x→ 0 does not exist.
Using  Lemma 3.1.7 , we can start applying everything we know about sequential limits to limits

of functions. Let us give a few important examples.

Corollary 3.1.9. Let S⊂ R and let c be a cluster point of S. Suppose f : S→ R and g : S→ R are
functions such that the limits of f (x) and g(x) as x goes to c both exist, and

f (x)≤ g(x) for all x ∈ S.

Then
lim
x→c

f (x)≤ lim
x→c

g(x).
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Proof. Take {xn} be a sequence of numbers in S\{c} that converges to c. Let

L1 := lim
x→c

f (x), and L2 := lim
x→c

g(x).

By  Lemma 3.1.7 we know { f (xn)} converges to L1 and {g(xn)} converges to L2. We also have
f (xn)≤ g(xn). We obtain L1 ≤ L2 using  Lemma 2.2.3 .

By applying constant functions, we get the following corollary. The proof is left as an exercise.

Corollary 3.1.10. Let S⊂ R and let c be a cluster point of S. Suppose f : S→ R is a function such
that the limit of f (x) as x goes to c exists. Suppose there are two real numbers a and b such that

a≤ f (x)≤ b for all x ∈ S.

Then
a≤ lim

x→c
f (x)≤ b.

Using  Lemma 3.1.7 in the same way as above, we also get the following corollaries, whose
proofs are again left as exercises.

Corollary 3.1.11. Let S⊂ R and let c be a cluster point of S. Suppose f : S→ R, g : S→ R, and
h : S→ R are functions such that

f (x)≤ g(x)≤ h(x) for all x ∈ S.

Suppose the limits of f (x) and h(x) as x goes to c both exist, and

lim
x→c

f (x) = lim
x→c

h(x).

Then the limit of g(x) as x goes to c exists and

lim
x→c

g(x) = lim
x→c

f (x) = lim
x→c

h(x).

Corollary 3.1.12. Let S⊂R and let c be a cluster point of S. Suppose f : S→R and g : S→R are
functions such that the limits of f (x) and g(x) as x goes to c both exist. Then

(i) lim
x→c

(
f (x)+g(x)

)
=
(

lim
x→c

f (x)
)
+
(

lim
x→c

g(x)
)
.

(ii) lim
x→c

(
f (x)−g(x)

)
=
(

lim
x→c

f (x)
)
−
(

lim
x→c

g(x)
)
.

(iii) lim
x→c

(
f (x)g(x)

)
=
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)
.

(iv) If lim
x→c

g(x) 6= 0, and g(x) 6= 0 for all x ∈ S\{c}, then

lim
x→c

f (x)
g(x)

=
limx→c f (x)
limx→c g(x)

.

Corollary 3.1.13. Let S⊂ R and let c be a cluster point of S. Suppose f : S→ R is a function such
that the limit of f (x) as x goes to c exists. Then

lim
x→c
| f (x)|=

∣∣∣lim
x→c

f (x)
∣∣∣ .
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3.1.4 Limits of restrictions and one-sided limits
Sometimes we work with the function defined on a subset.

Definition 3.1.14. Let f : S→ R be a function and A⊂ S. Define the function f |A : A→ R by

f |A(x) := f (x) for x ∈ A.

The function f |A is called the restriction of f to A.

The function f |A is simply the function f taken on a smaller domain. The following proposition
is the analogue of taking a tail of a sequence.

Proposition 3.1.15. Let S⊂ R, c ∈ R, and let f : S→ R be a function. Suppose A⊂ S is such that
there is some α > 0 such that (A\{c})∩ (c−α,c+α) = (S\{c})∩ (c−α,c+α).

(i) The point c is a cluster point of A if and only if c is a cluster point of S.

(ii) Supposing c is a cluster point of S, then f (x)→ L as x→ c if and only if f |A(x)→ L as x→ c.

Proof. First, let c be a cluster point of A. Since A⊂ S, then if (A\{c})∩ (c− ε,c+ ε) is nonempty
for every ε > 0, then (S \ {c})∩ (c− ε,c+ ε) is nonempty for every ε > 0. Thus c is a cluster
point of S. Second, suppose c is a cluster point of S. Then for ε > 0 such that ε < α we get that
(A\{c})∩ (c− ε,c+ ε) = (S\{c})∩ (c− ε,c+ ε), which is nonempty. This is true for all ε < α

and hence (A\{c})∩ (c− ε,c+ ε) must be nonempty for all ε > 0. Thus c is a cluster point of A.
Now suppose f (x)→ L as x→ c. That is, for every ε > 0 there is a δ > 0 such that if x ∈ S\{c}

and |x− c|< δ , then | f (x)−L|< ε . Because A⊂ S, if x is in A\{c}, then x is in S\{c}, and hence
f |A(x)→ L as x→ c.

Finally suppose f |A(x)→ L as x→ c. For every ε > 0 there is a δ ′> 0 such that if x∈A\{c} and
|x− c|< δ ′, then

∣∣ f |A(x)−L
∣∣< ε . Take δ := min{δ ′,α}. Now suppose x ∈ S\{c} and |x− c|< δ .

As |x− c|< α , then x ∈ A\{c}, and as |x− c|< δ ′, we have | f (x)−L|=
∣∣ f |A(x)−L

∣∣< ε .

The hypothesis of the proposition is necessary. For an arbitrary restriction we generally only get
implication in only one direction, see  Exercise 3.1.6 .

The usual notation for the limit is

lim
x→c
x∈A

f (x) := lim
x→c

f |A(x).

The most common use of restriction with respect to limits are the one-sided limits 

*
 .

Definition 3.1.16. Let f : S→ R be function and let c be a cluster point of S∩ (c,∞). Then if the
limit of the restriction of f to S∩ (c,∞) as x→ c exists, define

lim
x→c+

f (x) := lim
x→c

f |S∩(c,∞)(x).

Similarly, if c is a cluster point of S∩ (−∞,c) and the limit of the restriction as x→ c exists, define

lim
x→c−

f (x) := lim
x→c

f |S∩(−∞,c)(x).

*There are a plethora of notations for one sided limits. E.g. for lim
x→c−

f (x) one sees lim
x→c
x<c

f (x), lim
x↑c

f (x), or lim
x↗c

f (x).
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The proposition above does not apply to one-sided limits. It is possible to have one-sided limits,
but no limit at a point. For example, define f : R→ R by f (x) := 1 for x < 0 and f (x) := 0 for
x≥ 0. We leave it to the reader to verify that

lim
x→0−

f (x) = 1, lim
x→0+

f (x) = 0, lim
x→0

f (x) does not exist.

We have the following replacement.

Proposition 3.1.17. Let S⊂ R be such that c is a cluster point of both S∩ (−∞,c) and S∩ (c,∞),
and let f : S→ R be a function. Then c is a cluster point of S and

lim
x→c

f (x) = L if and only if lim
x→c−

f (x) = lim
x→c+

f (x) = L.

That is, a limit exists if both one-sided limits exist and are equal, and vice versa. The proof is a
straightforward application of the definition of limit and is left as an exercise. The key point is that(
S∩ (−∞,c)

)
∪
(
S∩ (c,∞)

)
= S\{c}.

3.1.5 Exercises
Exercise 3.1.1: Find the limit or prove that the limit does not exist

a) lim
x→c

√
x, for c≥ 0 b) lim

x→c
x2 + x+1, for any c ∈ R c) lim

x→0
x2 cos(1/x)

d) lim
x→0

sin(1/x)cos(1/x) e) lim
x→0

sin(x)cos(1/x)

Exercise 3.1.2: Prove  Corollary 3.1.10 .

Exercise 3.1.3: Prove  Corollary 3.1.11 .

Exercise 3.1.4: Prove  Corollary 3.1.12 .

Exercise 3.1.5: Let A ⊂ S. Show that if c is a cluster point of A, then c is a cluster point of S. Note the
difference from  Proposition 3.1.15 .

Exercise 3.1.6: Let A⊂ S. Suppose c is a cluster point of A and it is also a cluster point of S. Let f : S→ R
be a function. Show that if f (x)→ L as x→ c, then f |A(x)→ L as x→ c. Note the difference from

 Proposition 3.1.15 .

Exercise 3.1.7: Find an example of a function f : [−1,1]→ R, where for A := [0,1] we have f |A(x)→ 0 as
x→ 0, but the limit of f (x) as x→ 0 does not exist. Note why you cannot apply  Proposition 3.1.15 .

Exercise 3.1.8: Find example functions f and g such that the limit of neither f (x) nor g(x) exists as x→ 0,
but such that the limit of f (x)+g(x) exists as x→ 0.

Exercise 3.1.9: Let c1 be a cluster point of A⊂ R and c2 be a cluster point of B⊂ R. Suppose f : A→ B
and g : B→ R are functions such that f (x)→ c2 as x→ c1 and g(y)→ L as y→ c2. If c2 ∈ B, also suppose
that g(c2) = L. Let h(x) := g

(
f (x)

)
and show h(x)→ L as x→ c1. Hint: Note that f (x) could equal c2 for

many x ∈ A, see also  Exercise 3.1.14 .

Exercise 3.1.10: Let c be a cluster point of A⊂R, and f : A→R be a function. Suppose for every sequence
{xn} in A, such that lim xn = c, the sequence { f (xn)}∞

n=1 is Cauchy. Prove that limx→c f (x) exists.
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Exercise 3.1.11: Prove the following stronger version of one direction of  Lemma 3.1.7 : Let S⊂ R, c be a
cluster point of S, and f : S→ R be a function. Suppose that for every sequence {xn} in S \{c} such that
lim xn = c the sequence { f (xn)} is convergent. Then show f (x)→ L as x→ c for some L ∈ R.

Exercise 3.1.12: Prove  Proposition 3.1.17 .

Exercise 3.1.13: Suppose S ⊂ R and c is a cluster point of S. Suppose f : S→ R is bounded. Show that
there exists a sequence {xn} with xn ∈ S\{c} and lim xn = c such that { f (xn)} converges.

Exercise 3.1.14 (Challenging): Show that the hypothesis that g(c2) = L in  Exercise 3.1.9 is necessary. That
is, find f and g such that f (x)→ c2 as x→ c1 and g(y)→ L as y→ c2, but g

(
f (x)

)
does not go to L as

x→ c1.

Exercise 3.1.15: Show that the condition of being a cluster point is necessary to have a reasonable definition
of a limit. That is, suppose c is not a cluster point of S⊂ R, and f : S→ R is a function. Show that every L
would satisfy the definition of limit at c without the condition on c being a cluster point.

Exercise 3.1.16:

a) Prove  Corollary 3.1.13 .

b) Find an example showing that the converse of the corollary does not hold.
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3.2 Continuous functions

Note: 2–2.5 lectures

You undoubtedly heard of continuous functions in your schooling. A high-school criterion for
this concept is that a function is continuous if we can draw its graph without lifting the pen from
the paper. While that intuitive concept may be useful in simple situations, we require rigor. The
following definition took three great mathematicians (Bolzano, Cauchy, and finally Weierstrass) to
get correctly and its final form dates only to the late 1800s.

3.2.1 Definition and basic properties

Definition 3.2.1. Let S⊂R, c ∈ S, and let f : S→R be a function. We say that f is continuous at c
if for every ε > 0 there is a δ > 0 such that whenever x ∈ S and |x− c|< δ , then | f (x)− f (c)|< ε .

When f : S→ R is continuous at all c ∈ S, then we simply say f is a continuous function.

y = f (x)

c

f (c)

ε

ε

δ δ

Figure 3.2: For |x− c|< δ , the graph of f (x) should be within the gray region.

If f is continuous for all c ∈ A, we say f is continuous on A⊂ S. A straightforward exercise
( Exercise 3.2.7 ) shows that this implies that f |A is continuous, although the converse does not hold.

Continuity may be the most important definition to understand in analysis, and it is not an easy
one. See  Figure 3.2  . Note that δ not only depends on ε , but also on c; we need not pick one δ for
all c ∈ S. It is no accident that the definition of continuity is similar to the definition of a limit of
a function. The main feature of continuous functions is that these are precisely the functions that
behave nicely with limits.

Proposition 3.2.2. Let S⊂ R, let f : S→ R be a function, and let c ∈ S be a point. Then

(i) If c is not a cluster point of S, then f is continuous at c.

(ii) If c is a cluster point of S, then f is continuous at c if and only if the limit of f (x) as x→ c
exists and

lim
x→c

f (x) = f (c).

(iii) f is continuous at c if and only if for every sequence {xn} where xn ∈ S and lim xn = c, the
sequence { f (xn)} converges to f (c).
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Proof. Let us start with the first item. Suppose c is not a cluster point of S. Then there exists a
δ > 0 such that S∩ (c−δ ,c+δ ) = {c}. Therefore, for any ε > 0, simply pick this given delta. The
only x ∈ S such that |x− c|< δ is x = c. Then | f (x)− f (c)|= | f (c)− f (c)|= 0 < ε .

Let us move to the second item. Suppose c is a cluster point of S. Let us first suppose that
limx→c f (x) = f (c). Then for every ε > 0 there is a δ > 0 such that if x ∈ S\{c} and |x− c|< δ ,
then | f (x)− f (c)|< ε . Also | f (c)− f (c)|= 0 < ε , so the definition of continuity at c is satisfied.
On the other hand, suppose f is continuous at c. For every ε > 0, there exists a δ > 0 such that for
x ∈ S where |x− c| < δ we have | f (x)− f (c)| < ε . Then the statement is, of course, still true if
x ∈ S\{c} ⊂ S. Therefore, limx→c f (x) = f (c).

For the third item, first suppose f is continuous at c. Let {xn} be a sequence such that xn ∈ S
and lim xn = c. Let ε > 0 be given. Find a δ > 0 such that | f (x)− f (c)| < ε for all x ∈ S where
|x− c|< δ . Find an M ∈ N such that for n≥M we have |xn− c|< δ . Then for n≥M we have that
| f (xn)− f (c)|< ε , so

{
f (xn)

}
converges to f (c).

Let us prove the other direction of the third item by contrapositive. Suppose f is not continuous
at c. Then there exists an ε > 0 such that for all δ > 0, there exists an x ∈ S such that |x− c|< δ and
| f (x)− f (c)| ≥ ε . Let us define a sequence {xn} as follows. Let xn ∈ S be such that |xn− c|< 1/n

and | f (xn)− f (c)| ≥ ε . Now {xn} is a sequence of numbers in S such that lim xn = c and such
that | f (xn)− f (c)| ≥ ε for all n ∈ N. Thus { f (xn)} does not converge to f (c). It may or may not
converge, but it definitely does not converge to f (c).

The last item in the proposition is particularly powerful. It allows us to quickly apply what we
know about limits of sequences to continuous functions and even to prove that certain functions are
continuous. It can also be strengthened, see  Exercise 3.2.13 .

Example 3.2.3: f : (0,∞)→ R defined by f (x) := 1/x is continuous.
Proof: Fix c ∈ (0,∞). Let {xn} be a sequence in (0,∞) such that lim xn = c. Then we know that

f (c) =
1
c
=

1
lim xn

= lim
n→∞

1
xn

= lim
n→∞

f (xn).

Thus f is continuous at c. As f is continuous at all c ∈ (0,∞), f is continuous.

We have previously shown limx→c x2 = c2 directly. Therefore the function x2 is continuous. We
can use the continuity of algebraic operations with respect to limits of sequences, which we proved
in the previous chapter, to prove a much more general result.

Proposition 3.2.4. Let f : R→ R be a polynomial. That is

f (x) = adxd +ad−1xd−1 + · · ·+a1x+a0,

for some constants a0,a1, . . . ,ad . Then f is continuous.

Proof. Fix c ∈ R. Let {xn} be a sequence such that lim xn = c. Then

f (c) = adcd +ad−1cd−1 + · · ·+a1c+a0

= ad(lim xn)
d +ad−1(lim xn)

d−1 + · · ·+a1(lim xn)+a0

= lim
n→∞

(
adxd

n +ad−1xd−1
n + · · ·+a1xn +a0

)
= lim

n→∞
f (xn).

Thus f is continuous at c. As f is continuous at all c ∈ R, f is continuous.
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By similar reasoning, or by appealing to  Corollary 3.1.12 , we can prove the following proposition.
The proof is left as an exercise.

Proposition 3.2.5. Let f : S→ R and g : S→ R be functions continuous at c ∈ S.

(i) The function h : S→ R defined by h(x) := f (x)+g(x) is continuous at c.

(ii) The function h : S→ R defined by h(x) := f (x)−g(x) is continuous at c.

(iii) The function h : S→ R defined by h(x) := f (x)g(x) is continuous at c.

(iv) If g(x) 6= 0 for all x ∈ S, the function h : S→ R defined by h(x) := f (x)
g(x) is continuous at c.

Example 3.2.6: The functions sin(x) and cos(x) are continuous. In the following computations
we use the sum-to-product trigonometric identities. We also use the simple facts that |sin(x)| ≤ |x|,
|cos(x)| ≤ 1, and |sin(x)| ≤ 1.

|sin(x)− sin(c)|=
∣∣∣∣2sin

(
x− c

2

)
cos
(

x+ c
2

)∣∣∣∣
= 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣ ∣∣∣∣cos
(

x+ c
2

)∣∣∣∣
≤ 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣
≤ 2

∣∣∣∣x− c
2

∣∣∣∣= |x− c|

|cos(x)− cos(c)|=
∣∣∣∣−2sin

(
x− c

2

)
sin
(

x+ c
2

)∣∣∣∣
= 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣ ∣∣∣∣sin
(

x+ c
2

)∣∣∣∣
≤ 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣
≤ 2

∣∣∣∣x− c
2

∣∣∣∣= |x− c|

The claim that sin and cos are continuous follows by taking an arbitrary sequence {xn} converg-
ing to c, or by applying the definition of continuity directly. Details are left to the reader.

3.2.2 Composition of continuous functions

You probably already realized that one of the basic tools in constructing complicated functions
out of simple ones is composition. Recall that for two functions f and g, the composition f ◦g is
defined by ( f ◦g)(x) := f

(
g(x)

)
. A composition of continuous functions is again continuous.

Proposition 3.2.7. Let A,B⊂ R and f : B→ R and g : A→ B be functions. If g is continuous at
c ∈ A and f is continuous at g(c), then f ◦g : A→ R is continuous at c.
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Proof. Let {xn} be a sequence in A such that lim xn = c. As g is continuous at c, then
{

g(xn)
}

converges to g(c). As f is continuous at g(c), then
{

f
(
g(xn)

)}
converges to f

(
g(c)

)
. Thus f ◦g is

continuous at c.

Example 3.2.8: Claim:
(
sin(1/x)

)2 is a continuous function on (0,∞).
Proof: First note that 1/x is a continuous function on (0,∞) and sin(x) is a continuous function

on (0,∞) (actually on all of R, but (0,∞) is the range for 1/x). Hence the composition sin(1/x) is
continuous. We also know that x2 is continuous on the interval (−1,1) (the range of sin). Thus the
composition

(
sin(1/x)

)2 is also continuous on (0,∞).

3.2.3 Discontinuous functions
When f is not continuous at c, we say f is discontinuous at c, or that it has a discontinuity at c. The
following proposition is a useful test and follows immediately from third item of  Proposition 3.2.2 .

Proposition 3.2.9. Let f : S→ R be a function and c ∈ S. Suppose there exists a sequence {xn},
xn ∈ S, and lim xn = c such that

{
f (xn)

}
does not converge to f (c). Then f is discontinuous at c.

Again, saying that
{

f (xn)
}

does not converge to f (c) means that it either does not converge at
all, or it converges to something other than f (c).

Example 3.2.10: The function f : R→ R defined by

f (x) :=

{
−1 if x < 0,
1 if x≥ 0,

is not continuous at 0.
Proof: Take the sequence {−1/n}, which converges to 0. Then f (−1/n) =−1 for every n, and

so lim f (−1/n) =−1, but f (0) = 1. Thus the function is not continuous at 0. See  Figure 3.3 .

1
5

1
4

1
3

1
21 · · ·

Figure 3.3: Graph of the jump discontinuity. The values of f (−1/n) and f (0) are marked as black dots.

Notice that f (1/n) = 1 for all n ∈ N. Hence, lim f (1/n) = f (0) = 1. So
{

f (xn)
}

may converge
to f (0) for some specific sequence {xn} going to 0, despite the function being discontinuous at 0.

Finally, consider f
(
(−1)n

n

)
= (−1)n. This sequence diverges.

Example 3.2.11: For an extreme example, take the so-called Dirichlet function 

*
 .

f (x) :=

{
1 if x is rational,
0 if x is irrational.

*Named after the German mathematician  Johann Peter Gustav Lejeune Dirichlet (1805–1859).
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The function f is discontinuous at all c ∈ R.
Proof: Suppose c is rational. Take a sequence {xn} of irrational numbers such that lim xn = c

(why can we?). Then f (xn) = 0 and so lim f (xn) = 0, but f (c) = 1. If c is irrational, take a sequence
of rational numbers {xn} that converges to c (why can we?). Then lim f (xn) = 1, but f (c) = 0.

Let us test the limits of our intuition. Can there exist a function continuous at all irrational
numbers, but discontinuous at all rational numbers? There are rational numbers arbitrarily close to
any irrational number. Perhaps strangely, the answer is yes. The following example is called the
Thomae function 

*
 or the popcorn function.

Example 3.2.12: Define f : (0,1)→ R as

f (x) :=

{
1/k if x = m/k, where m,k ∈ N and m and k have no common divisors,
0 if x is irrational.

See the graph of f in  Figure 3.4 . We claim that f is continuous at all irrational c and discontinuous
at all rational c.

Figure 3.4: Graph of the “popcorn function.”

Proof: Suppose c = m/k is rational. Take a sequence of irrational numbers {xn} such that
lim xn = c. Then lim f (xn) = lim 0 = 0, but f (c) = 1/k 6= 0. So f is discontinuous at c.

Now let c be irrational, so f (c) = 0. Take a sequence {xn} in (0,1) such that lim xn = c. Given
ε > 0, find K ∈ N such that 1/K < ε by the  Archimedean property . If m/k ∈ (0,1) is in lowest terms
(no common divisors), then m < k. So there are only finitely many rational numbers in (0,1) whose
denominator k in lowest terms is less than K. Hence there is an M such that for n ≥ M, all the
numbers xn that are rational have a denominator larger than or equal to K. Thus for n≥M,

| f (xn)−0|= f (xn)≤ 1/K < ε.

Therefore, f is continuous at irrational c.

Let us end on an easier example.

Example 3.2.13: Define g : R→ R by g(x) := 0 if x 6= 0 and g(0) := 1. Then g is not continuous
at zero, but continuous everywhere else (why?). The point x = 0 is called a removable discontinuity.
That is because if we would change the definition of g, by insisting that g(0) be 0, we would obtain

*Named after the German mathematician  Carl Johannes Thomae (1840–1921).
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a continuous function. On the other hand, let f be the function of  Example 3.2.10  . Then f does not
have a removable discontinuity at 0. No matter how we would define f (0) the function would still
fail to be continuous. The difference is that limx→0 g(x) exists while limx→0 f (x) does not.

Let us stay with this example but show another phenomenon. Let A := {0}, then g|A is
continuous (why?), while g is not continuous on A. Similarly, if B := R \ {0}, then g|B is also
continuous.

3.2.4 Exercises
Exercise 3.2.1: Using the definition of continuity directly prove that f : R→ R defined by f (x) := x2 is
continuous.

Exercise 3.2.2: Using the definition of continuity directly prove that f : (0,∞)→ R defined by f (x) := 1/x is
continuous.

Exercise 3.2.3: Let f : R→ R be defined by

f (x) :=

{
x if x is rational,
x2 if x is irrational.

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.

Exercise 3.2.4: Let f : R→ R be defined by

f (x) :=

{
sin(1/x) if x 6= 0,
0 if x = 0.

Is f continuous? Prove your assertion.

Exercise 3.2.5: Let f : R→ R be defined by

f (x) :=

{
xsin(1/x) if x 6= 0,
0 if x = 0.

Is f continuous? Prove your assertion.

Exercise 3.2.6: Prove  Proposition 3.2.5 .

Exercise 3.2.7: Prove the following statement. Let S⊂R and A⊂ S. Let f : S→R be a continuous function.
Then the restriction f |A is continuous.

Exercise 3.2.8: Suppose S⊂ R, such that (c−α,c+α)⊂ S for some c ∈ R and α > 0. Let f : S→ R be a
function and A := (c−α,c+α). Prove that if f |A is continuous at c, then f is continuous at c.

Exercise 3.2.9: Give an example of functions f : R→ R and g : R→ R such that the function h defined by
h(x) := f (x)+g(x) is continuous, but f and g are not continuous. Can you find f and g that are nowhere
continuous, but h is a continuous function?

Exercise 3.2.10: Let f : R→ R and g : R→ R be continuous functions. Suppose that for all rational
numbers r, f (r) = g(r). Show that f (x) = g(x) for all x.
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Exercise 3.2.11: Let f : R→ R be continuous. Suppose f (c)> 0. Show that there exists an α > 0 such that
for all x ∈ (c−α,c+α) we have f (x)> 0.

Exercise 3.2.12: Let f : Z→ R be a function. Show that f is continuous.

Exercise 3.2.13: Let f : S→R be a function and c∈ S, such that for every sequence {xn} in S with lim xn = c,
the sequence { f (xn)} converges. Show that f is continuous at c.

Exercise 3.2.14: Suppose f : [−1,0] → R and g : [0,1] → R are continuous and f (0) = g(0). Define
h : [−1,1]→ R by h(x) := f (x) if x≤ 0 and h(x) := g(x) if x > 0. Show that h is continuous.

Exercise 3.2.15: Suppose g : R→ R is a continuous function such that g(0) = 0, and suppose f : R→ R is
such that | f (x)− f (y)| ≤ g(x− y) for all x and y. Show that f is continuous.

Exercise 3.2.16 (Challenging): Suppose f (x+y) = f (x)+ f (y) for some f : R→R such that f is continuous
at 0. Show that f (x) = ax for some a ∈ R. Hint: Show that f (nx) = n f (x), then show f is continuous on R.
Then show that f (x)/x = f (1) for all rational x.

Exercise 3.2.17: Suppose S⊂R and let f : S→ R and g : S→ R be continuous functions. Define p : S→ R
by p(x) := max{ f (x),g(x)} and q : S→ R by q(x) := min{ f (x),g(x)}. Prove that p and q are continuous.

Exercise 3.2.18: Suppose f : [−1,1]→ R is a function continuous at all x ∈ [−1,1] \ {0}. Show that for
every ε such that 0 < ε < 1, there exists a function g : [−1,1]→ R continuous on all of [−1,1], such that
f (x) = g(x) for all x ∈ [−1,−ε]∪ [ε,1], and |g(x)| ≤ | f (x)| for all x ∈ [−1,1].

Exercise 3.2.19 (Challenging): A function f : I→ R is convex if whenever a≤ x≤ b for a,x,b in I, we have
f (x)≤ f (a) b−x

b−a + f (b) x−a
b−a . In other words, if the line drawn between

(
a, f (a)

)
and

(
b, f (b)

)
is above the

graph of f .

a) Prove that if I = (α,β ) an open interval and f : I→ R is convex, then f is continuous.

b) Find an example of a convex f : [0,1]→ R which is not continuous.
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3.3 Min-max and intermediate value theorems
Note: 1.5 lectures

Continuous functions on closed and bounded intervals are quite well behaved.

3.3.1 Min-max or extreme value theorem
Recall a function f : [a,b]→ R is bounded if there exists a B ∈ R such that | f (x)| ≤ B for all
x ∈ [a,b]. We have the following lemma.

Lemma 3.3.1. A continuous function f : [a,b]→ R is bounded.

Proof. Let us prove this claim by contrapositive. Suppose f is not bounded. Then for each n ∈ N,
there is an xn ∈ [a,b], such that

| f (xn)| ≥ n.

The sequence {xn} is bounded as a ≤ xn ≤ b. By the  Bolzano–Weierstrass theorem , there is a
convergent subsequence {xni}. Let x := lim xni . Since a ≤ xni ≤ b for all i, then a ≤ x ≤ b. The
sequence { f (xni)} is not bounded as | f (xni)| ≥ ni ≥ i. Thus f is not continuous at x as

f (x) = f
(

lim
i→∞

xni

)
, but lim

i→∞
f (xni) does not exist.

Recall from calculus that f : S→ R achieves an absolute minimum at c ∈ S if

f (x)≥ f (c) for all x ∈ S.

On the other hand, f achieves an absolute maximum at c ∈ S if

f (x)≤ f (c) for all x ∈ S.

If such a c ∈ S exists, then f achieves an absolute minimum (resp. absolute maximum) on S.

absolute maximum of f = f (c)

absolute minimum of f = f (d)
a b

d
c

Figure 3.5: f : [a,b]→R achieves an absolute maximum f (c) at c, and an absolute minimum f (d) at d.

If S is a closed and bounded interval, then a continuous f must achieve an absolute minimum
and an absolute maximum on S.

Theorem 3.3.2 (Minimum-maximum theorem / Extreme value theorem). A continuous function
f : [a,b]→ R on a closed and bounded interval [a,b] achieves both an absolute minimum and an
absolute maximum on [a,b].

118



3.3. MIN-MAX AND INTERMEDIATE VALUE THEOREMS 119

Proof. The lemma says that f is bounded, and thus the set f
(
[a,b]

)
=
{

f (x) : x ∈ [a,b]
}

has a
supremum and an infimum. There exist sequences in the set f

(
[a,b]

)
that approach its supremum

and its infimum. That is, there are sequences
{

f (xn)
}

and
{

f (yn)
}

, where xn,yn are in [a,b], such
that

lim
n→∞

f (xn) = inf f
(
[a,b]

)
and lim

n→∞
f (yn) = sup f

(
[a,b]

)
.

We are not done yet, we need to find where the minima and the maxima are. The problem is that the
sequences {xn} and {yn} need not converge. We know {xn} and {yn} are bounded (their elements
belong to a bounded interval [a,b]). Apply the  Bolzano–Weierstrass theorem  , to find convergent
subsequences {xni} and {ymi}. Let

x := lim
i→∞

xni and y := lim
i→∞

ymi.

As a≤ xni ≤ b, we have a≤ x ≤ b, and similarly a≤ y≤ b. So x and y are in [a,b]. A limit of a
subsequence is the same as the limit of the sequence, and we can take a limit past the continuous
function f :

inf f ([a,b]) = lim
n→∞

f (xn) = lim
i→∞

f (xni) = f
(

lim
i→∞

xni

)
= f (x).

Similarly,
sup f ([a,b]) = lim

n→∞
f (yn) = lim

i→∞
f (ymi) = f

(
lim
i→∞

ymi

)
= f (y).

Therefore, f achieves an absolute minimum at x and f achieves an absolute maximum at y.

Example 3.3.3: The function f (x) := x2 +1 defined on the interval [−1,2] achieves a minimum at
x = 0 when f (0) = 1. It achieves a maximum at x = 2 where f (2) = 5. Do note that the domain of
definition matters. If we instead took the domain to be [−10,10], then x = 2 would no longer be a
maximum of f . Instead the maximum would be achieved at either x = 10 or x =−10.

We show by examples that the different hypotheses of the theorem are truly needed.

Example 3.3.4: The function f (x) := x, defined on the whole real line, achieves neither a minimum,
nor a maximum. So it is important that we are looking at a bounded interval.

Example 3.3.5: The function f (x) := 1/x, defined on (0,1) achieves neither a minimum, nor a
maximum. The values of the function are unbounded as we approach 0. Also as we approach x = 1,
the values of the function approach 1, but f (x)> 1 for all x ∈ (0,1). There is no x ∈ (0,1) such that
f (x) = 1. So it is important that we are looking at a closed interval.

Example 3.3.6: Continuity is important. Define f : [0,1]→ R by f (x) := 1/x for x > 0 and let
f (0) := 0. The function does not achieve a maximum. The problem is that the function is not
continuous at 0.

3.3.2 Bolzano’s intermediate value theorem
Bolzano’s intermediate value theorem is one of the cornerstones of analysis. It is sometimes only
called the intermediate value theorem, or just Bolzano’s theorem. To prove Bolzano’s theorem we
prove the following simpler lemma.
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Lemma 3.3.7. Let f : [a,b]→ R be a continuous function. Suppose f (a)< 0 and f (b)> 0. Then
there exists a number c ∈ (a,b) such that f (c) = 0.

Proof. We define two sequences {an} and {bn} inductively:

(i) Let a1 := a and b1 := b.

(ii) If f
(

an+bn
2

)
≥ 0, let an+1 := an and bn+1 := an+bn

2 .

(iii) If f
(

an+bn
2

)
< 0, let an+1 := an+bn

2 and bn+1 := bn.

a1 b1
a2 b2
a3 b3

a4 b4
a5 b5

c

Figure 3.6: Finding roots (bisection method).

See  Figure 3.6 for an example defining the first five steps. If an < bn, then an <
an+bn

2 < bn. So
an+1 < bn+1. Thus by  induction an < bn for all n. Furthermore, an ≤ an+1 and bn ≥ bn+1 for all
n, that is the sequences are monotone. As an < bn ≤ b1 = b and bn > an ≥ a1 = a for all n, the
sequences are also bounded. Therefore, the sequences converge. Let c := lim an and d := lim bn,
where also a≤ c≤ d ≤ b. We need to show that c = d. Notice

bn+1−an+1 =
bn−an

2
.

By  induction ,

bn−an =
b1−a1

2n−1 = 21−n(b−a).

As 21−n(b−a) converges to zero, we take the limit as n goes to infinity to get

d− c = lim
n→∞

(bn−an) = lim
n→∞

21−n(b−a) = 0.

In other words d = c.

120



3.3. MIN-MAX AND INTERMEDIATE VALUE THEOREMS 121

By construction, for all n we have

f (an)< 0 and f (bn)≥ 0.

Since lim an = lim bn = c and as f is continuous, we may take limits in those inequalities:

f (c) = lim f (an)≤ 0 and f (c) = lim f (bn)≥ 0.

As f (c)≥ 0 and f (c)≤ 0, we conclude f (c) = 0. Thus also c 6= a and c 6= b, so a < c < b.

Theorem 3.3.8 (Bolzano’s intermediate value theorem). Let f : [a,b]→R be a continuous function.
Suppose y ∈ R is such that f (a)< y < f (b) or f (a)> y > f (b). Then there exists a c ∈ (a,b) such
that f (c) = y.

The theorem says that a continuous function on a closed interval achieves all the values between
the values at the endpoints.

Proof. If f (a)< y < f (b), then define g(x) := f (x)−y. Then g(a)< 0 and g(b)> 0, and we apply
 Lemma 3.3.7 to g to find c. If g(c) = 0, then f (c) = y.

Similarly, if f (a)> y > f (b), then define g(x) := y− f (x). Then again g(a)< 0 and g(b)> 0,
and we apply  Lemma 3.3.7 to find c. Again, if g(c) = 0, then f (c) = y.

If a function is continuous, then the restriction to a subset is continuous; if f : S → R is
continuous and [a,b] ⊂ S, then f |[a,b] is also continuous. We generally apply the theorem to a
function continuous on some large set S, but we restrict attention to an interval.

The proof of the lemma tells us how to find the root c. The proof is not only useful for us
pure mathematicians, but it is a useful idea in applied mathematics, where it is called the bisection
method.

Example 3.3.9 (Bisection method): The polynomial f (x) := x3− 2x2 + x− 1 has a real root in
(1,2). We simply notice that f (1) =−1 and f (2) = 1. Hence there must exist a point c∈ (1,2) such
that f (c) = 0. To find a better approximation of the root we follow the proof of  Lemma 3.3.7 . We
look at 1.5 and find that f (1.5) =−0.625. Therefore, there is a root of the polynomial in (1.5,2).
Next we look at 1.75 and note that f (1.75)≈−0.016. Hence there is a root of f in (1.75,2). Next
we look at 1.875 and find that f (1.875)≈ 0.44, thus there is a root in (1.75,1.875). We follow this
procedure until we gain sufficient precision. In fact, the root is at c≈ 1.7549.

The technique above is the simplest method of finding roots of polynomials, which is perhaps
the most common problem in applied mathematics. In general, finding roots is hard to do quickly,
precisely, and automatically.

There are often better and faster methods of finding roots of equations, such as Newton’s method.
One advantage of the method above is its simplicity. The moment we find an initial interval where
the intermediate value theorem applies, we are guaranteed to find a root up to a desired precision in
finitely many steps. Furthermore, the bisection method finds roots of any continuous function, not
just a polynomial.

The theorem guarantees at least one c such that f (c) = y, but there may be many different
roots of the equation f (c) = y. If we follow the procedure of the proof, we are guaranteed to find
approximations to one such root. We need to work harder to find any other roots.

Polynomials of even degree may not have any real roots. There is no real number x such that
x2 +1 = 0. Odd polynomials, on the other hand, always have at least one real root.
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Proposition 3.3.10. Let f (x) be a polynomial of odd degree. Then f has a real root.

Proof. Suppose f is a polynomial of odd degree d. We write

f (x) = adxd +ad−1xd−1 + · · ·+a1x+a0,

where ad 6= 0. We divide by ad to obtain a monic polynomial 

*
 

g(x) := xd +bd−1xd−1 + · · ·+b1x+b0,

where bk = ak/ad. Let us show that g(n) is positive for some large n ∈ N. We first compare the
highest order term with the rest:∣∣∣∣bd−1nd−1 + · · ·+b1n+b0

nd

∣∣∣∣=
∣∣bd−1nd−1 + · · ·+b1n+b0

∣∣
nd

≤ |bd−1|nd−1 + · · ·+ |b1|n+ |b0|
nd

≤ |bd−1|nd−1 + · · ·+ |b1|nd−1 + |b0|nd−1

nd

=
nd−1(|bd−1|+ · · ·+ |b1|+ |b0|

)
nd

=
1
n

(
|bd−1|+ · · ·+ |b1|+ |b0|

)
.

Therefore,

lim
n→∞

bd−1nd−1 + · · ·+b1n+b0

nd = 0.

Thus there exists an M ∈ N such that∣∣∣∣bd−1Md−1 + · · ·+b1M+b0

Md

∣∣∣∣< 1,

which implies
−(bd−1Md−1 + · · ·+b1M+b0)< Md.

Therefore, g(M)> 0.
Next, consider g(−n) for n ∈ N. By a similar argument, there exists a K ∈ N such that

bd−1(−K)d−1 + · · ·+ b1(−K)+ b0 < Kd and therefore g(−K) < 0 (see  Exercise 3.3.5  ). In the
proof make sure you use the fact that d is odd. In particular, if d is odd, then (−n)d =−(nd).

We appeal to the intermediate value theorem to find a c ∈ [−K,M], such that g(c) = 0. As
g(x) = f (x)

ad
, then f (c) = 0, and the proof is done.

Example 3.3.11: Interestingly, there do exist discontinuous functions that have the intermediate
value property. The function

f (x) :=

{
sin(1/x) if x 6= 0,
0 if x = 0,

*The word monic means that the coefficient of xd is 1.
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is not continuous at 0, however, it has the intermediate value property. That is, for any a < b, and
any y such that f (a)< y < f (b) or f (a)> y > f (b), there exists a c such that f (y) = c. Proof is
left as  Exercise 3.3.4 .

The intermediate value theorem says that if f : [a,b]→ R is continuous, then f
(
[a,b]

)
contains

all the values between f (a) and f (b). In fact, more is true. Combining all the results of this section
one can prove the following useful corollary whose proof is left as an exercise.

Corollary 3.3.12. If f : [a,b]→ R is continuous, then the direct image f ([a,b]) is a closed and
bounded interval or a single number.

3.3.3 Exercises
Exercise 3.3.1: Find an example of a discontinuous function f : [0,1]→ R where the conclusion of the
intermediate value theorem fails.

Exercise 3.3.2: Find an example of a bounded discontinuous function f : [0,1]→ R that has neither an
absolute minimum nor an absolute maximum.

Exercise 3.3.3: Let f : (0,1)→ R be a continuous function such that lim
x→0

f (x) = lim
x→1

f (x) = 0. Show that f

achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps not both).

Exercise 3.3.4: Let

f (x) :=

{
sin(1/x) if x 6= 0,
0 if x = 0.

Show that f has the intermediate value property. That is, for any a < b, if there exists a y such that
f (a)< y < f (b) or f (a)> y > f (b), then there exists a c ∈ (a,b) such that f (c) = y.

Exercise 3.3.5: Suppose g(x) is a monic polynomial of odd degree d, that is,

g(x) = xd +bd−1xd−1 + · · ·+b1x+b0,

for some real numbers b0,b1, . . . ,bd−1. Show that there exists a K ∈ N such that g(−K) < 0. Hint: Make
sure to use the fact that d is odd. You will have to use that (−n)d =−(nd).

Exercise 3.3.6: Suppose g(x) is a monic polynomial of positive even degree d, that is,

g(x) = xd +bd−1xd−1 + · · ·+b1x+b0,

for some real numbers b0,b1, . . . ,bd−1. Suppose g(0)< 0. Show that g has at least two distinct real roots.

Exercise 3.3.7: Prove  Corollary 3.3.12  : Suppose f : [a,b]→ R is a continuous function. Prove that the
direct image f ([a,b]) is a closed and bounded interval or a single number.

Exercise 3.3.8: Suppose f : R→ R is continuous and periodic with period P > 0. That is, f (x+P) = f (x)
for all x ∈ R. Show that f achieves an absolute minimum and an absolute maximum.

Exercise 3.3.9 (Challenging): Suppose f (x) is a bounded polynomial, in other words, there is an M such
that | f (x)| ≤M for all x ∈ R. Prove that f must be a constant.
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Exercise 3.3.10: Suppose f : [0,1]→ [0,1] is continuous. Show that f has a fixed point, in other words,
show that there exists an x ∈ [0,1] such that f (x) = x.

Exercise 3.3.11: Find an example of a continuous bounded function f : R→ R that does not achieve an
absolute minimum nor an absolute maximum on R.

Exercise 3.3.12: Suppose f : R→ R is a continuous function such that x≤ f (x)≤ x+1 for all x ∈ R. Find
f (R).

Exercise 3.3.13: True/False, prove or find a counterexample. If f : R→R is a continuous function such that
f |Z is bounded, then f is bounded.

Exercise 3.3.14: Suppose f : [0,1]→ (0,1) is a bijection. Prove that f is not continuous.

Exercise 3.3.15: Suppose f : R→ R is continuous.

a) Prove that if there is a c such that f (c) f (−c)< 0, then there is a d ∈ R such that f (d) = 0.

b) Find a continuous function f such that f (R) = R, but f (x) f (−x)≥ 0 for all x ∈ R.

Exercise 3.3.16: Suppose g(x) is a monic polynomial of even degree d, that is,

g(x) = xd +bd−1xd−1 + · · ·+b1x+b0,

for some real numbers b0,b1, . . . ,bd−1. Show that g achieves an absolute minimum on R.

Exercise 3.3.17: Suppose f (x) is a polynomial of degree d and f (R) = R. Show that d is odd.
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3.4 Uniform continuity
Note: 1.5–2 lectures (continuous extension can be optional)

3.4.1 Uniform continuity
We made a fuss of saying that the δ in the definition of continuity depended on the point c. There
are situations when it is advantageous to have a δ independent of any point, and so we give a name
to this concept.

Definition 3.4.1. Let S ⊂ R, and let f : S→ R be a function. Suppose for any ε > 0 there exists
a δ > 0 such that whenever x,c ∈ S and |x− c| < δ , then | f (x)− f (c)| < ε . Then we say f is
uniformly continuous.

A uniformly continuous function must be continuous. The only difference in the definitions is
that in uniform continuity, for a given ε > 0 we pick a δ > 0 that works for all c ∈ S. That is, δ

can no longer depend on c, it only depends on ε . The domain of definition of the function makes
a difference now. A function that is not uniformly continuous on a larger set, may be uniformly
continuous when restricted to a smaller set. We will say uniformly continuous on X to mean that f
restricted to X is uniformly continuous, or perhaps to just emphasize the domain. Note that x and c
are not treated any differently in this definition.

Example 3.4.2: f : [0,1]→ R, defined by f (x) := x2 is uniformly continuous.
Proof: Note that 0≤ x,c≤ 1. Then∣∣x2− c2∣∣= |x+ c| |x− c| ≤ (|x|+ |c|) |x− c| ≤ (1+1) |x− c| .

Therefore, given ε > 0, let δ := ε/2. If |x− c|< δ , then
∣∣x2− c2

∣∣< ε .

On the other hand, g : R→ R, defined by g(x) := x2 is not uniformly continuous.
Proof: Suppose it is uniformly continuous, then for all ε > 0, there would exist a δ > 0 such

that if |x− c|< δ , then
∣∣x2− c2

∣∣< ε . Take x > 0 and let c := x+ δ/2. Write

ε >
∣∣x2− c2∣∣= |x+ c| |x− c|= (2x+ δ/2)δ/2≥ δx.

Therefore, x < ε/δ for all x > 0, which is a contradiction.

Example 3.4.3: The function f : (0,1)→ R, defined by f (x) := 1/x is not uniformly continuous.
Proof: Given ε > 0, then ε > |1/x− 1/y| holds if and only if

ε > |1/x− 1/y|= |y− x|
|xy| =

|y− x|
xy

,

or
|x− y|< xyε.

Suppose ε < 1, and we wish to see if a small δ > 0 would work. If x∈ (0,1) and y = x+δ/2∈ (0,1),
then |x− y| = δ/2 < δ . We plug that into the inequality to get δ/2 < x

(
x+ δ/2

)
ε . The inequality

implies δ/2 < x. If the definition of uniform continuity is satisfied, then the inequality holds for all
x > 0. But then δ ≤ 0. Therefore, there is no single δ > 0 that works for all points.
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The examples show that if f is defined on an interval that is either not closed or not bounded,
then f can be continuous, but not uniformly continuous. For a closed and bounded interval [a,b],
we can, however, make the following statement.

Theorem 3.4.4. Let f : [a,b]→ R be a continuous function. Then f is uniformly continuous.

Proof. We prove the statement by contrapositive. Suppose f is not uniformly continuous. We
will prove that there is some c ∈ [a,b] where f is not continuous. Let us negate the definition of
uniformly continuous. There exists an ε > 0 such that for every δ > 0, there exist points x,y in
[a,b] with |x− y|< δ and | f (x)− f (y)| ≥ ε .

So for the ε > 0 above, we find sequences {xn} and {yn} such that |xn− yn|< 1/n and such that
| f (xn)− f (yn)| ≥ ε . By  Bolzano–Weierstrass  , there exists a convergent subsequence {xnk}. Let
c := lim xnk . As a≤ xnk ≤ b, then a≤ c≤ b. Write

|ynk− c|= |ynk− xnk + xnk− c| ≤ |ynk− xnk |+ |xnk− c|< 1/nk + |xnk− c| .

As 1/nk and |xnk− c| both go to zero when k goes to infinity, {ynk} converges and the limit is c. We
now show that f is not continuous at c. We estimate

| f (xnk)− f (c)|= | f (xnk)− f (ynk)+ f (ynk)− f (c)|
≥ | f (xnk)− f (ynk)|− | f (ynk)− f (c)|
≥ ε−| f (ynk)− f (c)| .

Or in other words
| f (xnk)− f (c)|+ | f (ynk)− f (c)| ≥ ε.

At least one of the sequences { f (xnk)} or { f (ynk)} cannot converge to f (c), otherwise the left hand
side of the inequality would go to zero while the right-hand side is positive. Thus f cannot be
continuous at c.

3.4.2 Continuous extension
Before we get to continuous extension, we show the following useful lemma. It says that uniformly
continuous functions behave nicely with respect to Cauchy sequences. The new issue here is that
for a Cauchy sequence we no longer know where the limit ends up; it may not end up in the domain
of the function.

Lemma 3.4.5. Let f : S→ R be a uniformly continuous function. Let {xn} be a Cauchy sequence
in S. Then { f (xn)} is Cauchy.

Proof. Let ε > 0 be given. There is a δ > 0 such that | f (x)− f (y)| < ε whenever x,y ∈ S and
|x− y|< δ . Find an M ∈ N such that for all n,k ≥M we have |xn− xk|< δ . Then for all n,k ≥M
we have | f (xn)− f (xk)|< ε .

An application of the lemma above is the following extension result. It says that a function on
an open interval is uniformly continuous if and only if it can be extended to a continuous function
on the closed interval.
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Proposition 3.4.6. A function f : (a,b)→ R is uniformly continuous if and only if the limits

La := lim
x→a

f (x) and Lb := lim
x→b

f (x)

exist and the function f̃ : [a,b]→ R defined by

f̃ (x) :=


f (x) if x ∈ (a,b),
La if x = a,
Lb if x = b,

is continuous.

Proof. One direction is not difficult. If f̃ is continuous, then it is uniformly continuous by
 Theorem 3.4.4  . As f is the restriction of f̃ to (a,b), then f is also uniformly continuous (easy
exercise).

Now suppose f is uniformly continuous. We must first show that the limits La and Lb exist. Let
us concentrate on La. Take a sequence {xn} in (a,b) such that lim xn = a. The sequence {xn} is
Cauchy, so by  Lemma 3.4.5  the sequence { f (xn)} is Cauchy and thus convergent. We have some
number L1 := lim f (xn). Take another sequence {yn} in (a,b) such that lim yn = a. By the same
reasoning we get L2 := lim f (yn). If we show that L1 = L2, then the limit La = limx→a f (x) exists.
Let ε > 0 be given. Find δ > 0 such that |x− y|< δ implies | f (x)− f (y)|< ε/3. Find M ∈ N such
that for n ≥ M we have |a− xn| < δ/2, |a− yn| < δ/2, | f (xn)−L1| < ε/3, and | f (yn)−L2| < ε/3.
Then for n≥M,

|xn− yn|= |xn−a+a− yn| ≤ |xn−a|+ |a− yn|< δ/2+ δ/2 = δ .

So

|L1−L2|= |L1− f (xn)+ f (xn)− f (yn)+ f (yn)−L2|
≤ |L1− f (xn)|+ | f (xn)− f (yn)|+ | f (yn)−L2|
≤ ε/3+ ε/3+ ε/3 = ε.

Therefore, L1 = L2. Thus La exists. To show that Lb exists is left as an exercise.
Now that we know that the limits La and Lb exist, we are done. If limx→a f (x) exists, then

limx→a f̃ (x) exists (see  Proposition 3.1.15 ). Similarly with Lb. Hence f̃ is continuous at a and b.
And since f is continuous at c ∈ (a,b), then f̃ is continuous at c ∈ (a,b).

A common application of this proposition (together with  Proposition 3.1.17  ) is the following.
Suppose f : (−1,0)∪ (0,1)→ R is uniformly continuous, then limx→0 f (x) exists and the function
has what is called an removable singularity, that is, we can extend the function to a continuous
function on (−1,1).

3.4.3 Lipschitz continuous functions
Definition 3.4.7. A function f : S→ R is Lipschitz continuous 

*
 , if there exists a K ∈ R, such that

| f (x)− f (y)| ≤ K |x− y| for all x and y in S.
*Named after the German mathematician  Rudolf Otto Sigismund Lipschitz (1832–1903).
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A large class of functions is Lipschitz continuous. Be careful, just as for uniformly continuous
functions, the domain of definition of the function is important. See the examples below and the
exercises. First, we justify the use of the word continuous.

Proposition 3.4.8. A Lipschitz continuous function is uniformly continuous.

Proof. Let f : S→ R be a function and let K be a constant such that | f (x)− f (y)| ≤ K |x− y| for
all x,y in S. Let ε > 0 be given. Take δ := ε/K. For any x and y in S such that |x− y|< δ , we have

| f (x)− f (y)| ≤ K |x− y|< Kδ = K
ε

K
= ε.

Therefore, f is uniformly continuous.

We interpret Lipschitz continuity geometrically. Let f be a Lipschitz continuous function with
some constant K. We rewrite the inequality to say that for x 6= y we have∣∣∣∣ f (x)− f (y)

x− y

∣∣∣∣≤ K.

The quantity f (x)− f (y)
x−y is the slope of the line between the points

(
x, f (x)

)
and

(
y, f (y)

)
, that is, a

secant line. Therefore, f is Lipschitz continuous if and only if every line that intersects the graph of
f in at least two distinct points has slope less than or equal to K. See  Figure 3.7 .

x y

slope = f (x)− f (y)
x−y

Figure 3.7: The slope of a secant line. A function is Lipschitz if |slope|=
∣∣∣ f (x)− f (y)

x−y

∣∣∣≤ K for all x and y.

Example 3.4.9: The functions sin(x) and cos(x) are Lipschitz continuous. In  Example 3.2.6 we
have seen the following two inequalities.

|sin(x)− sin(y)| ≤ |x− y| and |cos(x)− cos(y)| ≤ |x− y| .

Hence sine and cosine are Lipschitz continuous with K = 1.

Example 3.4.10: The function f : [1,∞)→ R defined by f (x) :=
√

x is Lipschitz continuous.
Proof: ∣∣√x−√y

∣∣= ∣∣∣∣ x− y√
x+
√

y

∣∣∣∣= |x− y|√
x+
√

y
.
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As x≥ 1 and y≥ 1, we see that 1√
x+
√

y ≤
1
2 . Therefore

∣∣√x−√y
∣∣= ∣∣∣∣ x− y√

x+
√

y

∣∣∣∣≤ 1
2
|x− y| .

On the other hand f : [0,∞)→ R defined by f (x) :=
√

x is not Lipschitz continuous. Let us see
why: Suppose we have ∣∣√x−√y

∣∣≤ K |x− y| ,

for some K. Let y = 0 to obtain
√

x ≤ Kx. If K > 0, then for x > 0 we then get 1/K ≤ √x. This
cannot possibly be true for all x > 0. Thus no such K > 0 exists and f is not Lipschitz continuous.

The last example is a function that is uniformly continuous but not Lipschitz continuous. To
see that

√
x is uniformly continuous on [0,∞) note that it is uniformly continuous on [0,1] by

 Theorem 3.4.4 . It is also Lipschitz (and therefore uniformly continuous) on [1,∞). It is not hard
(exercise) to show that this means that

√
x is uniformly continuous on [0,∞).

3.4.4 Exercises

Exercise 3.4.1: Let f : S→ R be uniformly continuous. Let A ⊂ S. Then the restriction f |A is uniformly
continuous.

Exercise 3.4.2: Let f : (a,b)→ R be a uniformly continuous function. Finish the proof of  Proposition 3.4.6 

by showing that the limit lim
x→b

f (x) exists.

Exercise 3.4.3: Show that f : (c,∞)→ R for some c > 0 and defined by f (x) := 1/x is Lipschitz continuous.

Exercise 3.4.4: Show that f : (0,∞)→ R defined by f (x) := 1/x is not Lipschitz continuous.

Exercise 3.4.5: Let A,B be intervals. Let f : A→ R and g : B→ R be uniformly continuous functions such
that f (x) = g(x) for x ∈ A∩B. Define the function h : A∪B→R by h(x) := f (x) if x ∈ A and h(x) := g(x) if
x ∈ B\A.

a) Prove that if A∩B 6= /0, then h is uniformly continuous.

b) Find an example where A∩B = /0 and h is not even continuous.

Exercise 3.4.6 (Challenging): Let f : R→ R be a polynomial of degree d ≥ 2. Show that f is not Lipschitz
continuous.

Exercise 3.4.7: Let f : (0,1)→ R be a bounded continuous function. Show that the function g(x) :=
x(1− x) f (x) is uniformly continuous.

Exercise 3.4.8: Show that f : (0,∞)→ R defined by f (x) := sin(1/x) is not uniformly continuous.

Exercise 3.4.9 (Challenging): Let f : Q→ R be a uniformly continuous function. Show that there exists a
uniformly continuous function f̃ : R→ R such that f (x) = f̃ (x) for all x ∈Q.
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Exercise 3.4.10:

a) Find a continuous f : (0,1)→ R and a sequence {xn} in (0,1) that is Cauchy, but such that
{

f (xn)
}

is
not Cauchy.

b) Prove that if f : R→ R is continuous, and {xn} is Cauchy, then
{

f (xn)
}

is Cauchy.

Exercise 3.4.11: Prove:

a) If f : S→ R and g : S→ R are uniformly continuous, then h : S→ R given by h(x) := f (x)+ g(x) is
uniformly continuous.

b) If f : S→ R is uniformly continuous and a ∈ R, then h : S→ R given by h(x) := a f (x) is uniformly
continuous.

Exercise 3.4.12: Prove:

a) If f : S→ R and g : S→ R are Lipschitz, then h : S→ R given by h(x) := f (x)+g(x) is Lipschitz.

b) If f : S→ R is Lipschitz and a ∈ R, then h : S→ R given by h(x) := a f (x) is Lipschitz.

Exercise 3.4.13:

a) If f : [0,1]→ R is given by f (x) := xm for an integer m≥ 0, show f is Lipschitz and find the best (the
smallest) Lipschitz constant K (depending on m of course). Hint: (x− y)(xm−1 + xm−2y+ xm−3y2 + · · ·+
xym−2 + ym−1) = xm− ym.

b) Using the previous exercise, show that if f : [0,1]→R is a polynomial, that is, f (x) := amxm+am−1xm−1+
· · ·+a0, then f is Lipschitz.

Exercise 3.4.14: Suppose for f : [0,1] → R we have | f (x)− f (y)| ≤ K |x− y| for all x,y in [0,1], and
f (0) = f (1) = 0. Prove that | f (x)| ≤ K/2 for all x ∈ [0,1]. Further show by example that K/2 is the best
possible, that is, there exists such a continuous function for which | f (x)|= K/2 for some x ∈ [0,1].

Exercise 3.4.15: Suppose f : R→ R is continuous and periodic with period P > 0. That is, f (x+P) = f (x)
for all x ∈ R. Show that f is uniformly continuous.

Exercise 3.4.16: Suppose f : S→ R and g : [0,∞)→ [0,∞) are functions, g is continuous at 0, g(0) = 0,
and whenever x and y are in S we have | f (x)− f (y)| ≤ g

(
|x− y|

)
. Prove that f is uniformly continuous.

Exercise 3.4.17: Suppose f : [a,b]→ R is a function such that for every c ∈ [a,b] there is a Kc > 0 and
an εc > 0 for which | f (x)− f (y)| ≤ Kc |x− y| for all x and y in (c− εc,c+ εc)∩ [a,b]. In other words, f is

“locally Lipschitz.”

a) Prove that there exists a single K > 0 such that | f (x)− f (y)| ≤ K |x− y| for all x,y in [a,b].

b) Find a counterexample to the above if the interval is open, that is, find an f : (a,b)→ R that is locally
Lipschitz, but not Lipschitz.
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3.5 Limits at infinity

Note: less than 1 lecture (optional, can safely be omitted unless  §3.6 or  §5.5 is also covered)

3.5.1 Limits at infinity

As for sequences, a continuous variable can also approach infinity. Let us make this notion precise.

Definition 3.5.1. We say ∞ is a cluster point of S ⊂ R, if for every M ∈ R, there exists an x ∈ S
such that x≥M. Similarly, −∞ is a cluster point of S⊂ R, if for every M ∈ R, there exists an x ∈ S
such that x≤M.

Let f : S→ R be a function, where ∞ is a cluster point of S. If there exists an L ∈ R such that
for every ε > 0, there is an M ∈ R such that

| f (x)−L|< ε

whenever x ∈ S and x≥M, then we say f (x) converges to L as x goes to ∞. We call L the limit and
write

lim
x→∞

f (x) := L.

Alternatively we write f (x)→ L as x→ ∞.
Similarly, if −∞ is a cluster point of S and there exists an L ∈ R such that for every ε > 0, there

is an M ∈ R such that
| f (x)−L|< ε

whenever x ∈ S and x≤M, then we say f (x) converges to L as x goes to −∞. We call L the limit
and write

lim
x→−∞

f (x) := L.

Alternatively we write f (x)→ L as x→−∞.

We cheated a little bit again and said the limit. We leave it as an exercise for the reader to prove
the following proposition.

Proposition 3.5.2. The limit at ∞ or −∞ as defined above is unique if it exists.

Example 3.5.3: Let f (x) := 1
|x|+1 . Then

lim
x→∞

f (x) = 0 and lim
x→−∞

f (x) = 0.

Proof: Let ε > 0 be given. Find M > 0 large enough so that 1
M+1 < ε . If x ≥ M, then

1
x+1 ≤ 1

M+1 < ε . Since 1
|x|+1 > 0 for all x the first limit is proved. The proof for −∞ is left to the

reader.
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Example 3.5.4: Let f (x) := sin(πx). Then limx→∞ f (x) does not exist. To prove this fact note that
if x = 2n+ 1/2 for some n ∈N, then f (x) = 1, while if x = 2n+ 3/2, then f (x) =−1. So they cannot
both be within a small ε of a single real number.

We must be careful not to confuse continuous limits with limits of sequences. We could say

lim
n→∞

sin(πn) = 0, but lim
x→∞

sin(πx) does not exist.

Of course the notation is ambiguous: Are we thinking of the sequence {sin(πn)}∞
n=1 or the function

sin(πx) of a real variable? We are simply using the convention that n ∈ N, while x ∈ R. When the
notation is not clear, it is good to explicitly mention where the variable lives, or what kind of limit
are you using. If there is possibility of confusion, one can write, for example,

lim
n→∞
n∈N

sin(πn).

There is a connection of continuous limits to limits of sequences, but we must take all sequences
going to infinity, just as before in  Lemma 3.1.7 .

Lemma 3.5.5. Suppose f : S→ R is a function, ∞ is a cluster point of S⊂ R, and L ∈ R. Then

lim
x→∞

f (x) = L

if and only if
lim
n→∞

f (xn) = L

for all sequences {xn} in S such that lim
n→∞

xn = ∞.

The lemma holds for the limit as x→−∞. Its proof is almost identical and is left as an exercise.

Proof. First suppose f (x)→ L as x→ ∞. Given an ε > 0, there exists an M such that for all x≥M
we have | f (x)−L|< ε . Let {xn} be a sequence in S such that lim xn = ∞. Then there exists an N
such that for all n≥ N we have xn ≥M. And thus | f (xn)−L|< ε .

We prove the converse by contrapositive. Suppose f (x) does not go to L as x→ ∞. This means
that there exists an ε > 0, such that for every n ∈ N, there exists an x ∈ S, x ≥ n, let us call it xn,
such that | f (xn)−L| ≥ ε . Consider the sequence {xn}. Clearly { f (xn)} does not converge to L. It
remains to note that lim xn = ∞, because xn ≥ n for all n.

Using the lemma, we again translate results about sequential limits into results about continuous
limits as x goes to infinity. That is, we have almost immediate analogues of the corollaries in  §3.1.3 .
We simply allow the cluster point c to be either ∞ or −∞, in addition to a real number. We leave it
to the student to verify these statements.

3.5.2 Infinite limit
Just as for sequences, it is often convenient to distinguish certain divergent sequences, and talk
about limits being infinite almost as if the limits existed.
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Definition 3.5.6. Let f : S→ R be a function and suppose S has ∞ as a cluster point. We say f (x)
diverges to infinity as x goes to ∞, if for every N ∈ R there exists an M ∈ R such that

f (x)> N

whenever x ∈ S and x≥M. We write

lim
x→∞

f (x) := ∞,

or we say that f (x)→ ∞ as x→ ∞.

A similar definition can be made for limits as x→−∞ or as x→ c for a finite c. Also similar
definitions can be made for limits being −∞. Stating these definitions is left as an exercise. Note
that sometimes converges to infinity is used. We can again use sequential limits, and an analogue of

 Lemma 3.1.7 is left as an exercise.

Example 3.5.7: Let us show that limx→∞
1+x2

1+x = ∞.
Proof: For x≥ 1 we have

1+ x2

1+ x
≥ x2

x+ x
=

x
2
.

Given N ∈ R, take M = max{2N +1,1}. If x≥M, then x≥ 1 and x/2 > N. So

1+ x2

1+ x
≥ x

2
> N.

3.5.3 Compositions
Finally, just as for limits at finite numbers we can compose functions easily.

Proposition 3.5.8. Suppose f : A→ B, g : B→ R, A,B⊂ R, a ∈ R∪{−∞,∞} is a cluster point of
A, and b ∈ R∪{−∞,∞} is a cluster point of B. Suppose

lim
x→a

f (x) = b and lim
y→b

g(y) = c

for some c ∈ R∪{−∞,∞}. If b ∈ B, then suppose g(b) = c. Then

lim
x→a

g
(

f (x)
)
= c.

The proof is straightforward, and left as an exercise. We already know the proposition when
a,b,c ∈ R, see Exercises  3.1.9 and  3.1.14 . Again the requirement that g is continuous at b, if b ∈ B,
is necessary.

Example 3.5.9: Let h(x) := e−x2+x. Then

lim
x→∞

h(x) = 0.

Proof: The claim follows once we know

lim
x→∞
−x2 + x =−∞

and
lim

y→−∞
ey = 0,

which is usually proved when the exponential function is defined.
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3.5.4 Exercises
Exercise 3.5.1: Prove  Proposition 3.5.2 .

Exercise 3.5.2: Let f : [1,∞)→ R be a function. Define g : (0,1]→ R via g(x) := f (1/x). Using the
definitions of limits directly, show that limx→0+ g(x) exists if and only if limx→∞ f (x) exists, in which case
they are equal.

Exercise 3.5.3: Prove  Proposition 3.5.8 .

Exercise 3.5.4: Let us justify terminology. Let f : R→ R be a function such that limx→∞ f (x) = ∞ (diverges
to infinity). Show that f (x) diverges (i.e. does not converge) as x→ ∞.

Exercise 3.5.5: Come up with the definitions for limits of f (x) going to −∞ as x→ ∞, x→−∞, and as
x→ c for a finite c ∈ R. Then state the definitions for limits of f (x) going to ∞ as x→−∞, and as x→ c for
a finite c ∈ R.

Exercise 3.5.6: Suppose P(x) := xn + an−1xn−1 + · · ·+ a1x+ a0 is a monic polynomial of degree n ≥ 1
(monic means that the coefficient of xn is 1).

a) Show that if n is even, then limx→∞ P(x) = limx→−∞ P(x) = ∞.

b) Show that if n is odd, then limx→∞ P(x) = ∞ and limx→−∞ P(x) =−∞ (see previous exercise).

Exercise 3.5.7: Let {xn} be a sequence. Consider S := N⊂ R, and f : S→ R defined by f (n) := xn. Show
that the two notions of limit,

lim
n→∞

xn and lim
x→∞

f (x)

are equivalent. That is, show that if one exists so does the other one, and in this case they are equal.

Exercise 3.5.8: Extend  Lemma 3.5.5 as follows. Suppose S⊂R has a cluster point c ∈R, c = ∞, or c =−∞.
Let f : S→ R be a function and suppose L = ∞ or L =−∞. Show that

lim
x→c

f (x) = L if and only if lim
n→∞

f (xn) = L for all sequences {xn} such that lim xn = c.

Exercise 3.5.9: Suppose f : R→ R is a 2-periodic function, that is f (x + 2) = f (x) for all x. Define
g : R→ R by

g(x) := f

(√
x2 +1−1

x

)

a) Find the function ϕ : (−1,1)→ R such that g
(
ϕ(t)

)
= f (t), that is ϕ−1(x) =

√
x2+1−1

x .

b) Show that f is continuous if and only if g is continuous and

lim
x→∞

g(x) = lim
x→−∞

g(x) = f (1) = f (−1).

134



3.6. MONOTONE FUNCTIONS AND CONTINUITY 135

3.6 Monotone functions and continuity
Note: 1 lecture (optional, can safely be omitted unless  §4.4 is also covered, requires  §3.5 )

Definition 3.6.1. Let S ⊂ R. We say f : S→ R is increasing (resp. strictly increasing) if x,y ∈ S
with x < y implies f (x)≤ f (y) (resp. f (x)< f (y)). We define decreasing and strictly decreasing in
the same way by switching the inequalities for f .

If a function is either increasing or decreasing, we say it is monotone. If it is strictly increasing
or strictly decreasing, we say it is strictly monotone.

Sometimes nondecreasing (resp. nonincreasing) is used for increasing (resp. decreasing) func-
tion to emphasize it is not strictly increasing (resp. strictly decreasing).

If f is increasing, then− f is decreasing and vice versa. Therefore, many results about monotone
functions can just be proved for, say, increasing functions, and the results follow easily for decreasing
functions.

3.6.1 Continuity of monotone functions
It is easy to compute one-sided limits for monotone functions.

Proposition 3.6.2. Let S⊂ R, c ∈ R, f : S→ R be increasing, and g : S→ R be decreasing. If c is
a cluster point of S∩ (−∞,c), then

lim
x→c−

f (x) = sup{ f (x) : x < c,x ∈ S} and lim
x→c−

g(x) = inf{g(x) : x < c,x ∈ S}.

If c is a cluster point of S∩ (c,∞), then

lim
x→c+

f (x) = inf{ f (x) : x > c,x ∈ S} and lim
x→c+

g(x) = sup{g(x) : x > c,x ∈ S}.

If ∞ is a cluster point of S, then

lim
x→∞

f (x) = sup{ f (x) : x ∈ S} and lim
x→∞

g(x) = inf{g(x) : x ∈ S}.

If −∞ is a cluster point of S, then

lim
x→−∞

f (x) = inf{ f (x) : x ∈ S} and lim
x→−∞

g(x) = sup{g(x) : x ∈ S}.

Namely, all the one-sided limits exist whenever they make sense. For monotone functions
therefore, when we say the left hand limit x→ c− exists, we mean that c is a cluster point of
S∩ (−∞,c), and same for the right hand limit.

Proof. Let us assume f is increasing, and we will show the first equality. The rest of the proof is
very similar and is left as an exercise.

Let a := sup{ f (x) : x < c,x ∈ S}. If a = ∞, then given an M ∈R, there exists an xM ∈ S, xM < c,
such that f (xM)> M. As f is increasing, f (x)≥ f (xM)> M for all x ∈ S with x > xM. If we take
δ := c− xM > 0, then we obtain the definition of the limit going to infinity.

Next suppose a < ∞. Let ε > 0 be given. Because a is the supremum and S∩ (−∞,c) is
nonempty, a ∈ R and there exists an xε ∈ S, xε < c, such that f (xε)> a− ε . As f is increasing, if
x ∈ S and xε < x < c, we have a− ε < f (xε)≤ f (x)≤ a. Let δ := c− xε . Then for x ∈ S∩ (−∞,c)
with |x− c|< δ , we have | f (x)−a|< ε .
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Suppose f : S→ R is increasing, c ∈ S, and that both one-sided limits exist. Since f (x) ≤
f (c)≤ f (y) whenever x < c < y, taking the limits we obtain

lim
x→c−

f (x)≤ f (c)≤ lim
x→c+

f (x).

Then f is continuous at c if and only if both limits are equal to each other (and hence equal to f (c)).
See also  Proposition 3.1.17 . See  Figure 3.8 to get an idea of a what a discontinuity looks like.

Corollary 3.6.3. If I ⊂ R is an interval and f : I→ R is monotone and not constant, then f (I) is
an interval if and only if f is continuous.

Assuming f is not constant is to avoid the technicality that f (I) is a single point: f (I) is a single
point if and only if f is constant. A constant function is continuous.

Proof. Without loss of generality, suppose f is increasing.
First suppose f is continuous. Take two points f (x1) < f (x2) in f (I). As f is increasing,

then x1 < x2. By the  intermediate value theorem , given any y with f (x1) < y < f (x2), we find a
c ∈ (x1,x2)⊂ I such that f (c) = y, so y ∈ f (I). Hence, f (I) is an interval.

Let us prove the reverse direction by contrapositive. Suppose f is not continuous at c ∈ I, and
that c is not an endpoint of I. Let

a := lim
x→c−

f (x) = sup
{

f (x) : x ∈ I,x < c
}
, b := lim

x→c+
f (x) = inf

{
f (x) : x ∈ I,x > c

}
.

As c is a discontinuity, a < b. If x < c, then f (x) ≤ a, and if x > c, then f (x) ≥ b. Therefore no
point in (a,b)\{ f (c)} is in f (I). However there exists x1 ∈ I, x1 < c, so f (x1)≤ a, and there exists
x2 ∈ I, x2 > c, so f (x2)≥ b. Both f (x1) and f (x2) are in f (I), but there are points in between them
that are not in f (I). So f (I) is not an interval. See  Figure 3.8 .

When c ∈ I is an endpoint, the proof is similar and is left as an exercise.

f (c)

c

I

f (x1)

f (I)

x1 x2

lim
x→c+

f (x) = b

lim
x→c−

f (x) = a

f (x2)
y = f (x)

Figure 3.8: Increasing function f : I→ R discontinuity at c.

A striking property of monotone functions is that they cannot have too many discontinuities.
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Corollary 3.6.4. Let I ⊂R be an interval and f : I→R be monotone. Then f has at most countably
many discontinuities.

Proof. Let E ⊂ I be the set of all discontinuities that are not endpoints of I. As there are only
two endpoints, it is enough to show that E is countable. Without loss of generality, suppose f is
increasing. We will define an injection h : E →Q. For each c ∈ E the one-sided limits of f both
exist as c is not an endpoint. Let

a := lim
x→c−

f (x) = sup
{

f (x) : x ∈ I,x < c
}
, b := lim

x→c+
f (x) = inf

{
f (x) : x ∈ I,x > c

}
.

As c is a discontinuity, we have a < b. There exists a rational number q ∈ (a,b), so let h(c) := q.
If d ∈ E is another discontinuity, then if d > c, then there exist an x ∈ I with c < x < d, and
so limx→d− f (x) ≥ b. Hence the rational number we choose for h(d) is different from q, since
q = h(c)< b and h(d)> b. Similarly if d < c. So after making such a choice for every c ∈ E, we
have a one-to-one (injective) function into Q. Therefore, E is countable.

Example 3.6.5: By bxc denote the largest integer less than or equal to x. Define f : [0,1]→ R by

f (x) := x+
b1/(1−x)c

∑
n=0

2−n,

for x < 1 and f (1) := 3. It is left as an exercise to show that f is strictly increasing, bounded, and has
a discontinuity at all points 1− 1/k for k ∈N. In particular, there are countably many discontinuities,
but the function is bounded and defined on a closed bounded interval. See  Figure 3.9 .

1.5

2

2.5

3

0 1

Figure 3.9: Increasing function with countably many discontinuities.

Similarly, one can find an example of a function discontinuous on a dense set such as the rational
numbers. See the exercises.

3.6.2 Continuity of inverse functions
A strictly monotone function f is one-to-one (injective). To see this notice that if x 6= y, then we
can assume x < y. Then either f (x)< f (y) if f is strictly increasing or f (x)> f (y) if f is strictly
decreasing, so f (x) 6= f (y). Hence, it must have an inverse f−1 defined on its range.

Proposition 3.6.6. If I ⊂ R is an interval and f : I → R is strictly monotone, then the inverse
f−1 : f (I)→ I is continuous.
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Proof. Let us suppose f is strictly increasing. The proof is almost identical for a strictly decreasing
function. Since f is strictly increasing, so is f−1. That is, if f (x)< f (y), then we must have x < y
and therefore f−1( f (x)

)
< f−1( f (y)

)
.

Take c ∈ f (I). If c is not a cluster point of f (I), then f−1 is continuous at c automatically. So
let c be a cluster point of f (I). Suppose both of the following one-sided limits exist:

x0 := lim
y→c−

f−1(y) = sup
{

f−1(y) : y < c,y ∈ f (I)
}
= sup

{
x ∈ I : f (x)< c

}
,

x1 := lim
y→c+

f−1(y) = inf
{

f−1(y) : y > c,y ∈ f (I)
}
= inf

{
x ∈ I : f (x)> c

}
.

We have x0 ≤ x1 as f−1 is increasing. For all x > x0 with x ∈ I, we have f (x)≥ c. As f is strictly
increasing, we must have f (x)> c for all x > x0, x ∈ I. Therefore,

{x ∈ I : x > x0} ⊂
{

x ∈ I : f (x)> c
}
.

The infimum of the left hand set is x0, and the infimum of the right hand set is x1, so we obtain
x0 ≥ x1. So x1 = x0, and f−1 is continuous at c.

If one of the one-sided limits does not exist, the argument is similar and is left as an exercise.

Example 3.6.7: The proposition does not require f itself to be continuous. Let f : R→ R be
defined by

f (x) :=

{
x if x < 0,
x+1 if x≥ 0.

The function f is not continuous at 0. The image of I =R is the set (−∞,0)∪ [1,∞), not an interval.
Then f−1 : (−∞,0)∪ [1,∞)→ R can be written as

f−1(y) =

{
y if y < 0,
y−1 if y≥ 1.

It is not difficult to see that f−1 is a continuous function. See  Figure 3.10 for the graphs.

Figure 3.10: Graph of f on the left and f−1 on the right.
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Notice what happens with the proposition if f (I) is an interval. In that case, we could simply
apply  Corollary 3.6.3  to both f and f−1. That is, if f : I→ J is an onto strictly monotone function
and I and J are intervals, then both f and f−1 are continuous. Furthermore, f (I) is an interval
precisely when f is continuous.

3.6.3 Exercises
Exercise 3.6.1: Suppose f : [0,1]→ R is monotone. Prove f is bounded.

Exercise 3.6.2: Finish the proof of  Proposition 3.6.2 . Hint: You can halve your work by noticing that if g is
decreasing, then −g is increasing.

Exercise 3.6.3: Finish the proof of  Corollary 3.6.3 .

Exercise 3.6.4: Prove the claims in  Example 3.6.5 .

Exercise 3.6.5: Finish the proof of  Proposition 3.6.6 .

Exercise 3.6.6: Suppose S⊂ R, and f : S→ R is an increasing function. Prove:

a) If c is a cluster point of S∩ (c,∞), then lim
x→c+

f (x)< ∞.

b) If c is a cluster point of S∩ (−∞,c) and lim
x→c−

f (x) = ∞, then S⊂ (−∞,c).

Exercise 3.6.7: Let I ⊂ R be an interval and f : I→ R a function. Suppose that for each c ∈ I, there exist
a,b ∈R with a > 0 such that f (x)≥ ax+b for all x ∈ I and f (c) = ac+b. Show that f is strictly increasing.

Exercise 3.6.8: Suppose I and J are intervals and f : I→ J is a continuous, bijective (one-to-one and onto)
function. Show that f is strictly monotone.

Exercise 3.6.9: Consider a monotone function f : I→ R on an interval I. Prove that there exists a function
g : I → R such that lim

x→c−
g(x) = g(c) for all c in I except the smaller (left) endpoint of I, and such that

g(x) = f (x) for all but countably many x ∈ I.

Exercise 3.6.10:

a) Let S⊂R be any subset. If f : S→R is increasing and bounded, then show that there exists an increasing
F : R→ R such that f (x) = F(x) for all x ∈ S.

b) Find an example of a strictly increasing bounded f : S→ R such that an increasing F as above is never
strictly increasing.

Exercise 3.6.11 (Challenging): Find an example of an increasing function f : [0,1]→ R that has a disconti-
nuity at each rational number. Then show that the image f ([0,1]) contains no interval. Hint: Enumerate the
rational numbers and define the function with a series.

Exercise 3.6.12: Suppose I is an interval and f : I → R is monotone. Show that R \ f (I) is a countable
union of disjoint intervals.

Exercise 3.6.13: Suppose f : [0,1]→ (0,1) is increasing. Show that for any ε > 0, there exists a strictly
increasing g : [0,1]→ (0,1) such that g(0) = f (0), f (x)≤ g(x) for all x, and g(1)− f (1)< ε .

Exercise 3.6.14: Prove that the Dirichlet function f : [0,1]→ R defined by f (x) := 1 if x is rational and
f (x) := 0 otherwise cannot be written as a difference of two increasing functions. That is, there do not exist
increasing g and h such that, f (x) = g(x)−h(x).

Exercise 3.6.15: Suppose f : (a,b)→ (c,d) is a strictly increasing onto function. Prove that there exists a
g : (a,b)→ (c,d), which is also strictly increasing and onto, and g(x)< f (x) for all x ∈ (a,b).
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Chapter 4

The Derivative

4.1 The derivative
Note: 1 lecture

The idea of a derivative is the following. If the graph of a function looks locally like a straight
line, then we can then talk about the slope of this line. The slope tells us the rate at which the value
of the function is changing at that particular point. Of course, we are leaving out any function that
has corners or discontinuities. Let us be precise.

4.1.1 Definition and basic properties
Definition 4.1.1. Let I be an interval, let f : I→ R be a function, and let c ∈ I. If the limit

L := lim
x→c

f (x)− f (c)
x− c

exists, then we say f is differentiable at c, that L is the derivative of f at c, and write f ′(c) := L.

If f is differentiable at all c ∈ I, then we simply say that f is differentiable, and then we obtain a
function f ′ : I→ R. The derivative is sometimes written as d f

dx or d
dx

(
f (x)

)
.

The expression f (x)− f (c)
x−c is called the difference quotient.

The graphical interpretation of the derivative is depicted in  Figure 4.1  . The left-hand plot gives
the line through

(
c, f (c)

)
and

(
x, f (x)

)
with slope f (x)− f (c)

x−c , that is, the so-called secant line. When
we take the limit as x goes to c, we get the right-hand plot, where we see that the derivative of the
function at the point c is the slope of the line tangent to the graph of f at the point

(
c, f (c)

)
.

We allow I to be a closed interval and we allow c to be an endpoint of I. Some calculus books
do not allow c to be an endpoint of an interval, but all the theory still works by allowing it, and it
makes our work easier.

Example 4.1.2: Let f (x) := x2 defined on the whole real line. Let c ∈ R be arbitrary. We find that
if x 6= c,

x2− c2

x− c
=

(x+ c)(x− c)
x− c

= (x+ c).
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c x

slope = f (x)− f (c)
x−c

c

slope = f ′(c)

Figure 4.1: Graphical interpretation of the derivative.

Therefore,

f ′(c) = lim
x→c

x2− c2

x− c
= lim

x→c
(x+ c) = 2c.

Example 4.1.3: Let f (x) := ax+b for numbers a,b ∈ R. Let c ∈ R be arbitrary. For x 6= c,

f (x)− f (c)
x− c

=
a(x− c)

x− c
= a.

Therefore,

f ′(c) = lim
x→c

f (x)− f (c)
x− c

= lim
x→c

a = a.

In fact, every differentiable function “infinitesimally” behaves like the affine function ax+b. You
can guess many results and formulas for derivatives, if you work them out for affine functions first.

Example 4.1.4: The function f (x) :=
√

x is differentiable for x > 0. To see this fact, fix c > 0, and
take x 6= c, x > 0. Compute

√
x−√c
x− c

=

√
x−√c

(
√

x−√c)(
√

x+
√

c)
=

1√
x+
√

c
.

Therefore,

f ′(c) = lim
x→c

√
x−√c
x− c

= lim
x→c

1√
x+
√

c
=

1
2
√

c
.

Example 4.1.5: The function f (x) := |x| is not differentiable at the origin. When x > 0,

|x|− |0|
x−0

=
x−0
x−0

= 1,

When x < 0,
|x|− |0|

x−0
=
−x−0
x−0

=−1.
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A famous example of Weierstrass shows that there exists a continuous function that is not
differentiable at any point. The construction of this function is beyond the scope of this chapter. On
the other hand, a differentiable function is always continuous.

Proposition 4.1.6. Let f : I→ R be differentiable at c ∈ I, then it is continuous at c.

Proof. We know the limits

lim
x→c

f (x)− f (c)
x− c

= f ′(c) and lim
x→c

(x− c) = 0

exist. Furthermore,

f (x)− f (c) =
(

f (x)− f (c)
x− c

)
(x− c).

Therefore, the limit of f (x)− f (c) exists and

lim
x→c

(
f (x)− f (c)

)
=

(
lim
x→c

f (x)− f (c)
x− c

)(
lim
x→c

(x− c)
)
= f ′(c) ·0 = 0.

Hence lim
x→c

f (x) = f (c), and f is continuous at c.

An important property of the derivative is linearity. The derivative is the approximation of
a function by a straight line. The slope of a line through two points changes linearly when the
y-coordinates are changed linearly. By taking the limit, it makes sense that the derivative is linear.

Proposition 4.1.7. Let I be an interval, let f : I→ R and g : I→ R be differentiable at c ∈ I, and
let α ∈ R.

(i) Define h : I→ R by h(x) := α f (x). Then h is differentiable at c and h′(c) = α f ′(c).

(ii) Define h : I→R by h(x) := f (x)+g(x). Then h is differentiable at c and h′(c) = f ′(c)+g′(c).

Proof. First, let h(x) := α f (x). For x ∈ I, x 6= c,

h(x)−h(c)
x− c

=
α f (x)−α f (c)

x− c
= α

f (x)− f (c)
x− c

.

The limit as x goes to c exists on the right by  Corollary 3.1.12 . We get

lim
x→c

h(x)−h(c)
x− c

= α lim
x→c

f (x)− f (c)
x− c

.

Therefore, h is differentiable at c, and the derivative is computed as given.
Next, define h(x) := f (x)+g(x). For x ∈ I, x 6= c we have

h(x)−h(c)
x− c

=

(
f (x)+g(x)

)
−
(

f (c)+g(c)
)

x− c
=

f (x)− f (c)
x− c

+
g(x)−g(c)

x− c
.

The limit as x goes to c exists on the right by  Corollary 3.1.12 . We get

lim
x→c

h(x)−h(c)
x− c

= lim
x→c

f (x)− f (c)
x− c

+ lim
x→c

g(x)−g(c)
x− c

.

Therefore, h is differentiable at c, and the derivative is computed as given.
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It is not true that the derivative of a multiple of two functions is the multiple of the derivatives.
Instead we get the so-called product rule or the Leibniz rule 

*
 .

Proposition 4.1.8 (Product rule). Let I be an interval, let f : I → R and g : I → R be functions
differentiable at c. If h : I→ R is defined by

h(x) := f (x)g(x),

then h is differentiable at c and

h′(c) = f (c)g′(c)+ f ′(c)g(c).

The proof of the product rule is left as an exercise. The key to the proof is the identity
f (x)g(x)− f (c)g(c) = f (x)

(
g(x)−g(c)

)
+
(

f (x)− f (c)
)
g(c), which is illustrated in  Figure 4.2 .

f (c)g(c)

g(x)

g(c) (
f(x)−

f(c) )g(c)

f (x)
(
g(x)−g(c)

)

f (x)f (c)0
0

Figure 4.2: The idea of product rule. The area of the entire rectangle f (x)g(x) differs from the area
of the white rectangle f (c)g(c) by the area of the lightly shaded rectangle f (x)

(
g(x)−g(c)

)
plus the

darker shaded rectangle
(

f (x)− f (c)
)
g(c). In other words, ∆( f ·g) = f ·∆g+∆ f ·g.

Proposition 4.1.9 (Quotient Rule). Let I be an interval, let f : I→R and g : I→R be differentiable
at c and g(x) 6= 0 for all x ∈ I. If h : I→ R is defined by

h(x) :=
f (x)
g(x)

,

then h is differentiable at c and

h′(c) =
f ′(c)g(c)− f (c)g′(c)(

g(c)
)2 .

Again, the proof is left as an exercise.

*Named for the German mathematician  Gottfried Wilhelm Leibniz (1646–1716).
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4.1.2 Chain rule
More complicated functions are often obtained by composition, which is differentiated via the chain
rule. The rule also tells us how a derivative changes if we change variables.

Proposition 4.1.10 (Chain Rule). Let I1, I2 be intervals, let g : I1→ I2 be differentiable at c ∈ I1,
and f : I2→ R be differentiable at g(c). If h : I1→ R is defined by

h(x) := ( f ◦g)(x) = f
(
g(x)

)
,

then h is differentiable at c and
h′(c) = f ′

(
g(c)

)
g′(c).

Proof. Let d := g(c). Define u : I2→ R and v : I1→ R by

u(y) :=

{
f (y)− f (d)

y−d if y 6= d,

f ′(d) if y = d,
v(x) :=

{
g(x)−g(c)

x−c if x 6= c,
g′(c) if x = c.

Because f is differentiable at d = g(c), we find that u is continuous at d. Similarly, v is continuous
at c. For any x and y,

f (y)− f (d) = u(y)(y−d) and g(x)−g(c) = v(x)(x− c).

Plug in to obtain

h(x)−h(c) = f
(
g(x)

)
− f
(
g(c)

)
= u
(
g(x)

)(
g(x)−g(c)

)
= u
(
g(x)

)(
v(x)(x− c)

)
.

Therefore, if x 6= c,
h(x)−h(c)

x− c
= u
(
g(x)

)
v(x). (4.1)

By continuity of u and v at d and c respectively, we find limy→d u(y) = f ′(d) = f ′
(
g(c)

)
and

limx→c v(x) = g′(c). The function g is continuous at c, and so limx→c g(x) = g(c). Hence the
limit of the right-hand side of ( 4.1 ) as x goes to c exists and is equal to f ′

(
g(c)

)
g′(c). Thus h is

differentiable at c and the limit is f ′
(
g(c)

)
g′(c).

4.1.3 Exercises
Exercise 4.1.1: Prove the product rule. Hint: Prove and use f (x)g(x)− f (c)g(c) = f (x)

(
g(x)− g(c)

)
+(

f (x)− f (c)
)
g(c).

Exercise 4.1.2: Prove the quotient rule. Hint: You can do this directly, but it may be easier to find the
derivative of 1/x and then use the chain rule and the product rule.

Exercise 4.1.3: For n ∈ Z, prove that xn is differentiable and find the derivative, unless, of course, n < 0 and
x = 0. Hint: Use the product rule.

Exercise 4.1.4: Prove that a polynomial is differentiable and find the derivative. Hint: Use the previous
exercise.
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Exercise 4.1.5: Define f : R→ R by

f (x) :=

{
x2 if x ∈Q,

0 otherwise.

Prove that f is differentiable at 0, but discontinuous at all points except 0.

Exercise 4.1.6: Assume the inequality |x− sin(x)| ≤ x2. Prove that sin is differentiable at 0, and find the
derivative at 0.

Exercise 4.1.7: Using the previous exercise, prove that sin is differentiable at all x and that the derivative is
cos(x). Hint: Use the sum-to-product trigonometric identity as we did before.

Exercise 4.1.8: Let f : I→ R be differentiable. Given n ∈ Z, define f n be the function defined by f n(x) :=(
f (x)

)n. If n < 0, assume f (x) 6= 0. Prove that ( f n)′(x) = n
(

f (x)
)n−1 f ′(x).

Exercise 4.1.9: Suppose f : R→ R is a differentiable Lipschitz continuous function. Prove that f ′ is a
bounded function.

Exercise 4.1.10: Let I1, I2 be intervals. Let f : I1→ I2 be a bijective function and g : I2→ I1 be the inverse.
Suppose that both f is differentiable at c ∈ I1 and f ′(c) 6= 0 and g is differentiable at f (c). Use the chain
rule to find a formula for g′

(
f (c)

)
(in terms of f ′(c)).

Exercise 4.1.11: Suppose f : I→ R is bounded, g : I→ R is differentiable at c ∈ I, and g(c) = g′(c) = 0.
Show that h(x) := f (x)g(x) is differentiable at c. Hint: You cannot apply the product rule.

Exercise 4.1.12: Suppose f : I → R, g : I → R, and h : I → R, are functions. Suppose c ∈ I is such that
f (c)= g(c)= h(c), g and h are differentiable at c, and g′(c)= h′(c). Furthermore suppose h(x)≤ f (x)≤ g(x)
for all x ∈ I. Prove f is differentiable at c and f ′(c) = g′(c) = h′(c).

Exercise 4.1.13: Suppose f : (−1,1)→ R is a function such that f (x) = xh(x) for a bounded function h.

a) Show that g(x) :=
(

f (x)
)2 is differentiable at the origin and g′(0) = 0.

b) Find an example of a continuous function f : (−1,1)→ R with f (0) = 0, but such that g(x) :=
(

f (x)
)2

is not differentiable at the origin.

Exercise 4.1.14: Suppose f : I→ R is differentiable at c ∈ I. Prove there exist numbers a and b with the
property that for every ε > 0, there is a δ > 0, such that |a+b(x− c)− f (x)| ≤ ε |x− c|, whenever x ∈ I
and |x− c|< δ . In other words, show that there exists a function g : I→ R such that limx→c g(x) = 0 and
|a+b(x− c)− f (x)| ≤ |x− c|g(x).

Exercise 4.1.15: Prove the following simple version of L’Hôpital’s rule. Suppose f : (a,b) → R and
g : (a,b)→ R are differentiable functions whose derivatives f ′ and g′ are continuous functions. Suppose that
at c ∈ (a,b), f (c) = 0, g(c) = 0, and g′(x) 6= 0 for all x ∈ (a,b), and suppose that the limit of f ′(x)/g′(x) as x
goes to c exists. Show that

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.
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4.2 Mean value theorem
Note: 2 lectures (some applications may be skipped)

4.2.1 Relative minima and maxima
We talked about absolute maxima and minima. These are the tallest peaks and lowest valleys in
the whole mountain range. What about peaks of individual mountains and bottoms of individual
valleys? The derivative, being a local concept, is like walking around in a fog; it can’t tell you if
you’re on the highest peak, but it can help you find all the individual peaks.

Definition 4.2.1. Let S⊂ R be a set and let f : S→ R be a function. The function f is said to have
a relative maximum at c ∈ S if there exists a δ > 0 such that for all x ∈ S where |x− c|< δ we have
f (x)≤ f (c). The definition of relative minimum is analogous.

Lemma 4.2.2. Suppose f : [a,b]→ R is differentiable at c ∈ (a,b), and f has a relative minimum
or a relative maximum at c. Then f ′(c) = 0.

Proof. We prove the statement for a maximum. For a minimum the statement follows by considering
the function − f .

Let c be a relative maximum of f . In particular, as long as |x− c|< δ we have f (x)− f (c)≤ 0.
Then we look at the difference quotient. If x > c we note that

f (x)− f (c)
x− c

≤ 0,

and if y < c we have
f (y)− f (c)

y− c
≥ 0.

See  Figure 4.3 for an illustration.

cy

slope = f (y)− f (c)
y−c ≥ 0

x

slope =
f (x)− f (c)

x−c ≤ 0

Figure 4.3: Slopes of secants at a relative maximum.

As a < c < b, there exist sequences {xn} and {yn}, such that xn > c, and yn < c for all n ∈ N,
and such that lim xn = lim yn = c. Since f is differentiable at c we know

0≥ lim
n→∞

f (xn)− f (c)
xn− c

= f ′(c) = lim
n→∞

f (yn)− f (c)
yn− c

≥ 0.
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For a differentiable function, a point where f ′(c) = 0 is called a critical point. When f is not
differentiable at some points, it is common to also say c is a critical point if f ′(c) does not exist.
The theorem says that a relative minimum or maximum at an interior point of an interval must be a
critical point. As you remember from calculus, finding minima and maxima of a function can be
done by finding all the critical points together with the endpoints of the interval and simply checking
at which of these points is the function biggest or smallest.

4.2.2 Rolle’s theorem

Suppose a function has the same value at both endpoints of an interval. Intuitively it ought to attain
a minimum or a maximum in the interior of the interval, then at such a minimum or a maximum, the
derivative should be zero. See  Figure 4.4 for the geometric idea. This is the content of the so-called
Rolle’s theorem 

*
 .

ca
b

Figure 4.4: Point where the tangent line is horizontal, that is f ′(c) = 0.

Theorem 4.2.3 (Rolle). Let f : [a,b]→ R be continuous function differentiable on (a,b) such that
f (a) = f (b). Then there exists a c ∈ (a,b) such that f ′(c) = 0.

Proof. As f is continuous on [a,b] it attains an absolute minimum and an absolute maximum in
[a,b]. We wish to apply  Lemma 4.2.2 and so we need to find some c ∈ (a,b) where f attains a
minimum or a maximum. Write K := f (a) = f (b). If there exists an x such that f (x) > K, then
the absolute maximum is bigger than K and hence occurs at some c ∈ (a,b), and therefore we get
f ′(c) = 0. On the other hand if there exists an x such that f (x)< K, then the absolute minimum
occurs at some c∈ (a,b) and we have that f ′(c) = 0. If there is no x such that f (x)> K or f (x)< K,
then we have that f (x) = K for all x and then f ′(x) = 0 for all x∈ [a,b], so any c∈ (a,b) works.

It is absolutely necessary for the derivative to exist for all x ∈ (a,b). Consider the function
f (x) := |x| on [−1,1]. Clearly f (−1) = f (1), but there is no point where f ′(c) = 0.

*Named after the French mathematician  Michel Rolle (1652–1719).
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4.2.3 Mean value theorem
We extend  Rolle’s theorem to functions that attain different values at the endpoints.

Theorem 4.2.4 (Mean value theorem). Let f : [a,b]→R be a continuous function differentiable on
(a,b). Then there exists a point c ∈ (a,b) such that

f (b)− f (a) = f ′(c)(b−a).

For a geometric interpretation of the mean value theorem, see  Figure 4.5 . The idea is that the
value f (b)− f (a)

b−a is the slope of the line between the points
(
a, f (a)

)
and

(
b, f (b)

)
. Then c is the

point such that f ′(c) = f (b)− f (a)
b−a , that is, the tangent line at the point

(
c, f (c)

)
has the same slope as

the line between
(
a, f (a)

)
and

(
b, f (b)

)
. The theorem follows from  Rolle’s theorem , by subtracting

from f the affine linear function with the derivative f (b)− f (a)
b−a with the same values at a and b as f .

That is, we subtract the function whose graph is the straight line
(
a, f (a)

)
and

(
b, f (b)

)
. Then we

are looking for a point where this new function has derivative zero.

c

(a, f (a))

(b, f (b))

Figure 4.5: Graphical interpretation of the mean value theorem.

Proof. Define the function g : [a,b]→ R by

g(x) := f (x)− f (b)− f (b)− f (a)
b−a

(x−b).

The function g is differentiable on (a,b), continuous on [a,b], such that g(a) = 0 and g(b) = 0.
Thus there exists a c ∈ (a,b) such that g′(c) = 0.

0 = g′(c) = f ′(c)− f (b)− f (a)
b−a

Or in other words f ′(c)(b−a) = f (b)− f (a).

The proof generalizes. By considering g(x) := f (x)− f (b)− f (b)− f (a)
ϕ(b)−ϕ(a)

(
ϕ(x)−ϕ(b)

)
, one can

prove the following version. We leave the proof as an exercise.
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Theorem 4.2.5 (Cauchy’s mean value theorem). Let f : [a,b]→R and ϕ : [a,b]→R be continuous
functions differentiable on (a,b). Then there exists a point c ∈ (a,b) such that(

f (b)− f (a)
)
ϕ
′(c) = f ′(c)

(
ϕ(b)−ϕ(a)

)
.

The mean value theorem has the distinction of being one of the few theorems commonly cited
in court. That is, when police measure the speed of cars by aircraft, or via cameras reading license
plates, they measure the time the car takes to go between two points. The mean value theorem then
says that the car must have somewhere attained the speed you get by dividing the difference in
distance by the difference in time.

4.2.4 Applications
We now solve our very first differential equation.

Proposition 4.2.6. Let I be an interval and let f : I → R be a differentiable function such that
f ′(x) = 0 for all x ∈ I. Then f is constant.

Proof. Take arbitrary x,y ∈ I with x < y. Then f restricted to [x,y] satisfies the hypotheses of the
 mean value theorem . Therefore, there is a c ∈ (x,y) such that

f (y)− f (x) = f ′(c)(y− x).

as f ′(c) = 0, we have f (y) = f (x). Hence, the function is constant.

Now that we know what it means for the function to stay constant, let us look at increasing and
decreasing functions. We say f : I→ R is increasing (resp. strictly increasing) if x < y implies
f (x)≤ f (y) (resp. f (x)< f (y)). We define decreasing and strictly decreasing in the same way by
switching the inequalities for f .

Proposition 4.2.7. Let I be an interval and let f : I→ R be a differentiable function.

(i) f is increasing if and only if f ′(x)≥ 0 for all x ∈ I.

(ii) f is decreasing if and only if f ′(x)≤ 0 for all x ∈ I.

Proof. Let us prove the first item. Suppose f is increasing, then for all x,c ∈ I with x 6= c we have

f (x)− f (c)
x− c

≥ 0.

Taking a limit as x goes to c we see that f ′(c)≥ 0.
For the other direction, suppose f ′(x)≥ 0 for all x ∈ I. Take any x,y ∈ I where x < y. By the

 mean value theorem there is some c ∈ (x,y) such that

f (y)− f (x) = f ′(c)(y− x).

As f ′(c)≥ 0, and y− x > 0, then f (y)− f (x)≥ 0 or f (x)≤ f (y) and so f is increasing.
We leave the decreasing part to the reader as exercise.
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A similar but weaker statement is true for strictly increasing and decreasing functions.

Proposition 4.2.8. Let I be an interval and let f : I→ R be a differentiable function.

(i) If f ′(x)> 0 for all x ∈ I, then f is strictly increasing.

(ii) If f ′(x)< 0 for all x ∈ I, then f is strictly decreasing.

The proof of  (i) is left as an exercise. Then  (ii) follows from  (i) by considering − f instead.
The converse of this proposition is not true. The function f (x) := x3 is strictly increasing, but

f ′(0) = 0.

Another application of the  mean value theorem  is the following result about location of extrema,
sometimes called the first derivative test. The theorem is stated for an absolute minimum and
maximum. To apply it to find relative minima and maxima, restrict f to an interval (c−δ ,c+δ ).

Proposition 4.2.9. Let f : (a,b)→ R be continuous. Let c ∈ (a,b) and suppose f is differentiable
on (a,c) and (c,b).

(i) If f ′(x)≤ 0 for x ∈ (a,c) and f ′(x)≥ 0 for x ∈ (c,b), then f has an absolute minimum at c.

(ii) If f ′(x)≥ 0 for x ∈ (a,c) and f ′(x)≤ 0 for x ∈ (c,b), then f has an absolute maximum at c.

Proof. We prove the first item leaving the second to the reader. Take x ∈ (a,c) and {yn} a sequence
such that x < yn < c and lim yn = c. By the preceding proposition, f is decreasing on (a,c) so
f (x)≥ f (yn). As f is continuous at c, we take the limit to get f (x)≥ f (c) for all x ∈ (a,c).

Similarly, take x ∈ (c,b) and {yn} a sequence such that c < yn < x and lim yn = c. The function
is increasing on (c,b) so f (x) ≥ f (yn). By continuity of f we get f (x) ≥ f (c) for all x ∈ (c,b).
Thus f (x)≥ f (c) for all x ∈ (a,b).

The converse of the proposition does not hold. See  Example 4.2.12 below.

Another often used application of the mean value theorem you have possibly seen in calculus is
the following result on differentiability at the end points of an interval. The proof is  Exercise 4.2.13 .

Proposition 4.2.10.

(i) Suppose f : [a,b)→ R is continuous, differentiable in (a,b), and limx→a f ′(x) = L. Then f
is differentiable at a and f ′(a) = L.

(ii) Suppose f : (a,b]→ R is continuous, differentiable in (a,b), and limx→b f ′(x) = L. Then f
is differentiable at b and f ′(b) = L.

In fact, using the extension result  Proposition 3.4.6  , you do not need to assume that f is defined
at the end point. See  Exercise 4.2.14 .

4.2.5 Continuity of derivatives and the intermediate value theorem
Derivatives of functions satisfy an intermediate value property.

Theorem 4.2.11 (Darboux). Let f : [a,b] → R be differentiable. Suppose y ∈ R is such that
f ′(a)< y < f ′(b) or f ′(a)> y > f ′(b). Then there exists a c ∈ (a,b) such that f ′(c) = y.
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The proof follows by subtracting f and a linear function with derivative y. The new function
g reduces the problem to the case y = 0, where g′(a) > 0 > g′(b). That is, g is increasing at a
and decreasing at b, so it must attain a maximum inside (a,b), where the derivative is zero. See

 Figure 4.6 .

a

g′(a)> 0

c

g′(c) = 0

b

g′(b)< 0

Figure 4.6: Idea of the proof of Darboux theorem.

Proof. Suppose f ′(a)< y < f ′(b). Define

g(x) := yx− f (x).

The function g is continuous on [a,b], and so g attains a maximum at some c ∈ [a,b].
The function g is also differentiable on [a,b]. Compute g′(x) = y− f ′(x). Thus g′(a)> 0. As

the derivative is the limit of difference quotients and is positive, there must be some difference
quotient that is positive. That is, there must exist an x > a such that

g(x)−g(a)
x−a

> 0,

or g(x) > g(a). Thus g cannot possibly have a maximum at a. Similarly, as g′(b) < 0, we find
an x < b (a different x) such that g(x)−g(b)

x−b < 0 or that g(x)> g(b), thus g cannot possibly have a
maximum at b. Therefore, c ∈ (a,b), and  Lemma 4.2.2  applies: As g attains a maximum at c we
find g′(c) = 0 and so f ′(c) = y.

Similarly, if f ′(a)> y > f ′(b), consider g(x) := f (x)− yx.

We have seen already that there exist discontinuous functions that have the intermediate value
property. While it is hard to imagine at first, there also exist functions that are differentiable
everywhere and the derivative is not continuous.

Example 4.2.12: Let f : R→ R be the function defined by

f (x) :=

{(
xsin(1/x)

)2 if x 6= 0,
0 if x = 0.

We claim that f is differentiable everywhere, but f ′ : R→ R is not continuous at the origin.
Furthermore, f has a minimum at 0, but the derivative changes sign infinitely often near the origin.
See  Figure 4.7 .
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Figure 4.7: A function with a discontinuous derivative. The function f is on the left and f ′ is on the
right. Notice that f (x)≤ x2 on the left graph.

Proof: It is immediate from the definition that f has an absolute minimum at 0: we know
f (x)≥ 0 for all x and f (0) = 0.

The function f is differentiable for x 6= 0, and the derivative is 2sin(1/x)
(
xsin(1/x)− cos(1/x)

)
.

As an exercise show that for xn =
4

(8n+1)π we have lim f ′(xn) =−1, and for yn =
4

(8n+3)π we have
lim f ′(yn) = 1. Hence if f ′ exists at 0, then it cannot be continuous.

Let us show that f ′ exists at 0. We claim that the derivative is zero. In other words
∣∣∣ f (x)− f (0)

x−0 −0
∣∣∣

goes to zero as x goes to zero. For x 6= 0 we have∣∣∣∣ f (x)− f (0)
x−0

−0
∣∣∣∣= ∣∣∣∣x2 sin2(1/x)

x

∣∣∣∣= ∣∣xsin2(1/x)
∣∣≤ |x| .

And, of course, as x tends to zero, then |x| tends to zero and hence
∣∣∣ f (x)− f (0)

x−0 −0
∣∣∣ goes to zero.

Therefore, f is differentiable at 0 and the derivative at 0 is 0. A key point in the calculation above is
that | f (x)| ≤ x2, see also Exercises  4.1.11 and  4.1.12 .

It is sometimes useful to assume the derivative of a differentiable function is continuous. If
f : I→ R is differentiable and the derivative f ′ is continuous on I, then we say f is continuously
differentiable. It is common to write C1(I) for the set of continuously differentiable functions on I.

4.2.6 Exercises
Exercise 4.2.1: Finish the proof of  Proposition 4.2.7 .

Exercise 4.2.2: Finish the proof of  Proposition 4.2.9 .

Exercise 4.2.3: Suppose f : R→R is a differentiable function such that f ′ is a bounded function. Prove that
f is a Lipschitz continuous function.
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Exercise 4.2.4: Suppose f : [a,b]→ R is differentiable and c ∈ [a,b]. Show there exists a sequence {xn}
converging to c, xn 6= c for all n, such that

f ′(c) = lim
n→∞

f ′(xn).

Do note this does not imply that f ′ is continuous (why?).

Exercise 4.2.5: Suppose f : R→R is a function such that | f (x)− f (y)| ≤ |x− y|2 for all x and y. Show that
f (x) =C for some constant C. Hint: Show that f is differentiable at all points and compute the derivative.

Exercise 4.2.6: Finish the proof of  Proposition 4.2.8 . That is, suppose I is an interval and f : I→ R is a
differentiable function such that f ′(x)> 0 for all x ∈ I. Show that f is strictly increasing.

Exercise 4.2.7: Suppose f : (a,b)→ R is a differentiable function such that f ′(x) 6= 0 for all x ∈ (a,b).
Suppose there exists a point c ∈ (a,b) such that f ′(c)> 0. Prove f ′(x)> 0 for all x ∈ (a,b).

Exercise 4.2.8: Suppose f : (a,b)→R and g : (a,b)→R are differentiable functions such that f ′(x) = g′(x)
for all x ∈ (a,b), then show that there exists a constant C such that f (x) = g(x)+C.

Exercise 4.2.9: Prove the following version of L’Hôpital’s rule. Suppose f : (a,b)→ R and g : (a,b)→ R
are differentiable functions and c ∈ (a,b). Suppose that f (c) = 0, g(c) = 0, g′(x) 6= 0 when x 6= c, and that
the limit of f ′(x)/g′(x) as x goes to c exists. Show that

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

Compare to  Exercise 4.1.15 .

Exercise 4.2.10: Let f : (a,b) → R be an unbounded differentiable function. Show f ′ : (a,b) → R is
unbounded.

Exercise 4.2.11: Prove the theorem Rolle actually proved in 1691: If f is a polynomial, f ′(a) = f ′(b) = 0
for some a < b, and there is no c ∈ (a,b) such that f ′(c) = 0, then there is at most one root of f in (a,b), that
is at most one x ∈ (a,b) such that f (x) = 0. In other words, between any two consecutive roots of f ′ is at
most one root of f . Hint: Suppose there are two roots and see what happens.

Exercise 4.2.12: Suppose a,b ∈ R and f : R→ R is differentiable, f ′(x) = a for all x, and f (0) = b. Find f
and prove that it is the unique differentiable function with this property.

Exercise 4.2.13:

a) Prove  Proposition 4.2.10 .

b) Suppose f : (a,b)→ R is continuous, and suppose f is differentiable everywhere except at c ∈ (a,b) and
limx→c f ′(x) = L. Prove that f is differentiable at c and f ′(c) = L.

Exercise 4.2.14: Suppose f : (0,1)→ R is differentiable and f ′ is bounded.

a) Show that there exists a continuous function g : [0,1)→ R such that f (x) = g(x) for all x 6= 0.
Hint:  Proposition 3.4.6 and  Exercise 4.2.3 .

b) Find an example where the g is not differentiable at x = 0.
Hint: Consider something based on sin(lnx), and assume you know basic properties of sin and ln from
calculus.

c) Instead of assuming that f ′ is bounded, assume that limx→0 f ′(x) = L. Prove that not only does g exist
but it is differentiable at 0 and g′(0) = L.

Exercise 4.2.15: Prove  Theorem 4.2.5 .
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4.3 Taylor’s theorem
Note: less than a lecture (optional section)

4.3.1 Derivatives of higher orders
When f : I→ R is differentiable, we obtain a function f ′ : I→ R. The function f ′ is called the first
derivative of f . If f ′ is differentiable, we denote by f ′′ : I→R the derivative of f ′. The function f ′′

is called the second derivative of f . We similarly obtain f ′′′, f ′′′′, and so on. With a larger number
of derivatives the notation would get out of hand; we denote by f (n) the nth derivative of f .

When f possesses n derivatives, we say f is n times differentiable.

4.3.2 Taylor’s theorem
Taylor’s theorem  

*
 is a generalization of the  mean value theorem . Mean value theorem says that up

to a small error f (x) for x near x0 can be approximated by f (x0), that is

f (x) = f (x0)+ f ′(c)(x− x0),

where the “error” is measured in terms of the first derivative at some point c between x and x0.
Taylor’s theorem generalizes this result to higher derivatives. It tells us that up to a small error, any
n times differentiable function can be approximated at a point x0 by a polynomial. The error of this
approximation behaves like (x− x0)

n near the point x0. To see why this is a good approximation
notice that for a big n, (x− x0)

n is very small in a small interval around x0.

Definition 4.3.1. For an n times differentiable function f defined near a point x0 ∈ R, define the
nth order Taylor polynomial for f at x0 as

Px0
n (x) :=

n

∑
k=0

f (k)(x0)

k!
(x− x0)

k

= f (x0)+ f ′(x0)(x− x0)+
f ′′(x0)

2
(x− x0)

2 +
f (3)(x0)

6
(x− x0)

3 + · · ·+ f (n)(x0)

n!
(x− x0)

n.

See  Figure 4.8  for the odd degree Taylor polynomials for the sine function at x0 = 0. The even
degree terms are all zero, as even derivatives of sine are again a sine, which are zero at the origin.

Taylor’s theorem says a function behaves like its nth Taylor polynomial. The  mean value
theorem is really Taylor’s theorem for the first derivative.

Theorem 4.3.2 (Taylor). Suppose f : [a,b]→R is a function with n continuous derivatives on [a,b]
and such that f (n+1) exists on (a,b). Given distinct points x0 and x in [a,b], we can find a point c
between x0 and x such that

f (x) = Px0
n (x)+

f (n+1)(c)
(n+1)!

(x− x0)
n+1.

*Named for the English mathematician  Brook Taylor (1685–1731). It was first found by the Scottish mathematician
 James Gregory (1638–1675). The statement we give was proved by  Joseph-Louis Lagrange (1736–1813)
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y = sin(x)
y = P0

1 (x)y = P0
3 (x)

y = P0
5 (x) y = P0

7 (x)

Figure 4.8: The odd degree Taylor polynomials for the sine function.

The term Rx0
n (x) := f (n+1)(c)

(n+1)! (x− x0)
n+1 is called the remainder term. This form of the remainder

term is called the Lagrange form of the remainder. There are other ways to write the remainder
term, but we skip those. Note that c depends on both x and x0.

Proof. Find a number Mx,x0 (depending on x and x0) solving the equation

f (x) = Px0
n (x)+Mx,x0(x− x0)

n+1.

Define a function g(s) by

g(s) := f (s)−Px0
n (s)−Mx,x0(s− x0)

n+1.

We compute the kth derivative at x0 of the Taylor polynomial (Px0
n )

(k)
(x0) = f (k)(x0) for k =

0,1,2, . . . ,n (the zeroth derivative of a function is the function itself). Therefore,

g(x0) = g′(x0) = g′′(x0) = · · ·= g(n)(x0) = 0.

In particular, g(x0) = 0. On the other hand g(x) = 0. By the  mean value theorem there exists an x1
between x0 and x such that g′(x1) = 0. Applying the  mean value theorem  to g′ we obtain that there
exists x2 between x0 and x1 (and therefore between x0 and x) such that g′′(x2) = 0. We repeat the
argument n+1 times to obtain a number xn+1 between x0 and xn (and therefore between x0 and x)
such that g(n+1)(xn+1) = 0.

Let c := xn+1. We compute the (n+1)th derivative of g to find

g(n+1)(s) = f (n+1)(s)− (n+1)!Mx,x0.

Plugging in c for s we obtain Mx,x0 =
f (n+1)(c)
(n+1)! , and we are done.

In the proof we have computed (Px0
n )

(k)
(x0) = f (k)(x0) for k = 0,1,2, . . . ,n. Therefore, the

Taylor polynomial has the same derivatives as f at x0 up to the nth derivative. That is why the
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Taylor polynomial is a good approximation to f . Notice that in  Figure 4.8 the Taylor polynomials
are reasonably good approximations to the sine near x = 0.

We do not necessarily get good approximations by the Taylor polynomial everywhere. Consider
expanding the function f (x) := x

1−x around 0, for x < 1, we get the graphs in  Figure 4.9 . The dotted
lines are the first, second, and third degree approximations. The dashed line is the 20th degree
polynomial, and yet the approximation only seems to get better with the degree for x >−1, and
for smaller x, it in fact gets worse. The polynomials are the partial sums of the geometric series
∑∞

n=1 xn, and the series only converges on (−1,1). See the discussion of power series  §2.6 .

Figure 4.9: The function x
1−x , and the Taylor polynomials P0

1 , P0
2 , P0

3 (all dotted), and the polynomial
P0

20 (dashed).

If f is infinitely differentiable, that is, if f can be differentiated any number of times, then we
define the Taylor series:

∞

∑
k=0

f (k)(x0)

k!
(x− x0)

k.

There is no guarantee that this series converges for any x 6= x0. And even where it does converge,
there is no guarantee that it converges to the function f . Functions f whose Taylor series at
every point x0 converges to f in some open interval containing x0 are called analytic functions.
Most functions one tends to see in practice are analytic. See  Exercise 5.4.11 , for an example of a
non-analytic function.

The definition of derivative says that a function is differentiable if it is locally approximated by
a line. We mention in passing that there exists a converse to Taylor’s theorem, which we will neither
state nor prove, saying that if a function is locally approximated in a certain way by a polynomial of
degree d, then it has d derivatives.

Taylor’s theorem gives us a quick proof of a version of the second derivative test. By a strict
relative minimum of f at c, we mean that there exists a δ > 0 such that f (x) > f (c) for all
x ∈ (c−δ ,c+δ ) where x 6= c. A strict relative maximum is defined similarly. Continuity of the
second derivative is not needed, but the proof is more difficult and is left as an exercise. The proof
also generalizes immediately into the nth derivative test, which is also left as an exercise.
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Proposition 4.3.3 (Second derivative test). Suppose f : (a,b)→ R is twice continuously differen-
tiable, x0 ∈ (a,b), f ′(x0) = 0 and f ′′(x0)> 0. Then f has a strict relative minimum at x0.

Proof. As f ′′ is continuous, there exists a δ > 0 such that f ′′(c)> 0 for all c ∈ (x0−δ ,x0+δ ), see
 Exercise 3.2.11  . Take x ∈ (x0−δ ,x0 +δ ), x 6= x0. Taylor’s theorem says that for some c between
x0 and x,

f (x) = f (x0)+ f ′(x0)(x− x0)+
f ′′(c)

2
(x− x0)

2 = f (x0)+
f ′′(c)

2
(x− x0)

2.

As f ′′(c)> 0, and (x− x0)
2 > 0, then f (x)> f (x0).

4.3.3 Exercises
Exercise 4.3.1: Compute the nth Taylor Polynomial at 0 for the exponential function.

Exercise 4.3.2: Suppose p is a polynomial of degree d. Given any x0 ∈ R, show that the (d +1)th Taylor
polynomial for p at x0 is equal to p.

Exercise 4.3.3: Let f (x) := |x|3. Compute f ′(x) and f ′′(x) for all x, but show that f (3)(0) does not exist.

Exercise 4.3.4: Suppose f : R→ R has n continuous derivatives. Show that for any x0 ∈ R, there exist
polynomials P and Q of degree n and an ε > 0 such that P(x) ≤ f (x) ≤ Q(x) for all x ∈ [x0,x0 + ε] and
Q(x)−P(x) = λ (x− x0)

n for some λ ≥ 0.

Exercise 4.3.5: If f : [a,b]→ R has n+1 continuous derivatives and x0 ∈ [a,b], prove lim
x→x0

R
x0
n (x)

(x−x0)
n = 0.

Exercise 4.3.6: Suppose f : [a,b]→ R has n+1 continuous derivatives and x0 ∈ (a,b). Prove: f (k)(x0) = 0
for all k = 0,1,2, . . . ,n if and only if g(x) := f (x)

(x−x0)
n+1 is continuous at x0.

Exercise 4.3.7: Suppose a,b,c ∈ R and f : R→ R is differentiable, f ′′(x) = a for all x, f ′(0) = b, and
f (0) = c. Find f and prove that it is the unique differentiable function with this property.

Exercise 4.3.8 (Challenging): Show that a simple converse to Taylor’s theorem does not hold. Find a function
f : R→ R with no second derivative at x = 0 such that | f (x)| ≤

∣∣x3
∣∣, that is, f goes to zero at 0 faster than

x3, and while f ′(0) exists, f ′′(0) does not.

Exercise 4.3.9: Suppose f : (0,1)→ R is differentiable and f ′′ is bounded.

a) Show that there exists a once differentiable function g : [0,1)→ R such that f (x) = g(x) for all x 6= 0.
Hint: See  Exercise 4.2.14 .

b) Find an example where the g is not twice differentiable at x = 0.

Exercise 4.3.10: Prove the nth derivative test. Suppose n ∈ N, x0 ∈ (a,b), and f : (a,b)→ R is n times
continuously differentiable, with f (k)(x0) = 0 for k = 1,2, . . . ,n−1, and f (n)(x0) 6= 0. Prove:

a) If n is odd, then f has neither a relative minimum, nor a maximum at x0.

b) If n is even, then f has a strict relative minimum at x0 if f (n)(x0)> 0 and a strict relative maximum at x0
if f (n)(x0)< 0.

Exercise 4.3.11: Prove the more general version of the second derivative test. Suppose f : (a,b)→ R is
differentiable and x0 ∈ (a,b) is such that, f ′(x0) = 0, f ′′(x0) exists, and f ′′(x0)> 0. Prove that f has a strict
relative minimum at x0. Hint: Consider the limit definition of f ′′(x0).
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4.4 Inverse function theorem
Note: less than 1 lecture (optional section, needed for  §5.4 , requires  §3.6 )

4.4.1 Inverse function theorem
We start with a simple example. Consider the function f (x) := ax for a number a 6= 0. Then
f : R→ R is bijective, and the inverse is f−1(y) = 1

ay. In particular, f ′(x) = a and ( f−1)′(y) = 1
a .

As differentiable functions are “infinitesimally like” linear functions, we expect the same behavior
from the inverse function. The main idea of differentiating inverse functions is the following lemma.

Lemma 4.4.1. Let I,J ⊂ R be intervals. If f : I → J is strictly monotone (hence one-to-one),
onto ( f (I) = J), differentiable at x0 ∈ I, and f ′(x0) 6= 0, then the inverse f−1 is differentiable at
y0 = f (x0) and

( f−1)′(y0) =
1

f ′
(

f−1(y0)
) = 1

f ′(x0)
.

If f is continuously differentiable and f ′ is never zero, then f−1 is continuously differentiable.

Proof. By  Proposition 3.6.6 , f has a continuous inverse. For convenience call the inverse g : J→ I.
Let x0,y0 be as in the statement. For any x ∈ I write y := f (x). If x 6= x0 and so y 6= y0, we find

g(y)−g(y0)

y− y0
=

g
(

f (x)
)
−g
(

f (x0)
)

f (x)− f (x0)
=

x− x0

f (x)− f (x0)
.

See  Figure 4.10 for the geometric idea.

x = g(y) x0 = g(y0)

f (x) = y

f (x0) = y0

slope = f (x)− f (x0)
x−x0

= y−y0
g(y)−g(y0)

f (x) = y f (x0) = y0

x = g(y)

x0 = g(y0)

slope = x−x0
f (x)− f (x0)

= g(y)−g(y0)
y−y0

Figure 4.10: Interpretation of the derivative of the inverse function.

Let

Q(x) :=

{
x−x0

f (x)− f (x0)
if x 6= x0,

1
f ′(x0)

if x = x0 (notice that f ′(x0) 6= 0).
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As f is differentiable at x0,

lim
x→x0

Q(x) = lim
x→x0

x− x0

f (x)− f (x0)
=

1
f ′(x0)

= Q(x0),

that is, Q is continuous at x0. As g(y) is continuous at y0, the composition Q
(
g(y)

)
= g(y)−g(y0)

y−y0
is

continuous at y0 by  Proposition 3.2.7 . Therefore,

1
f ′
(
g(y0)

) = Q
(
g(y0)

)
= lim

y→y0
Q
(
g(y)

)
= lim

y→y0

g(y)−g(y0)

y− y0
.

So g is differentiable at y0 and g′(y0) =
1

f ′(g(y0))
.

If f ′ is continuous and nonzero at all x ∈ I, then the lemma applies at all x ∈ I. As g is also
continuous (it is differentiable), the derivative g′(y) = 1

f ′(g(y))
must be continuous.

What is usually called the inverse function theorem is the following result.

Theorem 4.4.2 (Inverse function theorem). Let f : (a,b)→ R be a continuously differentiable
function, x0 ∈ (a,b) a point where f ′(x0) 6= 0. Then there exists an open interval I ⊂ (a,b) with
x0 ∈ I, the restriction f |I is injective with a continuously differentiable inverse g : J→ I defined on
an interval J := f (I), and

g′(y) =
1

f ′
(
g(y)

) for all y ∈ J.

Proof. Without loss of generality, suppose f ′(x0)> 0. As f ′ is continuous, there must exist an open
interval I = (x0−δ ,x0 +δ ) such that f ′(x)> 0 for all x ∈ I. See  Exercise 3.2.11 .

By  Proposition 4.2.8 f is strictly increasing on I, and hence the restriction f |I is bijective onto
J := f (I). As f is continuous, then by the  Corollary 3.6.3 (or directly via the  intermediate value
theorem ) f (I) is in interval. Now apply  Lemma 4.4.1 .

If you tried to prove the existence of roots directly as in  Example 1.2.3  , you saw how difficult
that endeavor is. However, with the machinery we have built for inverse functions it becomes an
almost trivial exercise, and with the lemma above we prove far more than mere existence.

Corollary 4.4.3. Given any n ∈ N and any x ≥ 0 there exists a unique number y ≥ 0 (denoted
x1/n := y), such that yn = x. Furthermore, the function g : (0,∞)→ (0,∞) defined by g(x) := x1/n

is continuously differentiable and

g′(x) =
1

nx(n−1)/n
=

1
n

x(1−n)/n,

using the convention xm/n := (x1/n)
m

.

Proof. For x = 0 the existence of a unique root is trivial.
Let f : (0,∞)→ (0,∞) be defined by f (y) := yn. The function f is continuously differentiable

and f ′(y) = nyn−1, see  Exercise 4.1.3 . For y > 0 the derivative f ′ is strictly positive and so
again by  Proposition 4.2.8 , f is strictly increasing (this can also be proved directly). Given any
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M > 1, f (M) = Mn ≥ M, and given any 1 > ε > 0, f (ε) = εn ≤ ε . For any x with ε < x < M,
we have by the  intermediate value theorem  that x ∈ f

(
[ε,M]

)
⊂ f

(
(0,∞)

)
. As M and ε were

arbitrary, f is onto (0,∞), and hence f is bijective. Let g be the inverse of f and we obtain the
existence and uniqueness of positive nth roots.  Lemma 4.4.1 says g has a continuous derivative and
g′(x) = 1

f ′(g(x))
= 1

n(x1/n)
n−1 .

Example 4.4.4: The corollary provides a good example of where the inverse function theorem
gives us an interval smaller than (a,b). Take f : R→ R defined by f (x) := x2. Then f ′(x) 6= 0 as
long as x 6= 0. If x0 > 0, we can take I = (0,∞), but no larger.

Example 4.4.5: Another useful example is f (x) := x3. The function f : R→ R is one-to-one and
onto, so f−1(y) = y1/3 exists on the entire real line including zero and negative y. The function
f has a continuous derivative, but f−1 has no derivative at the origin. The point is that f ′(0) = 0.
See  Figure 4.11 for a graph, notice the vertical tangent on the cube root at the origin. See also

 Exercise 4.4.4 .

y = x1/3

y = x3

Figure 4.11: Graphs of x3 and x1/3.

4.4.2 Exercises
Exercise 4.4.1: Suppose f : R→ R is continuously differentiable such that f ′(x)> 0 for all x. Show that f
is invertible on the interval J = f (R), the inverse is continuously differentiable, and ( f−1)

′
(y)> 0 for all

y ∈ f (R).

Exercise 4.4.2: Suppose I,J are intervals and a monotone onto f : I→ J has an inverse g : J→ I. Suppose
you already know that both f and g are differentiable everywhere and f ′ is never zero. Using chain rule but
not  Lemma 4.4.1 prove the formula g′(y) = 1

f ′(g(y))
.

Exercise 4.4.3: Let n ∈ N be even. Prove that every x > 0 has a unique negative nth root. That is, there
exists a negative number y such that yn = x. Compute the derivative of the function g(x) := y.

Exercise 4.4.4: Let n ∈ N be odd and n≥ 3. Prove that every x has a unique nth root. That is, there exists a
number y such that yn = x. Prove that the function defined by g(x) := y is differentiable except at x = 0 and
compute the derivative. Prove that g is not differentiable at x = 0.
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Exercise 4.4.5 (requires  §4.3 ): Show that if in the inverse function theorem f has k continuous derivatives,
then the inverse function g also has k continuous derivatives.

Exercise 4.4.6: Let f (x) := x+2x2 sin(1/x) for x 6= 0 and f (0) := 0. Show that f is differentiable at all x,
that f ′(0)> 0, but that f is not invertible on any open interval containing the origin.

Exercise 4.4.7:

a) Let f : R→ R be a continuously differentiable function and k > 0 be a number such that f ′(x)≥ k for
all x ∈ R. Show f is one-to-one and onto, and has a continuously differentiable inverse f−1 : R→ R.

b) Find an example f : R→ R where f ′(x)> 0 for all x, but f is not onto.

Exercise 4.4.8: Suppose I,J are intervals and a monotone onto f : I→ J has an inverse g : J→ I. Suppose
x ∈ I and y := f (x) ∈ J, and that g is differentiable at y. Prove:

a) If g′(y) 6= 0, then f is differentiable at x.

b) If g′(y) = 0, then f is not differentiable at x.
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Chapter 5

The Riemann Integral

5.1 The Riemann integral
Note: 1.5 lectures

An integral is a way to “sum” the values of a function. There is often confusion among students
of calculus between integral and antiderivative. The integral is (informally) the area under the
curve, nothing else. That we can compute an antiderivative using the integral is a nontrivial result
we have to prove. In this chapter we define the Riemann integral  

*
 using the Darboux integral 

†
 ,

which is technically simpler than (but equivalent to) the traditional definition of Riemann.

5.1.1 Partitions and lower and upper integrals
We want to integrate a bounded function defined on an interval [a,b]. We first define two auxiliary
integrals that are defined for all bounded functions. Only then can we talk about the Riemann
integral and the Riemann integrable functions.

Definition 5.1.1. A partition P of the interval [a,b] is a finite set of numbers {x0,x1,x2, . . . ,xn}
such that

a = x0 < x1 < x2 < · · ·< xn−1 < xn = b.

We write
∆xi := xi− xi−1.

Let f : [a,b]→ R be a bounded function. Let P be a partition of [a,b]. Define

mi := inf
{

f (x) : xi−1 ≤ x≤ xi
}
,

Mi := sup
{

f (x) : xi−1 ≤ x≤ xi
}
,

L(P, f ) :=
n

∑
i=1

mi∆xi,

U(P, f ) :=
n

∑
i=1

Mi∆xi.

*Named after the German mathematician  Georg Friedrich Bernhard Riemann (1826–1866).
†Named after the French mathematician  Jean-Gaston Darboux (1842–1917).
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We call L(P, f ) the lower Darboux sum and U(P, f ) the upper Darboux sum.

The geometric idea of Darboux sums is indicated in  Figure 5.1 . The lower sum is the area of
the shaded rectangles, and the upper sum is the area of the entire rectangles, shaded plus unshaded
parts. The width of the ith rectangle is ∆xi, the height of the shaded rectangle is mi and the height of
the entire rectangle is Mi.

x0 x1 x2 x3 x4 x5 x6 x7 x8

∆x5

m5

M5

Figure 5.1: Sample Darboux sums.

Proposition 5.1.2. Let f : [a,b]→R be a bounded function. Let m,M ∈R be such that for all x we
have m≤ f (x)≤M. For any partition P of [a,b] we have

m(b−a)≤ L(P, f )≤U(P, f )≤M(b−a). (5.1)

Proof. Let P be a partition. Then note that m≤ mi for all i and Mi ≤M for all i. Also mi ≤Mi for
all i. Finally ∑n

i=1 ∆xi = (b−a). Therefore,

m(b−a) = m

(
n

∑
i=1

∆xi

)
=

n

∑
i=1

m∆xi ≤
n

∑
i=1

mi∆xi ≤

≤
n

∑
i=1

Mi∆xi ≤
n

∑
i=1

M∆xi = M

(
n

∑
i=1

∆xi

)
= M(b−a).

Hence we get ( 5.1 ). In particular, the set of lower and upper sums are bounded sets.

Definition 5.1.3. As the sets of lower and upper Darboux sums are bounded, we define∫ b

a
f (x) dx := sup

{
L(P, f ) : P a partition of [a,b]

}
,

∫ b

a
f (x) dx := inf

{
U(P, f ) : P a partition of [a,b]

}
.

We call
∫

the lower Darboux integral and
∫

the upper Darboux integral. To avoid worrying about
the variable of integration, we often simply write∫ b

a
f :=

∫ b

a
f (x) dx and

∫ b

a
f :=

∫ b

a
f (x) dx.
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If integration is to make sense, then the lower and upper Darboux integrals should be the same
number, as we want a single number to call the integral. However, these two integrals may differ
for some functions.

Example 5.1.4: Take the Dirichlet function f : [0,1]→ R, where f (x) := 1 if x ∈Q and f (x) := 0
if x /∈Q. Then ∫ 1

0
f = 0 and

∫ 1

0
f = 1.

The reason is that for every i we have mi = inf{ f (x) : x ∈ [xi−1,xi]}= 0 and Mi = sup{ f (x) : x ∈
[xi−1,xi]}= 1. Thus

L(P, f ) =
n

∑
i=1

0 ·∆xi = 0,

U(P, f ) =
n

∑
i=1

1 ·∆xi =
n

∑
i=1

∆xi = 1.

Remark 5.1.5. The same definition of
∫ b

a f and
∫ b

a f is used when f is defined on a larger set S
such that [a,b]⊂ S. In that case, we use the restriction of f to [a,b] and we must ensure that the
restriction is bounded on [a,b].

To compute the integral we often take a partition P and make it finer. That is, we cut intervals in
the partition into yet smaller pieces.

Definition 5.1.6. Let P := {x0,x1, . . . ,xn} and P̃ := {x̃0, x̃1, . . . , x̃m} be partitions of [a,b]. We say
P̃ is a refinement of P if as sets P⊂ P̃.

That is, P̃ is a refinement of a partition if it contains all the numbers in P and perhaps some other
numbers in between. For example, {0,0.5,1,2} is a partition of [0,2] and {0,0.2,0.5,1,1.5,1.75,2}
is a refinement. The main reason for introducing refinements is the following proposition.

Proposition 5.1.7. Let f : [a,b]→R be a bounded function, and let P be a partition of [a,b]. Let P̃
be a refinement of P. Then

L(P, f )≤ L(P̃, f ) and U(P̃, f )≤U(P, f ).

Proof. The tricky part of this proof is to get the notation correct. Let P̃ := {x̃0, x̃1, . . . , x̃m} be
a refinement of P := {x0,x1, . . . ,xn}. Then x0 = x̃0 and xn = x̃m. In fact, we can find integers
k0 < k1 < · · ·< kn such that x j = x̃k j for j = 0,1,2, . . . ,n.

Let ∆x̃p = x̃p− x̃p−1. See  Figure 5.2 . We get

∆x j = x j− x j−1 = x̃k j − x̃k j−1 =
k j

∑
p=k j−1+1

x̃p− x̃p−1 =
k j

∑
p=k j−1+1

∆x̃p.
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∆x̃p−1∆x̃p−2
x̃px̃p−3 x̃p−1x̃p−2 ∆x̃p

∆x j

x̃k j−1 x̃k j==

x j−1 x j

· · ·· · ·

Figure 5.2: Refinement of a subinterval. Notice ∆x j = ∆x̃p−2 +∆x̃p−1 +∆x̃p, and also k j−1 +1 = p−2
and k j = p.

Let m j be as before and correspond to the partition P. Let m̃ j := inf{ f (x) : x̃ j−1 ≤ x≤ x̃ j}. Now,
m j ≤ m̃p for k j−1 < p≤ k j. Therefore,

m j∆x j = m j

k j

∑
p=k j−1+1

∆x̃p =
k j

∑
p=k j−1+1

m j∆x̃p ≤
k j

∑
p=k j−1+1

m̃p∆x̃p.

So

L(P, f ) =
n

∑
j=1

m j∆x j ≤
n

∑
j=1

k j

∑
p=k j−1+1

m̃p∆x̃p =
m

∑
j=1

m̃ j∆x̃ j = L(P̃, f ).

The proof of U(P̃, f )≤U(P, f ) is left as an exercise.

Armed with refinements we prove the following. The key point of this next proposition is that
the lower Darboux integral is less than or equal to the upper Darboux integral.

Proposition 5.1.8. Let f : [a,b]→ R be a bounded function. Let m,M ∈ R be such that for all
x ∈ [a,b] we have m≤ f (x)≤M. Then

m(b−a)≤
∫ b

a
f ≤

∫ b

a
f ≤M(b−a). (5.2)

Proof. By  Proposition 5.1.2 we have for any partition P

m(b−a)≤ L(P, f )≤U(P, f )≤M(b−a).

The inequality m(b− a) ≤ L(P, f ) implies m(b− a) ≤ ∫ b
a f . Also U(P, f ) ≤ M(b− a) implies∫ b

a f ≤M(b−a).
The middle inequality in ( 5.2 ) is the main point of this proposition. Let P1,P2 be partitions

of [a,b]. Define P̃ := P1∪P2. The set P̃ is a partition of [a,b], which is a refinement of P1 and a
refinement of P2. By  Proposition 5.1.7 , L(P1, f )≤ L(P̃, f ) and U(P̃, f )≤U(P2, f ). So

L(P1, f )≤ L(P̃, f )≤U(P̃, f )≤U(P2, f ).

In other words, for two arbitrary partitions P1 and P2, we have L(P1, f ) ≤ U(P2, f ). Recall
 Proposition 1.2.7 , and take the supremum and infimum over all partitions:∫ b

a
f = sup

{
L(P, f ) : P a partition of [a,b]

}
≤ inf

{
U(P, f ) : P a partition of [a,b]

}
=
∫ b

a
f .
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5.1.2 Riemann integral
We can finally define the Riemann integral. However, the Riemann integral is only defined on a
certain class of functions, called the Riemann integrable functions.

Definition 5.1.9. Let f : [a,b]→ R be a bounded function such that∫ b

a
f (x) dx =

∫ b

a
f (x) dx.

Then f is said to be Riemann integrable. The set of Riemann integrable functions on [a,b] is denoted
by R[a,b]. When f ∈R[a,b] we define∫ b

a
f (x) dx :=

∫ b

a
f (x) dx =

∫ b

a
f (x) dx.

As before, we often simply write ∫ b

a
f :=

∫ b

a
f (x) dx.

The number
∫ b

a f is called the Riemann integral of f , or sometimes simply the integral of f .

By definition, any Riemann integrable function is bounded. By appealing to  Proposition 5.1.8 

we immediately obtain the following proposition. See also  Figure 5.3 .

Proposition 5.1.10. Let f : [a,b]→R be a Riemann integrable function. Let m,M ∈R be such that
m≤ f (x)≤M for all x ∈ [a,b]. Then

m(b−a)≤
∫ b

a
f ≤M(b−a).

a b

m

M

Figure 5.3: The area under the curve is bounded from above by the area of the entire rectangle, M(b−a),
and from below by the area of the shaded part, m(b−a).

Often we use a weaker form of this proposition. That is, if | f (x)| ≤M for all x ∈ [a,b], then∣∣∣∣∫ b

a
f
∣∣∣∣≤M(b−a).
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Example 5.1.11: We integrate constant functions using  Proposition 5.1.8 . If f (x) := c for some
constant c, then we take m = M = c. In inequality ( 5.2 ) all the inequalities must be equalities. Thus
f is integrable on [a,b] and

∫ b
a f = c(b−a).

Example 5.1.12: Let f : [0,2]→ R be defined by

f (x) :=


1 if x < 1,
1/2 if x = 1,
0 if x > 1.

We claim f is Riemann integrable and
∫ 2

0 f = 1.
Proof: Let 0 < ε < 1 be arbitrary. Let P := {0,1−ε,1+ε,2} be a partition. We use the notation

from the definition of the Darboux sums. Then

m1 = inf
{

f (x) : x ∈ [0,1− ε]
}
= 1, M1 = sup

{
f (x) : x ∈ [0,1− ε]

}
= 1,

m2 = inf
{

f (x) : x ∈ [1− ε,1+ ε]
}
= 0, M2 = sup

{
f (x) : x ∈ [1− ε,1+ ε]

}
= 1,

m3 = inf
{

f (x) : x ∈ [1+ ε,2]
}
= 0, M3 = sup

{
f (x) : x ∈ [1+ ε,2]

}
= 0.

Furthermore, ∆x1 = 1− ε , ∆x2 = 2ε and ∆x3 = 1− ε . See  Figure 5.4 .

0 1− ε 1+ ε 2
∆x1 = 1− ε ∆x2 = 2ε ∆x3 = 1− ε

M3 = m2 = m3 = 0

M1 = M2 = m1 = 1

Figure 5.4: Darboux sums for the step function. L(P, f ) is the area of the shaded rectangle, U(P, f ) is
the area of both rectangles, and U(P, f )−L(P, f ) is the area of the unshaded rectangle.

We compute

L(P, f ) =
3

∑
i=1

mi∆xi = 1 · (1− ε)+0 ·2ε +0 · (1− ε) = 1− ε,

U(P, f ) =
3

∑
i=1

Mi∆xi = 1 · (1− ε)+1 ·2ε +0 · (1− ε) = 1+ ε.

Thus, ∫ 2

0
f −

∫ 2

0
f ≤U(P, f )−L(P, f ) = (1+ ε)− (1− ε) = 2ε.
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By  Proposition 5.1.8 we have
∫ 2

0 f ≤ ∫ 2
0 f . As ε was arbitrary we see

∫ 2
0 f =

∫ 2
0 f . So f is Riemann

integrable. Finally,

1− ε = L(P, f )≤
∫ 2

0
f ≤U(P, f ) = 1+ ε.

Hence,
∣∣∫ 2

0 f −1
∣∣≤ ε . As ε was arbitrary, we have

∫ 2
0 f = 1.

It may be worthwhile to extract part of the technique of the example into a proposition.

Proposition 5.1.13. Let f : [a,b]→ R be a bounded function. Then f is Riemann integrable if for
every ε > 0, there exists a partition P such that

U(P, f )−L(P, f )< ε.

Proof. If for every ε > 0 such a P exists, then we have:

0≤
∫ b

a
f −

∫ b

a
f ≤U(P, f )−L(P, f )< ε.

Therefore,
∫ b

a f =
∫ b

a f , and f is integrable.

Example 5.1.14: Let us show 1
1+x is integrable on [0,b] for any b > 0. We will see later that all

continuous functions are integrable, but let us demonstrate how we do it directly.
Let ε > 0 be given. Take n ∈ N and pick x j := jb/n, to form the partition P := {x0,x1, . . . ,xn} of

[0,b]. We have ∆x j = b/n for all j. As f is decreasing, for any subinterval [x j−1,x j] we obtain

m j = inf
{

1
1+ x

: x ∈ [x j−1,x j]

}
=

1
1+ x j

, M j = sup
{

1
1+ x

: x ∈ [x j−1,x j]

}
=

1
1+ x j−1

.

Then we have

U(P, f )−L(P, f ) =
n

∑
j=1

∆x j(M j−m j) =
b
n

n

∑
j=1

(
1

1+ ( j−1)b/n
− 1

1+ jb/n

)
=

=
b
n

(
1

1+ 0b/n
− 1

1+ nb/n

)
=

b2

n(b+1)
.

The sum telescopes, the terms successively cancel each other, something we have seen before.
Picking n to be such that b2

n(b+1) < ε the proposition is satisfied, and the function is integrable.

Remark 5.1.15. A way of thinking of the integral is that it adds up (integrates) lots of local
information—it sums f (x) dx over all x. The integral sign was chosen by Leibniz to be the long S,
to mean summation. Unlike derivatives, which are “local,” integrals show up in applications when
one wants a “global” answer: total distance travelled, average temperature, total charge, etc.
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5.1.3 More notation
When f : S→ R is defined on a larger set S and [a,b]⊂ S, we say f is Riemann integrable on [a,b]
if the restriction of f to [a,b] is Riemann integrable. In this case, we say f ∈R[a,b], and we write∫ b

a f to mean the Riemann integral of the restriction of f to [a,b].
It is useful to define the integral

∫ b
a f even if a 6< b. Suppose b < a and f ∈R[b,a], then define∫ b

a
f :=−

∫ a

b
f .

For any function f , define ∫ a

a
f := 0.

At times, the variable x may already have some other meaning. When we need to write down
the variable of integration, we may simply use a different letter. For example,∫ b

a
f (s) ds :=

∫ b

a
f (x) dx.

5.1.4 Exercises
Exercise 5.1.1: Define f : [0,1]→R by f (x) := x3 and let P := {0,0.1,0.4,1}. Compute L(P, f ) and U(P, f ).

Exercise 5.1.2: Let f : [0,1]→ R be defined by f (x) := x. Show that f ∈R[0,1] and compute
∫ 1

0 f using
the definition of the integral (but feel free to use the propositions of this section).

Exercise 5.1.3: Let f : [a,b]→ R be a bounded function. Suppose there exists a sequence of partitions {Pk}
of [a,b] such that

lim
k→∞

(
U(Pk, f )−L(Pk, f )

)
= 0.

Show that f is Riemann integrable and that∫ b

a
f = lim

k→∞
U(Pk, f ) = lim

k→∞
L(Pk, f ).

Exercise 5.1.4: Finish the proof of  Proposition 5.1.7 .

Exercise 5.1.5: Suppose f : [−1,1]→ R is defined as

f (x) :=

{
1 if x > 0,
0 if x≤ 0.

Prove that f ∈ R[−1,1] and compute
∫ 1
−1 f using the definition of the integral (but feel free to use the

propositions of this section).

Exercise 5.1.6: Let c ∈ (a,b) and let d ∈ R. Define f : [a,b]→ R as

f (x) :=

{
d if x = c,
0 if x 6= c.

Prove that f ∈R[a,b] and compute
∫ b

a f using the definition of the integral (but feel free to use the propositions
of this section).
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Exercise 5.1.7: Suppose f : [a,b]→R is Riemann integrable. Let ε > 0 be given. Then show that there exists
a partition P = {x0,x1, . . . ,xn} such that if we pick any set of numbers {c1,c2, . . . ,cn} with ck ∈ [xk−1,xk] for
all k, then ∣∣∣∣∣

∫ b

a
f −

n

∑
k=1

f (ck)∆xk

∣∣∣∣∣< ε.

Exercise 5.1.8: Let f : [a,b]→ R be a Riemann integrable function. Let α > 0 and β ∈ R. Then define
g(x) := f (αx+β ) on the interval I = [a−β

α
, b−β

α
]. Show that g is Riemann integrable on I.

Exercise 5.1.9: Suppose f : [0,1]→R and g : [0,1]→R are such that for all x ∈ (0,1] we have f (x) = g(x).
Suppose f is Riemann integrable. Prove g is Riemann integrable and

∫ 1
0 f =

∫ 1
0 g.

Exercise 5.1.10: Let f : [0,1]→R be a bounded function. Let Pn = {x0,x1, . . . ,xn} be a uniform partition of
[0,1], that is, x j := j/n. Is {L(Pn, f )}∞

n=1 always monotone? Yes/No: Prove or find a counterexample.

Exercise 5.1.11 (Challenging): For a bounded function f : [0,1]→R let Rn := (1/n)∑n
j=1 f ( j/n) (the uniform

right hand rule).

a) If f is Riemann integrable show
∫ 1

0 f = lim Rn.

b) Find an f that is not Riemann integrable, but lim Rn exists.

Exercise 5.1.12 (Challenging): Generalize the previous exercise. Show that f ∈R[a,b] if and only if there
exists an I ∈ R, such that for every ε > 0 there exists a δ > 0 such that if P is a partition with ∆xi < δ for all
i, then |L(P, f )− I|< ε and |U(P, f )− I|< ε . If f ∈R[a,b], then I =

∫ b
a f .

Exercise 5.1.13: Using  Exercise 5.1.12 and the idea of the proof in  Exercise 5.1.7 , show that Darboux
integral is the same as the standard definition of Riemann integral, which you have most likely seen in
calculus. That is, show that f ∈R[a,b] if and only if there exists an I ∈ R, such that for every ε > 0 there
exists a δ > 0 such that if P = {x0,x1, . . . ,xn} is a partition with ∆xi < δ for all i, then |∑n

i=1 f (ci)∆xi− I|< ε

for any set {c1,c2, . . . ,cn} with ci ∈ [xi−1,xi]. If f ∈R[a,b], then I =
∫ b

a f .

Exercise 5.1.14 (Challenging): Construct functions f and g, where f : [0,1]→ R is Riemann integrable,
g : [0,1]→ [0,1] is one-to-one and onto, and such that the composition f ◦g is not Riemann integrable.
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5.2 Properties of the integral
Note: 2 lectures, integrability of functions with discontinuities can safely be skipped

5.2.1 Additivity
Adding a bunch of things in two parts and then adding those two parts should be the same as adding
everything all at once. The corresponding property for integral is called the additive property of the
integral. First, we prove the additivity property for the lower and upper Darboux integrals.

Lemma 5.2.1. Suppose a < b < c and f : [a,c]→ R is a bounded function. Then∫ c

a
f =

∫ b

a
f +

∫ c

b
f

and ∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof. If we have partitions P1 = {x0,x1, . . . ,xk} of [a,b] and P2 = {xk,xk+1, . . . ,xn} of [b,c], then
the set P := P1∪P2 = {x0,x1, . . . ,xn} is a partition of [a,c]. Then

L(P, f ) =
n

∑
j=1

m j∆x j =
k

∑
j=1

m j∆x j +
n

∑
j=k+1

m j∆x j = L(P1, f )+L(P2, f ).

When we take the supremum of the right hand side over all P1 and P2, we are taking a supremum
of the left hand side over all partitions P of [a,c] that contain b. If Q is any partition of [a,c] and
P = Q∪{b}, then P is a refinement of Q and so L(Q, f )≤ L(P, f ). Therefore, taking a supremum
only over the P that contain b is sufficient to find the supremum of L(P, f ) over all partitions P, see

 Exercise 1.1.9 . Finally recall  Exercise 1.2.9 to compute∫ c

a
f = sup

{
L(P, f ) : P a partition of [a,c]

}
= sup

{
L(P, f ) : P a partition of [a,c],b ∈ P

}
= sup

{
L(P1, f )+L(P2, f ) : P1 a partition of [a,b],P2 a partition of [b,c]

}
= sup

{
L(P1, f ) : P1 a partition of [a,b]

}
+ sup

{
L(P2, f ) : P2 a partition of [b,c]

}
=
∫ b

a
f +

∫ c

b
f .

Similarly, for P, P1, and P2 as above we obtain

U(P, f ) =
n

∑
j=1

M j∆x j =
k

∑
j=1

M j∆x j +
n

∑
j=k+1

M j∆x j =U(P1, f )+U(P2, f ).

We wish to take the infimum on the right over all P1 and P2, and so we are taking the infimum
over all partitions P of [a,c] that contain b. If Q is any partition of [a,c] and P = Q∪{b}, then P
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is a refinement of Q and so U(Q, f )≥U(P, f ). Therefore, taking an infimum only over the P that
contain b is sufficient to find the infimum of U(P, f ) for all P. We obtain∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proposition 5.2.2. Let a < b < c. A function f : [a,c]→R is Riemann integrable if and only if f is
Riemann integrable on [a,b] and [b,c]. If f is Riemann integrable, then∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof. Suppose f ∈R[a,c], then
∫ c

a f =
∫ c

a f =
∫ c

a f . We apply the lemma to get∫ c

a
f =

∫ c

a
f =

∫ b

a
f +

∫ c

b
f ≤

∫ b

a
f +

∫ c

b
f =

∫ c

a
f =

∫ c

a
f .

Thus the inequality is an equality, ∫ b

a
f +

∫ c

b
f =

∫ b

a
f +

∫ c

b
f .

As we also know
∫ b

a f ≤ ∫ b
a f and

∫ c
b f ≤ ∫ c

b f , we conclude∫ b

a
f =

∫ b

a
f and

∫ c

b
f =

∫ c

b
f .

Thus f is Riemann integrable on [a,b] and [b,c] and the desired formula holds.
Now assume f is Riemann integrable on [a,b] and on [b,c]. Again apply the lemma to get∫ c

a
f =

∫ b

a
f +

∫ c

b
f =

∫ b

a
f +

∫ c

b
f =

∫ b

a
f +

∫ c

b
f =

∫ c

a
f .

Therefore, f is Riemann integrable on [a,c], and the integral is computed as indicated.

An easy consequence of the additivity is the following corollary. We leave the details to the
reader as an exercise.

Corollary 5.2.3. If f ∈R[a,b] and [c,d]⊂ [a,b], then the restriction f |[c,d] is in R[c,d].

5.2.2 Linearity and monotonicity
A sum is a linear function of the summands. So is the integral.

Proposition 5.2.4 (Linearity). Let f and g be in R[a,b] and α ∈ R.

(i) α f is in R[a,b] and ∫ b

a
α f (x) dx = α

∫ b

a
f (x) dx.

(ii) f +g is in R[a,b] and∫ b

a

(
f (x)+g(x)

)
dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx.
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Proof. Let us prove the first item for α ≥ 0. Let P be a partition of [a,b]. Let mi := inf{ f (x) : x ∈
[xi−1,xi]} as usual. Since α is nonnegative, we can move the multiplication by α past the infimum,

inf{α f (x) : x ∈ [xi−1,xi]}= α inf{ f (x) : x ∈ [xi−1,xi]}= αmi.

Therefore,

L(P,α f ) =
n

∑
i=1

αmi∆xi = α

n

∑
i=1

mi∆xi = αL(P, f ).

Similarly,
U(P,α f ) = αU(P, f ).

Again, as α ≥ 0 we may move multiplication by α past the supremum. Hence,∫ b

a
α f (x) dx = sup

{
L(P,α f ) : P a partition of [a,b]

}
= sup

{
αL(P, f ) : P a partition of [a,b]

}
= α sup

{
L(P, f ) : P a partition of [a,b]

}
= α

∫ b

a
f (x) dx.

Similarly, we show ∫ b

a
α f (x) dx = α

∫ b

a
f (x) dx.

The conclusion now follows for α ≥ 0.
To finish the proof of the first item, we need to show that − f is Riemann integrable and∫ b

a − f (x) dx =−∫ b
a f (x) dx. The proof of this fact is left as  Exercise 5.2.1 .

The proof of the second item in the proposition is also left as  Exercise 5.2.2 . It is not as trivial
as it may appear at first glance.

The second item in the proposition does not hold with equality for the Darboux integrals, but
we do obtain inequalities. The proof of the following proposition is  Exercise 5.2.16  . It follows for
upper and lower sums on a fixed partition by  Exercise 1.3.7 , that is, supremum of a sum is less than
or equal to the sum of suprema and similarly for infima.

Proposition 5.2.5. Let f : [a,b]→ R and g : [a,b]→ R be bounded functions. Then∫ b

a
( f +g)≤

∫ b

a
f +

∫ b

a
g, and

∫ b

a
( f +g)≥

∫ b

a
f +

∫ b

a
g.

Adding up smaller numbers should give us a smaller result. That is true for an integral as well.

Proposition 5.2.6 (Monotonicity). Let f : [a,b]→R and g : [a,b]→R be bounded, and f (x)≤ g(x)
for all x ∈ [a,b]. Then ∫ b

a
f ≤

∫ b

a
g and

∫ b

a
f ≤

∫ b

a
g.

Moreover, if f and g are in R[a,b], then ∫ b

a
f ≤

∫ b

a
g.
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Proof. Let P = {x0,x1, . . . ,xn} be a partition of [a,b]. Then let

mi := inf
{

f (x) : x ∈ [xi−1,xi]
}

and m̃i := inf
{

g(x) : x ∈ [xi−1,xi]
}
.

As f (x)≤ g(x), then mi ≤ m̃i. Therefore,

L(P, f ) =
n

∑
i=1

mi∆xi ≤
n

∑
i=1

m̃i∆xi = L(P,g).

We take the supremum over all P (see  Proposition 1.3.7 ) to obtain∫ b

a
f ≤

∫ b

a
g.

Similarly, we obtain the same conclusion for the upper integrals. Finally, if f and g are Riemann
integrable all the integrals are equal, and the conclusion follows.

5.2.3 Continuous functions
Let us show that continuous functions are Riemann integrable. In fact, we will show we can even
allow some discontinuities. We start with a function continuous on the whole closed interval [a,b].

Lemma 5.2.7. If f : [a,b]→ R is a continuous function, then f ∈R[a,b].

Proof. As f is continuous on a closed bounded interval, it is uniformly continuous. Let ε > 0 be
given. Find a δ > 0 such that |x− y|< δ implies | f (x)− f (y)|< ε

b−a .
Let P = {x0,x1, . . . ,xn} be a partition of [a,b] such that ∆xi < δ for all i = 1,2, . . . ,n. For

example, take n such that b−a
n < δ and let xi := i

n(b−a)+a. Then for all x,y ∈ [xi−1,xi] we have
|x− y| ≤ ∆xi < δ and so

f (x)− f (y)≤ | f (x)− f (y)|< ε

b−a
.

As f is continuous on [xi−1,xi], it attains a maximum and a minimum on this interval. Let x be a
point where f attains the maximum and y be a point where f attains the minimum. Then f (x) = Mi
and f (y) = mi in the notation from the definition of the integral. Therefore,

Mi−mi = f (x)− f (y)<
ε

b−a
.

And so ∫ b

a
f −

∫ b

a
f ≤U(P, f )−L(P, f )

=

(
n

∑
i=1

Mi∆xi

)
−
(

n

∑
i=1

mi∆xi

)

=
n

∑
i=1

(Mi−mi)∆xi

<
ε

b−a

n

∑
i=1

∆xi

=
ε

b−a
(b−a) = ε.
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As ε > 0 was arbitrary, ∫ b

a
f =

∫ b

a
f ,

and f is Riemann integrable on [a,b].

The second lemma says that we need the function to only be “Riemann integrable inside the
interval,” as long as it is bounded. It also tells us how to compute the integral.

Lemma 5.2.8. Let f : [a,b]→ R be a bounded function, {an} and {bn} be sequences such that
a < an < bn < b for all n, with lim an = a and lim bn = b. Suppose f ∈R[an,bn] for all n. Then
f ∈R[a,b] and ∫ b

a
f = lim

n→∞

∫ bn

an

f .

Proof. Let M > 0 be a real number such that | f (x)| ≤M. As (b−a)≥ (bn−an),

−M(b−a)≤−M(bn−an)≤
∫ bn

an

f ≤M(bn−an)≤M(b−a).

Therefore, the sequence of numbers
{∫ bn

an
f
}∞

n=1 is bounded and by  Bolzano–Weierstrass  has a

convergent subsequence indexed by nk. Let us call L the limit of the subsequence
{∫ bnk

ank
f
}∞

k=1.
 Lemma 5.2.1  says that the lower and upper integral are additive and the hypothesis says that f

is integrable on [ank ,bnk ]. Therefore∫ b

a
f =

∫ ank

a
f +

∫ bnk

ank

f +
∫ b

bnk

f ≥−M(ank−a)+
∫ bnk

ank

f −M(b−bnk).

We take the limit as k goes to ∞ on the right-hand side,∫ b

a
f ≥−M ·0+L−M ·0 = L.

Next we use additivity of the upper integral,∫ b

a
f =

∫ ank

a
f +

∫ bnk

ank

f +
∫ b

bnk

f ≤M(ank−a)+
∫ bnk

ank

f +M(b−bnk).

We take the same subsequence {∫ bnk
ank

f}∞
k=1 and take the limit to obtain

∫ b

a
f ≤M ·0+L+M ·0 = L.

Thus
∫ b

a f =
∫ b

a f = L and hence f is Riemann integrable and
∫ b

a f = L. In particular, no matter what
subsequence we chose, the L is the same number.

To prove the final statement of the lemma we use  Proposition 2.3.7  . We have shown that
every convergent subsequence

{∫ bnk
ank

f
}

converges to L =
∫ b

a f . Therefore, the sequence
{∫ bn

an
f
}

is

convergent and converges to
∫ b

a f .
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We say a function f : [a,b]→ R has finitely many discontinuities if there exists a finite set
S := {x1,x2, . . . ,xn} ⊂ [a,b], and f is continuous at all points of [a,b]\S.

Theorem 5.2.9. Let f : [a,b]→ R be a bounded function with finitely many discontinuities. Then
f ∈R[a,b].

Proof. We divide the interval into finitely many intervals [ai,bi] so that f is continuous on the
interior (ai,bi). If f is continuous on (ai,bi), then it is continuous and hence integrable on [ci,di]
whenever ai < ci < di < bi. By  Lemma 5.2.8 the restriction of f to [ai,bi] is integrable. By additivity
of the integral (and  induction ) f is integrable on the union of the intervals.

5.2.4 More on integrable functions
Sometimes it is convenient (or necessary) to change certain values of a function and then integrate.
The next result says that if we change the values at finitely many points, the integral does not change.

Proposition 5.2.10. Let f : [a,b]→ R be Riemann integrable. Let g : [a,b]→ R be such that
f (x) = g(x) for all x ∈ [a,b]\S, where S is a finite set. Then g is a Riemann integrable function and∫ b

a
g =

∫ b

a
f .

Sketch of proof. Using additivity of the integral, we split up the interval [a,b] into smaller intervals
such that f (x) = g(x) holds for all x except at the endpoints (details are left to the reader).

Therefore, without loss of generality suppose f (x) = g(x) for all x ∈ (a,b). The proof follows
by  Lemma 5.2.8 , and is left as  Exercise 5.2.3 .

Finally, monotone (increasing or decreasing) functions are always Riemann integrable. The
proof is left to the reader as part of  Exercise 5.2.14 .

Proposition 5.2.11. Let f : [a,b]→ R be a monotone function. Then f ∈R[a,b].

5.2.5 Exercises
Exercise 5.2.1: Finish the proof of the first part of  Proposition 5.2.4 . Let f be in R[a,b]. Prove that − f is in
R[a,b] and ∫ b

a
− f (x) dx =−

∫ b

a
f (x) dx.

Exercise 5.2.2: Prove the second part of  Proposition 5.2.4 . Let f and g be in R[a,b]. Prove, without using
 Proposition 5.2.5 , that f +g is in R[a,b] and∫ b

a

(
f (x)+g(x)

)
dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx.

Hint: One way to do it is to use  Proposition 5.1.7 to find a single partition P such that U(P, f )−L(P, f )< ε/2

and U(P,g)−L(P,g)< ε/2.
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Exercise 5.2.3: Let f : [a,b]→ R be Riemann integrable, and g : [a,b]→ R be such that f (x) = g(x) for all
x ∈ (a,b). Prove that g is Riemann integrable and that∫ b

a
g =

∫ b

a
f .

Exercise 5.2.4: Prove the mean value theorem for integrals: if f : [a,b]→ R is continuous, then there exists
a c ∈ [a,b] such that

∫ b
a f = f (c)(b−a).

Exercise 5.2.5: Let f : [a,b]→ R be a continuous function such that f (x)≥ 0 for all x ∈ [a,b] and
∫ b

a f = 0.
Prove that f (x) = 0 for all x.

Exercise 5.2.6: Let f : [a,b]→ R be a continuous function and
∫ b

a f = 0. Prove that there exists a c ∈ [a,b]
such that f (c) = 0. (Compare with the previous exercise.)

Exercise 5.2.7: Let f : [a,b]→ R and g : [a,b]→ R be continuous functions such that
∫ b

a f =
∫ b

a g. Show
that there exists a c ∈ [a,b] such that f (c) = g(c).

Exercise 5.2.8: Let f ∈R[a,b]. Let α,β ,γ be arbitrary numbers in [a,b] (not necessarily ordered in any
way). Prove ∫

γ

α

f =
∫

β

α

f +
∫

γ

β

f .

Recall what
∫ b

a f means if b≤ a.

Exercise 5.2.9: Prove  Corollary 5.2.3 .

Exercise 5.2.10: Suppose f : [a,b]→ R is bounded and has finitely many discontinuities. Show that as
a function of x the expression | f (x)| is bounded with finitely many discontinuities and is thus Riemann
integrable. Then show ∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣≤ ∫ b

a
| f (x)| dx.

Exercise 5.2.11 (Hard): Show that the Thomae or popcorn function (see  Example 3.2.12 ) is Riemann
integrable. Therefore, there exists a function discontinuous at all rational numbers (a dense set) that is
Riemann integrable.

In particular, define f : [0,1]→ R by

f (x) :=

{
1/k if x = m/k where m,k ∈ N and m and k have no common divisors,
0 if x is irrational.

Show
∫ 1

0 f = 0.

If I ⊂ R is a bounded interval, then the function

ϕI(x) :=

{
1 if x ∈ I,
0 otherwise,

is called an elementary step function.

Exercise 5.2.12: Let I be an arbitrary bounded interval (you should consider all types of intervals: closed,
open, half-open) and a < b, then using only the definition of the integral show that the elementary step
function ϕI is integrable on [a,b], and find the integral in terms of a, b, and the endpoints of I.
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A function f is called a step function if it can be written as

f (x) =
n

∑
k=1

αkϕIk(x)

for some real numbers α1,α2, . . . ,αn and some bounded intervals I1, I2, . . . , In.

Exercise 5.2.13: Using  Exercise 5.2.12 , show that a step function is integrable on any interval [a,b]. Fur-
thermore, find the integral in terms of a, b, the endpoints of Ik and the αk.

Exercise 5.2.14: Let f : [a,b]→ R be a function.

a) Show that if f is increasing, then it is Riemann integrable. Hint: Use a uniform partition; each subinterval
of same length.

b) Use part a) to show that if f is decreasing, then it is Riemann integrable.

c) Suppose 

*
 h = f −g where f and g are increasing functions on [a,b]. Show that h is Riemann integrable.

Exercise 5.2.15 (Challenging): Suppose f ∈R[a,b], then the function that takes x to | f (x)| is also Riemann
integrable on [a,b]. Then show the same inequality as  Exercise 5.2.10 .

Exercise 5.2.16: Suppose f : [a,b]→ R and g : [a,b]→ R are bounded.

a) Show
∫ b

a ( f +g)≤ ∫ b
a f +

∫ b
a g and

∫ b
a ( f +g)≥ ∫ b

a f +
∫ b

a g.

b) Find example f and g where the inequality is strict. Hint: f and g should not be Riemann integrable.

Exercise 5.2.17: Suppose f : [a,b]→ R is continuous and g : R→ R is Lipschitz continuous. Define

h(x) :=
∫ b

a
g(t− x) f (t) dt.

Prove that h is Lipschitz continuous.

*Such an h is said to be of bounded variation.
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5.3 Fundamental theorem of calculus
Note: 1.5 lectures

In this chapter we discuss and prove the fundamental theorem of calculus. The entirety of
integral calculus is built upon this theorem, ergo the name. The theorem relates the seemingly
unrelated concepts of integral and derivative. It tells us how to compute the antiderivative of a
function using the integral and vice versa.

5.3.1 First form of the theorem
Theorem 5.3.1. Let F : [a,b]→R be a continuous function, differentiable on (a,b). Let f ∈R[a,b]
be such that f (x) = F ′(x) for x ∈ (a,b). Then∫ b

a
f = F(b)−F(a).

It is not hard to generalize the theorem to allow a finite number of points in [a,b] where F is not
differentiable, as long as it is continuous. This generalization is left as an exercise.

Proof. Let P = {x0,x1, . . . ,xn} be a partition of [a,b]. For each interval [xi−1,xi], use the  mean
value theorem to find a ci ∈ (xi−1,xi) such that

f (ci)∆xi = F ′(ci)(xi− xi−1) = F(xi)−F(xi−1).

See  Figure 5.5 , and notice that the area of all three shaded rectangles is F(xi+1)−F(xi−2). The
idea is that by picking small enough subintervals we prove that this area is the integral of f .

area = f (ci)∆xi

= F(xi)−F(xi−1)

area = f (ci−1)∆xi−1

= F(xi−1)−F(xi−2)

area = f (ci+1)∆xi+1

= F(xi+1)−F(xi)

xi−2 xi−1 xi xi+1

f (ci−1)

f (ci)

f (ci+1)

ci−1 ci ci+1

∆xi−1 ∆xi ∆xi+1

y = f (x) = F ′(x)

Figure 5.5: Mean value theorem on subintervals of a partition approximating area under the curve.

Using the notation from the definition of the integral, we have mi ≤ f (ci)≤Mi, and so

mi∆xi ≤ F(xi)−F(xi−1)≤Mi∆xi.
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We sum over i = 1,2, . . . ,n to get
n

∑
i=1

mi∆xi ≤
n

∑
i=1

(
F(xi)−F(xi−1)

)
≤

n

∑
i=1

Mi∆xi.

In the middle sum, all the terms except the first and last cancel and we end up with F(xn)−F(x0) =
F(b)−F(a). The sums on the left and on the right are the lower and the upper sum respectively. So

L(P, f )≤ F(b)−F(a)≤U(P, f ).

We take the supremum of L(P, f ) over all partitions P and the left inequality yields∫ b

a
f ≤ F(b)−F(a).

Similarly, taking the infimum of U(P, f ) over all partitions P yields

F(b)−F(a)≤
∫ b

a
f .

As f is Riemann integrable, we have∫ b

a
f =

∫ b

a
f ≤ F(b)−F(a)≤

∫ b

a
f =

∫ b

a
f .

The inequalities must be equalities and we are done.

The theorem is used to compute integrals. Suppose we know that the function f (x) is a derivative
of some other function F(x), then we can find an explicit expression for

∫ b
a f .

Example 5.3.2: Suppose we are trying to compute∫ 1

0
x2 dx.

We notice x2 is the derivative of x3

3 . We use the fundamental theorem to write∫ 1

0
x2 dx =

13

3
− 03

3
=

1
3
.

5.3.2 Second form of the theorem
The second form of the fundamental theorem gives us a way to solve the differential equation
F ′(x) = f (x), where f is a known function and we are trying to find an F that satisfies the equation.

Theorem 5.3.3. Let f : [a,b]→ R be a Riemann integrable function. Define

F(x) :=
∫ x

a
f .

First, F is continuous on [a,b]. Second, if f is continuous at c ∈ [a,b], then F is differentiable at c
and F ′(c) = f (c).
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Proof. As f is bounded, there is an M > 0 such that | f (x)| ≤M for all x∈ [a,b]. Suppose x,y∈ [a,b]
with x > y. Then

|F(x)−F(y)|=
∣∣∣∣∫ x

a
f −

∫ y

a
f
∣∣∣∣= ∣∣∣∣∫ x

y
f
∣∣∣∣≤M |x− y| .

By symmetry, the same also holds if x < y. So F is Lipschitz continuous and hence continuous.
Now suppose f is continuous at c. Let ε > 0 be given. Let δ > 0 be such that for x ∈ [a,b],

|x− c|< δ implies | f (x)− f (c)|< ε . In particular, for such x we have

f (c)− ε < f (x)< f (c)+ ε.

Thus if x > c, then (
f (c)− ε

)
(x− c)≤

∫ x

c
f ≤

(
f (c)+ ε

)
(x− c).

When c > x, then the inequalities are reversed. Therefore, assuming c 6= x we get

f (c)− ε ≤
∫ x

c f
x− c

≤ f (c)+ ε.

As
F(x)−F(c)

x− c
=

∫ x
a f − ∫ c

a f
x− c

=

∫ x
c f

x− c
,

we have ∣∣∣∣F(x)−F(c)
x− c

− f (c)
∣∣∣∣≤ ε.

The result follows. It is left to the reader to see why is it OK that we just have a non-strict
inequality.

Of course, if f is continuous on [a,b], then it is automatically Riemann integrable, F is differen-
tiable on all of [a,b] and F ′(x) = f (x) for all x ∈ [a,b].

Remark 5.3.4. The second form of the fundamental theorem of calculus still holds if we let d ∈ [a,b]
and define

F(x) :=
∫ x

d
f .

That is, we can use any point of [a,b] as our base point. The proof is left as an exercise.

Let us look at what a simple discontinuity can do. Take f (x) :=−1 if x < 0, and f (x) := 1 if
x≥ 0. Let F(x) :=

∫ x
0 f . It is not difficult to see that F(x) = |x|. Notice that f is discontinuous at 0

and F is not differentiable at 0. However, the converse in the theorem does not hold. Let g(x) := 0
if x 6= 0, and g(0) := 1. Letting G(x) :=

∫ x
0 g, we find that G(x) = 0 for all x. So g is discontinuous

at 0, but G′(0) exists and is equal to 0.
A common misunderstanding of the integral for calculus students is to think of integrals whose

solution cannot be given in closed-form as somehow deficient. This is not the case. Most integrals
we write down are not computable in closed-form. Even some integrals that we consider in closed-
form are not really such. We define the natural logarithm as the antiderivative of 1/x such that
ln1 = 0:

lnx :=
∫ x

1

1
s

ds.
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So for example, how does a computer find the value of lnx? One way to do it is to numerically
approximate this integral. Morally, we did not really “simplify”

∫ x
1 1/s ds by writing down lnx. We

simply gave the integral a name. If we require numerical answers, it is possible we end up doing the
calculation by approximating an integral anyway. In the next section, we even define the exponential
using the logarithm, which we define in terms of the integral.

Another common function defined by an integral that cannot be evaluated symbolically in terms
of elementary functions is the erf function, defined as

erf(x) :=
2√
π

∫ x

0
e−s2

ds.

This function comes up often in applied mathematics. It is simply the antiderivative of (2/
√

π)e−x2

that is zero at zero. The second form of the fundamental theorem tells us that we can write the
function as an integral. If we wish to compute any particular value, we numerically approximate the
integral.

5.3.3 Change of variables
A theorem often used in calculus to solve integrals is the change of variables theorem, you may
have called it u-substitution. Let us prove it now. Recall a function is continuously differentiable if
it is differentiable and the derivative is continuous.

Theorem 5.3.5 (Change of variables). Let g : [a,b]→ R be a continuously differentiable function,
let f : [c,d]→ R be continuous, and suppose g

(
[a,b]

)
⊂ [c,d]. Then∫ b

a
f
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
f (s) ds.

Proof. As g, g′, and f are continuous, we know f
(
g(x)

)
g′(x) is a continuous function on [a,b],

therefore it is Riemann integrable. Similarly, f is integrable on any subinterval of [c,d].
Define

F(y) :=
∫ y

g(a)
f (s) ds.

By the second form of the fundamental theorem of calculus (see  Remark 5.3.4 and  Exercise 5.3.4 )
F is a differentiable function and F ′(y) = f (y). We apply the chain rule and write(

F ◦g
)′
(x) = F ′

(
g(x)

)
g′(x) = f

(
g(x)

)
g′(x).

We note that F
(
g(a)

)
= 0 and we use the first form of the fundamental theorem to obtain

∫ g(b)

g(a)
f (s) ds = F

(
g(b)

)
= F

(
g(b)

)
−F

(
g(a)

)
=
∫ b

a

(
F ◦g

)′
(x) dx =

∫ b

a
f
(
g(x)

)
g′(x) dx.

The change of variables theorem is often used to solve integrals by changing them to integrals
that we know or that we can solve using the fundamental theorem of calculus.
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Example 5.3.6: From an exercise, we know that the derivative of sin(x) is cos(x). Therefore, we
solve ∫ √

π

0
xcos(x2) dx =

∫
π

0

cos(s)
2

ds =
1
2

∫
π

0
cos(s) ds =

sin(π)− sin(0)
2

= 0.

However, beware that we must satisfy the hypotheses of the theorem. The following example
demonstrates why we should not just move symbols around mindlessly. We must be careful that
those symbols really make sense.

Example 5.3.7: Suppose we write down ∫ 1

−1

ln |x|
x

dx.

It may be tempting to take g(x) := ln |x|. Then take g′(x) = 1/x and try to write

∫ g(1)

g(−1)
s ds =

∫ 0

0
s ds = 0.

This “solution” is incorrect, and it does not say that we can solve the given integral. First problem
is that ln|x|

x is not continuous on [−1,1]. It is not defined at 0, and cannot be made continuous by
defining a value at 0. Second, ln|x|

x is not even Riemann integrable on [−1,1] (it is unbounded). The
integral we wrote down simply does not make sense. Finally, g is not continuous on [−1,1], let
alone continuously differentiable.

5.3.4 Exercises

Exercise 5.3.1: Compute
d
dx

(∫ x

−x
es2

ds
)

.

Exercise 5.3.2: Compute
d
dx

(∫ x2

0
sin(s2) ds

)
.

Exercise 5.3.3: Suppose F : [a,b]→ R is continuous and differentiable on [a,b]\S, where S is a finite set.
Suppose there exists an f ∈R[a,b] such that f (x) = F ′(x) for x ∈ [a,b]\S. Show that

∫ b
a f = F(b)−F(a).

Exercise 5.3.4: Let f : [a,b]→ R be a continuous function. Let c ∈ [a,b] be arbitrary. Define

F(x) :=
∫ x

c
f .

Prove that F is differentiable and that F ′(x) = f (x) for all x ∈ [a,b].

Exercise 5.3.5: Prove integration by parts. That is, suppose F and G are continuously differentiable functions
on [a,b]. Then prove

∫ b

a
F(x)G′(x) dx = F(b)G(b)−F(a)G(a)−

∫ b

a
F ′(x)G(x) dx.
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Exercise 5.3.6: Suppose F and G are continuously  

*
 differentiable functions defined on [a,b] such that

F ′(x) = G′(x) for all x ∈ [a,b]. Using the fundamental theorem of calculus, show that F and G differ by a
constant. That is, show that there exists a C ∈ R such that F(x)−G(x) =C.

The next exercise shows how we can use the integral to “smooth out” a non-differentiable function.

Exercise 5.3.7: Let f : [a,b]→ R be a continuous function. Let ε > 0 be a constant. For x ∈ [a+ ε,b− ε],
define

g(x) :=
1

2ε

∫ x+ε

x−ε

f .

a) Show that g is differentiable and find the derivative.

b) Let f be differentiable and fix x ∈ (a,b) (let ε be small enough). What happens to g′(x) as ε gets smaller?

c) Find g for f (x) := |x|, ε = 1 (you can assume [a,b] is large enough).

Exercise 5.3.8: Suppose f : [a,b]→ R is continuous and
∫ x

a f =
∫ b

x f for all x ∈ [a,b]. Show that f (x) = 0
for all x ∈ [a,b].

Exercise 5.3.9: Suppose f : [a,b]→ R is continuous and
∫ x

a f = 0 for all rational x in [a,b]. Show that
f (x) = 0 for all x ∈ [a,b].

Exercise 5.3.10: A function f is an odd function if f (x)=− f (−x), and f is an even function if f (x)= f (−x).
Let a > 0. Assume f is continuous. Prove:

a) If f is odd, then
∫ a
−a f = 0.

b) If f is even, then
∫ a
−a f = 2

∫ a
0 f .

Exercise 5.3.11:

a) Show that f (x) := sin(1/x) is integrable on any interval (you can define f (0) to be anything).

b) Compute
∫ 1
−1 sin(1/x) dx. (Mind the discontinuity.)

Exercise 5.3.12 (uses  §3.6 ):

a) Suppose f : [a,b]→ R is increasing, by  Proposition 5.2.11 , f is Riemann integrable. Suppose f has a
discontinuity at c ∈ (a,b), show that F(x) :=

∫ x
a f is not differentiable at c.

b) In  Exercise 3.6.11 , you constructed an increasing function f : [0,1]→ R that is discontinuous at every
x ∈ [0,1]∩Q. Use this f to construct a function F(x) that is continuous on [0,1], but not differentiable at
every x ∈ [0,1]∩Q.

*Compare this hypothesis to  Exercise 4.2.8 .

185



186 CHAPTER 5. THE RIEMANN INTEGRAL

5.4 The logarithm and the exponential
Note: 1 lecture (optional, requires the optional sections  §3.5 ,  §3.6 ,  §4.4 )

We now have the tools required to properly define the exponential and the logarithm that you
know from calculus so well. We start with exponentiation. If n is a positive integer, it is obvious to
define

xn := x · x · · · · · x︸ ︷︷ ︸
n times

.

It makes sense to define x0 := 1. For negative integers, let x−n := 1/xn. If x > 0, define x1/n as the
unique positive nth root. Finally, for a rational number n/m (in lowest terms), define

xn/m :=
(
x1/m)n

.

It is not difficult to show we get the same number no matter what representation of n/m we use, so
we do not need to use lowest terms.

However, what do we mean by
√

2
√

2
? Or xy in general? In particular, what is ex for all x? And

how do we solve y = ex for x? This section answers these questions and more.

5.4.1 The logarithm
It is convenient to define the logarithm first. Let us show that a unique function with the right
properties exists, and only then will we call it the logarithm.

Proposition 5.4.1. There exists a unique function L : (0,∞)→ R such that

(i) L(1) = 0.

(ii) L is differentiable and L′(x) = 1/x.

(iii) L is strictly increasing, bijective, and

lim
x→0

L(x) =−∞, and lim
x→∞

L(x) = ∞.

(iv) L(xy) = L(x)+L(y) for all x,y ∈ (0,∞).

(v) If q is a rational number and x > 0, then L(xq) = qL(x).

Proof. To prove existence, we define a candidate and show it satisfies all the properties. Let

L(x) :=
∫ x

1

1
t

dt.

Obviously,  (i) holds. Property  (ii) holds via the second form of the fundamental theorem of
calculus ( Theorem 5.3.3 ).

To prove property  (iv) , we change variables u = yt to obtain

L(x) =
∫ x

1

1
t

dt =
∫ xy

y

1
u

du =
∫ xy

1

1
u

du−
∫ y

1

1
u

du = L(xy)−L(y).
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Let us prove  (iii) . Property  (ii) together with the fact that L′(x) = 1/x > 0 for x > 0, implies that
L is strictly increasing and hence one-to-one. Let us show L is onto. As 1/t ≥ 1/2 when t ∈ [1,2],

L(2) =
∫ 2

1

1
t

dt ≥ 1/2.

By induction,  (iv) implies that for n ∈ N

L(2n) = L(2)+L(2)+ · · ·+L(2) = nL(2).

Given any y > 0, by the  Archimedean property  of the real numbers (notice L(2)> 0), there is an
n ∈ N such that L(2n) > y. By the  intermediate value theorem  there is an x1 ∈ (1,2n) such that
L(x1) = y. We get (0,∞) is in the image of L. As L is increasing, L(x)> y for all x > 2n, and so

lim
x→∞

L(x) = ∞.

Next 0 = L(x/x) = L(x)+L(1/x), and so L(x) =−L(1/x). Using x = 2−n, we obtain as above that L
achieves all negative numbers. And

lim
x→0

L(x) = lim
x→0
−L(1/x) = lim

x→∞
−L(x) =−∞.

In the limits, note that only x > 0 are in the domain of L.
Let us prove  (v) . Fix x > 0. As above,  (iv)  implies L(xn) = nL(x) for all n ∈ N. We already

found that L(x) =−L(1/x), so L(x−n) =−L(xn) =−nL(x). Then for m ∈ N

L(x) = L
(
(x1/m)

m)
= mL

(
x1/m).

Putting everything together for n ∈ Z and m ∈ N we have L(xn/m) = nL(x1/m) = (n/m)L(x).
Uniqueness follows using properties  (i) and  (ii) . Via the first form of the fundamental theorem

of calculus ( Theorem 5.3.1 ),

L(x) =
∫ x

1

1
t

dt

is the unique function such that L(1) = 0 and L′(x) = 1/x.

Having proved that there is a unique function with these properties, we simply define the
logarithm or sometimes called the natural logarithm:

ln(x) := L(x).

Mathematicians usually write log(x) instead of ln(x), which is more familiar to calculus students.
For all practical purposes, there is only one logarithm: the natural logarithm. See  Exercise 5.4.2 .
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5.4.2 The exponential
Just as with the logarithm we define the exponential via a list of properties.

Proposition 5.4.2. There exists a unique function E : R→ (0,∞) such that

(i) E(0) = 1.

(ii) E is differentiable and E ′(x) = E(x).

(iii) E is strictly increasing, bijective, and

lim
x→−∞

E(x) = 0, and lim
x→∞

E(x) = ∞.

(iv) E(x+ y) = E(x)E(y) for all x,y ∈ R.

(v) If q ∈Q, then E(qx) = E(x)q.

Proof. Again, we prove existence of such a function by defining a candidate and proving that it
satisfies all the properties. The L = ln defined above is invertible. Let E be the inverse function of L.
Property  (i) is immediate.

Property  (ii) follows via the inverse function theorem, in particular  Lemma 4.4.1 : L satisfies all
the hypotheses of the lemma, and hence

E ′(x) =
1

L′
(
E(x)

) = E(x).

Let us look at property  (iii) . The function E is strictly increasing since E ′(x) = E(x)> 0. As E
is the inverse of L, it must also be bijective. To find the limits, we use that E is strictly increasing
and onto (0,∞). For every M > 0, there is an x0 such that E(x0) = M and E(x)≥M for all x≥ x0.
Similarly, for every ε > 0, there is an x0 such that E(x0) = ε and E(x)< ε for all x < x0. Therefore,

lim
n→−∞

E(x) = 0, and lim
n→∞

E(x) = ∞.

To prove property  (iv) , we use the corresponding property for the logarithm. Take x,y ∈ R. As
L is bijective, find a and b such that x = L(a) and y = L(b). Then

E(x+ y) = E
(
L(a)+L(b)

)
= E

(
L(ab)

)
= ab = E(x)E(y).

Property  (v) also follows from the corresponding property of L. Given x ∈ R, let a be such that
x = L(a) and

E(qx) = E
(
qL(a)

)
= E

(
L(aq)

)
= aq = E(x)q.

Uniqueness follows from  (i) and  (ii) . Let E and F be two functions satisfying  (i) and  (ii) .

d
dx

(
F(x)E(−x)

)
= F ′(x)E(−x)−E ′(−x)F(x) = F(x)E(−x)−E(−x)F(x) = 0.

Therefore, by  Proposition 4.2.6  , F(x)E(−x) = F(0)E(−0) = 1 for all x ∈ R. Next, 1 = E(0) =
E(x− x) = E(x)E(−x). Then

0 = 1−1 = F(x)E(−x)−E(x)E(−x) =
(
F(x)−E(x)

)
E(−x).
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Finally, E(−x) 6= 0 

*
 for all x ∈ R. So F(x)−E(x) = 0 for all x, and we are done.

Having proved E is unique, we define the exponential function as

exp(x) := E(x).

If y ∈Q and x > 0, then

xy = exp
(
ln(xy)

)
= exp

(
y ln(x)

)
.

We can now make sense of exponentiation xy for arbitrary y ∈ R; if x > 0 and y is irrational, define

xy := exp
(
y ln(x)

)
.

As exp is continuous, then xy is a continuous function of y. Therefore, we would obtain the same
result had we taken a sequence of rational numbers {yn} approaching y and defined xy = lim xyn .

Define the number e, sometimes called Euler’s number or the base of the natural logarithm, as

e := exp(1).

Let us justify the notation ex for exp(x):

ex = exp
(
x ln(e)

)
= exp(x).

The properties of the logarithm and the exponential extend to irrational powers. The proof is
immediate.

Proposition 5.4.3. Let x,y ∈ R.

(i) exp(xy) =
(
exp(x)

)y.

(ii) If x > 0, then ln(xy) = y ln(x).

Remark 5.4.4. There are other equivalent ways to define the exponential and the logarithm. A
common way is to define E as the solution to the differential equation E ′(x) = E(x), E(0) = 1. See

 Example 6.3.3  , for a sketch of that approach. Yet another approach is to define the exponential
function by power series, see  Example 6.2.14 .

Remark 5.4.5. We proved the uniqueness of the functions L and E from just the properties L(1) = 0,
L′(x) = 1/x and the equivalent condition for the exponential E ′(x) = E(x), E(0) = 1. Existence
also follows from just these properties. Alternatively, uniqueness also follows from the laws of
exponents, see the exercises.

*E is a function into (0,∞) after all. However, E(−x) 6= 0 also follows from E(x)E(−x) = 1. Therefore, we can
prove uniqueness of E given  (i) and  (ii) , even for functions E : R→ R.
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5.4.3 Exercises
Exercise 5.4.1: Let y be any real number and b > 0. Define f : (0,∞)→ R and g : R→ R as, f (x) := xy

and g(x) := bx. Show that f and g are differentiable and find their derivative.

Exercise 5.4.2: Let b > 0, b 6= 1 be given.

a) Show that for every y > 0, there exists a unique number x such that y = bx. Define the logarithm base b,
logb : (0,∞)→ R, by logb(y) := x.

b) Show that logb(x) =
ln(x)
ln(b) .

c) Prove that if c > 0, c 6= 1, then logb(x) =
logc(x)
logc(b)

.

d) Prove logb(xy) = logb(x)+ logb(y), and logb(x
y) = y logb(x).

Exercise 5.4.3 (requires  §4.3 ): Use  Taylor’s theorem  to study the remainder term and show that for all x ∈R

ex =
∞

∑
n=0

xn

n!
.

Hint: Do not differentiate the series term by term (unless you would prove that it works).

Exercise 5.4.4: Use the geometric sum formula to show (for t 6=−1)

1− t + t2−·· ·+(−1)ntn =
1

1+ t
− (−1)n+1tn+1

1+ t
.

Using this fact show

ln(1+ x) =
∞

∑
n=1

(−1)n+1xn

n

for all x ∈ (−1,1] (note that x = 1 is included). Finally, find the limit of the alternating harmonic series
∞

∑
n=1

(−1)n+1

n
= 1− 1/2+ 1/3− 1/4+ · · ·

Exercise 5.4.5: Show
ex = lim

n→∞

(
1+

x
n

)n
.

Hint: Take the logarithm.
Note: The expression

(
1+ x

n

)n arises in compound interest calculations. It is the amount of money in a bank
account after 1 year if 1 dollar was deposited initially at interest x and the interest was compounded n times
during the year. The exponential ex is the result of continuous compounding.

Exercise 5.4.6:

a) Prove that for n ∈ N,
n

∑
k=2

1
k
≤ ln(n)≤

n−1

∑
k=1

1
k
.

b) Prove that the limit

γ := lim
n→∞

((
n

∑
k=1

1
k

)
− ln(n)

)
exists. This constant is known as the Euler–Mascheroni constant 

*
 . It is not known if this constant is

rational or not. It is approximately γ ≈ 0.5772.
*Named for the Swiss mathematician  Leonhard Paul Euler (1707–1783) and the Italian mathematician  Lorenzo

Mascheroni (1750–1800).
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Exercise 5.4.7: Show

lim
x→∞

ln(x)
x

= 0.

Exercise 5.4.8: Show that ex is convex, in other words, show that if a≤ x≤ b, then ex ≤ ea b−x
b−a + eb x−a

b−a .

Exercise 5.4.9: Using the logarithm find
lim
n→∞

n1/n.

Exercise 5.4.10: Show that E(x) = ex is the unique continuous function such that E(x+ y) = E(x)E(y) and
E(1) = e. Similarly, prove that L(x) = ln(x) is the unique continuous function defined on positive x such that
L(xy) = L(x)+L(y) and L(e) = 1.

Exercise 5.4.11 (requires  §4.3 ): Since (ex)′ = ex, it is easy to see that ex is infinitely differentiable (has
derivatives of all orders). Define the function f : R→ R.

f (x) :=

{
e−1/x if x > 0,
0 if x≤ 0.

a) Prove that for any m ∈ N,

lim
x→0+

e−1/x

xm = 0.

b) Prove that f is infinitely differentiable.

c) Compute the Taylor series for f at the origin, that is,

∞

∑
k=0

f (k)(0)
k!

xk.

Show that it converges, but show that it does not converge to f (x) for any x > 0.
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5.5 Improper integrals
Note: 2–3 lectures (optional section, can safely be skipped, requires the optional  §3.5 )

Often it is necessary to integrate over the entire real line, or an unbounded interval of the form
[a,∞) or (−∞,b]. We may also wish to integrate unbounded functions defined on a open bounded
interval (a,b). For such intervals or functions, the Riemann integral is not defined, but we will
write down the integral anyway in the spirit of  Lemma 5.2.8 . These integrals are called improper
integrals and are limits of integrals rather than integrals themselves.

Definition 5.5.1. Suppose f : [a,b)→ R is a function (not necessarily bounded) that is Riemann
integrable on [a,c] for all c < b. We define∫ b

a
f := lim

c→b−

∫ c

a
f ,

if the limit exists.
Suppose f : [a,∞)→ R is a function such that f is Riemann integrable on [a,c] for all c < ∞.

We define ∫ ∞

a
f := lim

c→∞

∫ c

a
f ,

if the limit exists.
If the limit exists, we say the improper integral converges. If the limit does not exist, we say the

improper integral diverges.
We similarly define improper integrals for the left-hand endpoint, we leave this to the reader.

For a finite endpoint b, if f is bounded, then  Lemma 5.2.8  says that we defined nothing new.
What is new is that we can apply this definition to unbounded functions. The following set of
examples is so useful that we state it as a proposition.

Proposition 5.5.2 (p-test for integrals). The improper integral∫ ∞

1

1
xp dx

converges to 1
p−1 if p > 1 and diverges if 0 < p≤ 1.

The improper integral ∫ 1

0

1
xp dx

converges to 1
1−p if 0 < p < 1 and diverges if p≥ 1.

Proof. The proof follows by application of the  fundamental theorem of calculus  . Let us do the
proof for p > 1 for the infinite right endpoint and leave the rest to the reader. Hint: You should
handle p = 1 separately.

Suppose p > 1. Then using the fundamental theorem,∫ b

1

1
xp dx =

∫ b

1
x−p dx =

b−p+1

−p+1
− 1−p+1

−p+1
=

−1
(p−1)bp−1 +

1
p−1

.

As p > 1, then p− 1 > 0. Take the limit as b→ ∞ to obtain that 1
bp−1 goes to 0. The result

follows.
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We state the following proposition on “tails” for just one type of improper integral, though the
proof is straight forward and the same for other types of improper integrals.

Proposition 5.5.3. Let f : [a,∞)→R be a function that is Riemann integrable on [a,b] for all b > a.
Given any b > a,

∫ ∞
b f converges if and only if

∫ ∞
a f converges, in which case∫ ∞

a
f =

∫ b

a
f +

∫ ∞

b
f .

Proof. Let c > b. Then ∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Taking the limit c→ ∞ finishes the proof.

Nonnegative functions are easier to work with as the following proposition demonstrates. The
exercises will show that this proposition holds only for nonnegative functions. Analogues of this
proposition exist for all the other types of improper limits and are left to the student.

Proposition 5.5.4. Suppose f : [a,∞)→ R is nonnegative ( f (x) ≥ 0 for all x) and such that f is
Riemann integrable on [a,b] for all b > a.

(i) ∫ ∞

a
f = sup

{∫ x

a
f : x≥ a

}
.

(ii) Suppose {xn} is a sequence with lim xn = ∞. Then
∫ ∞

a f converges if and only if lim
∫ xn

a f
exists, in which case ∫ ∞

a
f = lim

n→∞

∫ xn

a
f .

In the first item we allow for the value of ∞ in the supremum indicating that the integral diverges
to infinity.

Proof. We start with the first item. As f is nonnegative,
∫ x

a f is increasing as a function of x. If the
supremum is infinite, then for every M ∈ R we find N such that

∫ N
a f ≥M. As

∫ x
a f is increasing,∫ x

a f ≥M for all x≥ N. So
∫ ∞

a f diverges to infinity.
Next suppose the supremum is finite, say A := sup{∫ x

a f : x≥ a}. For every ε > 0, we find an
N such that A− ∫ N

a f < ε . As
∫ x

a f is increasing, then A− ∫ x
a f < ε for all x ≥ N and hence

∫ ∞
a f

converges to A.
Let us look at the second item. If

∫ ∞
a f converges, then every sequence {xn} going to infinity

works. The trick is proving the other direction. Suppose {xn} is such that lim xn = ∞ and

lim
n→∞

∫ xn

a
f = A

converges. Given ε > 0, pick N such that for all n≥ N we have A− ε <
∫ xn

a f < A+ ε . Because∫ x
a f is increasing as a function of x, we have that for all x≥ xN

A− ε <
∫ xN

a
f ≤

∫ x

a
f .
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As {xn} goes to ∞, then for any given x, there is an xm such that m≥ N and x≤ xm. Then∫ x

a
f ≤

∫ xm

a
f < A+ ε.

In particular, for all x≥ xN we have |∫ x
a f −A|< ε .

Proposition 5.5.5 (Comparison test for improper integrals). Let f : [a,∞)→ R and g : [a,∞)→ R
be functions that are Riemann integrable on [a,b] for all b > a. Suppose that for all x≥ a we have

| f (x)| ≤ g(x).

(i) If
∫ ∞

a g converges, then
∫ ∞

a f converges, and in this case |∫ ∞
a f | ≤ ∫ ∞

a g.

(ii) If
∫ ∞

a f diverges, then
∫ ∞

a g diverges.

Proof. Let us start with the first item. For any b and c, such that a ≤ b ≤ c, we have −g(x) ≤
f (x)≤ g(x), and so ∫ c

b
−g≤

∫ c

b
f ≤

∫ c

b
g.

In other words, |∫ c
b f | ≤ ∫ c

b g.
Let ε > 0 be given. Because of  Proposition 5.5.3 ,∫ ∞

a
g =

∫ b

a
g+

∫ ∞

b
g.

As
∫ b

a g goes to
∫ ∞

a g as b goes to infinity,
∫ ∞

b g goes to 0 as b goes to infinity. Choose B such that∫ ∞

B
g < ε.

As g is nonnegative, if B≤ b < c, then
∫ c

b g < ε as well. Let {xn} be a sequence going to infinity.
Let M be such that xn ≥ B for all n≥M. Take n,m≥M, with xn ≤ xm,∣∣∣∣∫ xm

a
f −

∫ xn

a
f
∣∣∣∣= ∣∣∣∣∫ xm

xn

f
∣∣∣∣≤ ∫ xm

xn

g < ε.

Therefore, the sequence {∫ xn
a f}∞

n=1 is Cauchy and hence converges.
We need to show that the limit is unique. Suppose {xn} is a sequence converging to infinity

such that {∫ xn
a f} converges to L1, and {yn} is a sequence converging to infinity is such that {∫ yn

a f}
converges to L2. Then there must be some n such that |∫ xn

a f −L1|< ε and |∫ yn
a f −L2|< ε . We can

also suppose xn ≥ B and yn ≥ B. Then

|L1−L2| ≤
∣∣∣∣L1−

∫ xn

a
f
∣∣∣∣+ ∣∣∣∣∫ xn

a
f −

∫ yn

a
f
∣∣∣∣+ ∣∣∣∣∫ yn

a
f −L2

∣∣∣∣< ε +

∣∣∣∣∫ yn

xn

f
∣∣∣∣+ ε < 3ε.

As ε > 0 was arbitrary, L1 = L2, and hence
∫ ∞

a f converges. Above we have shown that |∫ c
a f | ≤ ∫ c

a g
for all c > a. By taking the limit c→ ∞, the first item is proved.

The second item is simply a contrapositive of the first item.
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Example 5.5.6: The improper integral∫ ∞

0

sin(x2)(x+2)
x3 +1

dx

converges.
Proof: Observe we simply need to show that the integral converges when going from 1 to infinity.

For x≥ 1 we obtain ∣∣∣∣sin(x2)(x+2)
x3 +1

∣∣∣∣≤ x+2
x3 +1

≤ x+2
x3 ≤ x+2x

x3 ≤ 3
x2 .

Then ∫ ∞

1

3
x2 dx = 3

∫ ∞

1

1
x2 dx = 3.

So using the comparison test and the tail test, the original integral converges.

Example 5.5.7: You should be careful when doing formal manipulations with improper integrals.
The integral ∫ ∞

2

2
x2−1

dx

converges via the comparison test using 1/x2 again. However, if you succumb to the temptation to
write

2
x2−1

=
1

x−1
− 1

x+1
and try to integrate each part separately, you will not succeed. It is not true that you can split the
improper integral in two; you cannot split the limit.∫ ∞

2

2
x2−1

dx = lim
b→∞

∫ b

2

2
x2−1

dx

= lim
b→∞

(∫ b

2

1
x−1

dx−
∫ b

2

1
x+1

dx
)

6=
∫ ∞

2

1
x−1

dx−
∫ ∞

2

1
x+1

dx.

The last line in the computation does not even make sense. Both of the integrals there diverge to
infinity, since we can apply the comparison test appropriately with 1/x. We get ∞−∞.

Now suppose we need to take limits at both endpoints.

Definition 5.5.8. Suppose f : (a,b)→ R is a function that is Riemann integrable on [c,d] for all c,
d such that a < c < d < b, then we define∫ b

a
f := lim

c→a+
lim

d→b−

∫ d

c
f ,

if the limits exist.
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Suppose f : R→ R is a function such that f is Riemann integrable on all bounded intervals
[a,b]. Then we define ∫ ∞

−∞
f := lim

c→−∞
lim
d→∞

∫ d

c
f ,

if the limits exist.
We similarly define improper integrals with one infinite and one finite improper endpoint, we

leave this to the reader.

One ought to always be careful about double limits. The definition given above says that we
first take the limit as d goes to b or ∞ for a fixed c, and then we take the limit in c. We will have to
prove that in this case it does not matter which limit we compute first.

Example 5.5.9: Let us see an example:∫ ∞

−∞

1
1+ x2 dx = lim

a→−∞
lim
b→∞

∫ b

a

1
1+ x2 dx = lim

a→−∞
lim
b→∞

(
arctan(b)− arctan(a)

)
= π.

In the definition the order of the limits can always be switched if they exist. Let us prove this
fact only for the infinite limits.

Proposition 5.5.10. If f : R→ R is a function integrable on every bounded interval [a,b]. Then

lim
a→−∞

lim
b→∞

∫ b

a
f converges if and only if lim

b→∞
lim

a→−∞

∫ b

a
f converges,

in which case the two expressions are equal. If either of the expressions converges, then the improper
integral converges and

lim
a→∞

∫ a

−a
f =

∫ ∞

−∞
f .

Proof. Without loss of generality assume a < 0 and b > 0. Suppose the first expression converges.
Then

lim
a→−∞

lim
b→∞

∫ b

a
f = lim

a→−∞
lim
b→∞

(∫ 0

a
f +

∫ b

0
f
)
=

(
lim

a→−∞

∫ 0

a
f
)
+

(
lim
b→∞

∫ b

0
f
)

= lim
b→∞

((
lim

a→−∞

∫ 0

a
f
)
+
∫ b

0
f
)
= lim

b→∞
lim

a→−∞

(∫ 0

a
f +

∫ b

0
f
)
.

Similar computation shows the other direction. Therefore, if either expression converges, then the
improper integral converges and∫ ∞

−∞
f = lim

a→−∞
lim
b→∞

∫ b

a
f =

(
lim

a→−∞

∫ 0

a
f
)
+

(
lim
b→∞

∫ b

0
f
)

=

(
lim
a→∞

∫ 0

−a
f
)
+

(
lim
a→∞

∫ a

0
f
)
= lim

a→∞

(∫ 0

−a
f +

∫ a

0
f
)
= lim

a→∞

∫ a

−a
f .
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Example 5.5.11: On the other hand, you must be careful to take the limits independently before
you know convergence. Let f (x) = x

|x| for x 6= 0 and f (0) = 0. If a < 0 and b > 0, then

∫ b

a
f =

∫ 0

a
f +

∫ b

0
f = a+b.

For any fixed a < 0 the limit as b→ ∞ is infinite, so even the first limit does not exist, and hence
the improper integral

∫ ∞
−∞ f does not converge. On the other hand if a > 0, then∫ a

−a
f = (−a)+a = 0.

Therefore,

lim
a→∞

∫ a

−a
f = 0.

Example 5.5.12: An example to keep in mind for improper integrals is the so-called sinc function 

*
 .

This function comes up quite often in both pure and applied mathematics. Define

sinc(x) =

{
sin(x)

x if x 6= 0,
1 if x = 0.

−4π −2π 4π2π

1
2

1

− 1
4

Figure 5.6: The sinc function.

It is not difficult to show that the sinc function is continuous at zero, but that is not important
right now. What is important is that∫ ∞

−∞
sinc(x) dx = π, while

∫ ∞

−∞
|sinc(x)| dx = ∞.

The integral of the sinc function is a continuous analogue of the alternating harmonic series ∑ (−1)n/n,
while the absolute value is like the regular harmonic series ∑ 1/n. In particular, the fact that the
integral converges must be done directly rather than using comparison test.

*Shortened from Latin: sinus cardinalis
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We will not prove the first statement exactly. Let us simply prove that the integral of the sinc
function converges, but we will not worry about the exact limit. Because sin(−x)

−x = sin(x)
x , it is enough

to show that ∫ ∞

2π

sin(x)
x

dx

converges. We also avoid x = 0 this way to make our life simpler.
For any n ∈ N, we have that for x ∈ [π2n,π(2n+1)]

sin(x)
π(2n+1)

≤ sin(x)
x
≤ sin(x)

π2n
,

as sin(x)≥ 0. On x ∈ [π(2n+1),π(2n+2)]

sin(x)
π(2n+1)

≤ sin(x)
x
≤ sin(x)

π(2n+2)
,

as sin(x)≤ 0.
Via the fundamental theorem of calculus,

2
π(2n+1)

=
∫

π(2n+1)

π2n

sin(x)
π(2n+1)

dx≤
∫

π(2n+1)

π2n

sin(x)
x

dx≤
∫

π(2n+1)

π2n

sin(x)
π2n

dx =
1

πn
.

Similarly,
−2

π(2n+1)
≤
∫

π(2n+2)

π(2n+1)

sin(x)
x

dx≤ −1
π(n+1)

.

Adding the two together we find

0 =
2

π(2n+1)
+

−2
π(2n+1)

≤
∫ 2π(n+1)

2πn

sin(x)
x

dx≤ 1
πn

+
−1

π(n+1)
=

1
πn(n+1)

.

See  Figure 5.7 .

sin(x)
x

sin(x)
π(2n+1)

sin(x)
π2n

sin(x)
x

sin(x)
π(2n+1)

sin(x)
π(2n+2)

π2n

π(2n+1) π(2n+2)

+

−

Figure 5.7: Bound of
∫ 2π(n+1)

2πn
sin(x)

x dx using the shaded integral (signed area 1
πn +

−1
π(n+1) ).
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For k ∈ N, ∫ 2kπ

2π

sin(x)
x

dx =
k−1

∑
n=1

∫ 2π(n+1)

2πn

sin(x)
x

dx≤
k−1

∑
n=1

1
πn(n+1)

.

We find the partial sums of a series with positive terms. The series converges as ∑ 1
πn(n+1) is a

convergent series. Thus as a sequence,

lim
k→∞

∫ 2kπ

2π

sin(x)
x

dx = L≤
∞

∑
n=1

1
πn(n+1)

< ∞.

Let M > 2π be arbitrary, and let k ∈N be the largest integer such that 2kπ ≤M. For x∈ [2kπ,M]

we have −1
2kπ
≤ sin(x)

x ≤ 1
2kπ

, and so∣∣∣∣∫ M

2kπ

sin(x)
x

dx
∣∣∣∣≤ M−2kπ

2kπ
≤ 1

k
.

As k is the largest k such that 2kπ ≤M, then as M ∈ R goes to infinity, so does k ∈ N.
Then ∫ M

2π

sin(x)
x

dx =
∫ 2kπ

2π

sin(x)
x

dx+
∫ M

2kπ

sin(x)
x

dx.

As M goes to infinity, the first term on the right hand side goes to L, and the second term on the
right hand side goes to zero. Hence ∫ ∞

2π

sin(x)
x

dx = L.

The double sided integral of sinc also exists as noted above. We leave the other statement—that
the integral of the absolute value of the sinc function diverges—as an exercise.

5.5.1 Integral test for series
The fundamental theorem of calculus can be used in proving a series is summable and to estimate
its sum.

Proposition 5.5.13 (Integral test). Suppose f : [k,∞)→ R is a decreasing nonnegative function
where k ∈ Z. Then

∞

∑
n=k

f (n) converges if and only if
∫ ∞

k
f converges.

In this case ∫ ∞

k
f ≤

∞

∑
n=k

f (n)≤ f (k)+
∫ ∞

k
f .

See  Figure 5.8 , for an illustration with k = 1. By  Proposition 5.2.11 , f is integrable on every
interval [k,b] for all b> k, so the statement of the theorem makes sense without additional hypotheses
of integrability.
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0 1 2 3 4 5 6 7 8 9 10
· · ·

Figure 5.8: The area under the curve,
∫ ∞

1 f , is bounded below by the area of the shaded rectangles,
f (2)+ f (3)+ f (4)+ · · · , and bounded above by the area entire rectangles, f (1)+ f (2)+ f (3)+ · · · .

Proof. Let `,m ∈ Z be such that m > ` ≥ k. Because f is decreasing, we have
∫ n+1

n f ≤ f (n) ≤∫ n
n−1 f . Therefore,

∫ m

`
f =

m−1

∑
n=`

∫ n+1

n
f ≤

m−1

∑
n=`

f (n)≤ f (`)+
m−1

∑
n=`+1

∫ n

n−1
f ≤ f (`)+

∫ m−1

`
f . (5.3)

Suppose first that
∫ ∞

k f converges and let ε > 0 be given. As before, since f is positive, then
there exists an L ∈N such that if `≥ L, then

∫ m
` f < ε/2 for all m≥ `. The function f must decrease

to zero (why?), so make L large enough so that for `≥ L we have f (`)< ε/2. Thus, for m > `≥ L,
we have via ( 5.3 ),

m

∑
n=`

f (n)≤ f (`)+
∫ m

`
f < ε/2+ ε/2 = ε.

The series is therefore Cauchy and thus converges. The estimate in the proposition is obtained by
letting m go to infinity in ( 5.3 ) with `= k.

Conversely, suppose
∫ ∞

k f diverges. As f is positive, then by  Proposition 5.5.4 , the sequence
{∫ m

k f}∞
m=k diverges to infinity. Using ( 5.3 ) with `= k, we find

∫ m

k
f ≤

m−1

∑
n=k

f (n).

As the left hand side goes to infinity as m→ ∞, so does the right hand side.

Example 5.5.14: The integral test can be used not only to show that a series converges, but to
estimate its sum to arbitrary precision. Let us show ∑∞

n=1
1
n2 exists and estimate its sum to within

0.01. As this series is the p-series for p = 2, we already proved it converges (let us pretend we do
not know that), but we only roughly estimated its sum.

The fundamental theorem of calculus says that for k ∈ N we have∫ ∞

k

1
x2 dx =

1
k
.
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In particular, the series must converge. But we also have

1
k
=
∫ ∞

k

1
x2 dx≤

∞

∑
n=k

1
n2 ≤

1
k2 +

∫ ∞

k

1
x2 dx =

1
k2 +

1
k
.

Adding the partial sum up to k−1 we get

1
k
+

k−1

∑
n=1

1
n2 ≤

∞

∑
n=1

1
n2 ≤

1
k2 +

1
k
+

k−1

∑
n=1

1
n2 .

In other words, 1/k+∑k−1
n=1

1/n2 is an estimate for the sum to within 1/k2. Therefore, if we wish to
find the sum to within 0.01, we note 1/102 = 0.01. We obtain

1.6397 . . .≈ 1
10

+
9

∑
n=1

1
n2 ≤

∞

∑
n=1

1
n2 ≤

1
100

+
1
10

+
9

∑
n=1

1
n2 ≈ 1.6497 . . . .

The actual sum is π2/6≈ 1.6449 . . ..

5.5.2 Exercises
Exercise 5.5.1: Finish the proof of  Proposition 5.5.2 .

Exercise 5.5.2: Find out for which a ∈ R does
∞
∑

n=1
ean converge. When the series converges, find an upper

bound for the sum.

Exercise 5.5.3:

a) Estimate
∞
∑

n=1

1
n(n+1) correct to within 0.01 using the integral test.

b) Compute the limit of the series exactly and compare. Hint: The sum telescopes.

Exercise 5.5.4: Prove ∫ ∞

−∞
|sinc(x)| dx = ∞.

Hint: Again, it is enough to show this on just one side.

Exercise 5.5.5: Can you interpret ∫ 1

−1

1√
|x|

dx

as an improper integral? If so, compute its value.

Exercise 5.5.6: Take f : [0,∞)→ R, Riemann integrable on every interval [0,b], and such that there exist M,
a, and T , such that | f (t)| ≤Meat for all t ≥ T . Show that the Laplace transform of f exists. That is, for every
s > a the following integral converges:

F(s) :=
∫ ∞

0
f (t)e−st dt.
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Exercise 5.5.7: Let f : R→ R be a Riemann integrable function on every interval [a,b], and such that∫ ∞
−∞ | f (x)| dx < ∞. Show that the Fourier sine and cosine transforms exist. That is, for every ω ≥ 0 the

following integrals converge

Fs(ω) :=
1
π

∫ ∞

−∞
f (t)sin(ωt) dt, Fc(ω) :=

1
π

∫ ∞

−∞
f (t)cos(ωt) dt.

Furthermore, show that Fs and Fc are bounded functions.

Exercise 5.5.8: Suppose f : [0,∞)→ R is Riemann integrable on every interval [0,b]. Show that
∫ ∞

0 f
converges if and only if for every ε > 0 there exists an M such that if M ≤ a < b, then

∣∣∫ b
a f
∣∣< ε .

Exercise 5.5.9: Suppose f : [0,∞)→ R is nonnegative and decreasing. Prove:

a) If
∫ ∞

0 f < ∞, then lim
x→∞

f (x) = 0.

b) The converse does not hold.

Exercise 5.5.10: Find an example of an unbounded continuous function f : [0,∞)→ R that is nonnegative
and such that

∫ ∞
0 f < ∞. Note that limx→∞ f (x) will not exist; compare previous exercise. Hint: On each

interval [k,k+1], k ∈ N, define a function whose integral over this interval is less than say 2−k.

Exercise 5.5.11 (More challenging): Find an example of a function f : [0,∞)→R integrable on all intervals
such that limn→∞

∫ n
0 f converges as a limit of a sequence (so n ∈ N), but such that

∫ ∞
0 f does not exist. Hint:

For all n ∈ N, divide [n,n+1] into two halves. On one half make the function negative, on the other make the
function positive.

Exercise 5.5.12: Suppose f : [1,∞)→ R is such that g(x) := x2 f (x) is a bounded function. Prove that
∫ ∞

1 f
converges.

It is sometimes desirable to assign a value to integrals that normally cannot be interpreted even as
improper integrals, e.g.

∫ 1
−1

1/x dx. Suppose f : [a,b]→ R is a function and a < c < b, where f is Riemann
integrable on the intervals [a,c− ε] and [c+ ε,b] for all ε > 0. Define the Cauchy principal value of

∫ b
a f as

p.v.
∫ b

a
f := lim

ε→0+

(∫ c−ε

a
f +

∫ b

c+ε

f
)
,

if the limit exists.

Exercise 5.5.13:

a) Compute p.v.
∫ 1
−1

1/x dx.

b) Compute limε→0+(
∫ −ε

−1
1/x dx+

∫ 1
2ε

1/x dx) and show it is not equal to the principal value.

c) Show that if f is integrable on [a,b], then p.v.
∫ b

a f =
∫ b

a f (for an arbitrary c ∈ (a,b)).

d) Suppose f : [−1,1]→R is an odd function ( f (−x) =− f (x)) that is integrable on [−1,−ε] and [ε,1] for
all ε > 0. Prove that p.v.

∫ 1
−1 f = 0

e) Suppose f : [−1,1]→ R is continuous and differentiable at 0. Show that p.v.
∫ 1
−1

f (x)
x dx exists.
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Exercise 5.5.14: Let f : R→ R and g : R→ R be continuous functions, where g(x) = 0 for all x /∈ [a,b] for
some interval [a,b].

a) Show that the convolution

(g∗ f )(x) :=
∫ ∞

−∞
f (t)g(x− t) dt

is well-defined for all x ∈ R.

b) Suppose
∫ ∞
−∞ | f (x)| dx < ∞. Prove that

lim
x→−∞

(g∗ f )(x) = 0, and lim
x→∞

(g∗ f )(x) = 0.
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Chapter 6

Sequences of Functions

6.1 Pointwise and uniform convergence
Note: 1–1.5 lecture

Up till now, when we talked about sequences we always talked about sequences of numbers.
However, a very useful concept in analysis is to use a sequence of functions. For example, a solution
to some differential equation might be found by finding only approximate solutions. Then the real
solution is some sort of limit of those approximate solutions.

When talking about sequences of functions, the tricky part is that there are multiple notions of a
limit. Let us describe two common notions of a limit of a sequence of functions.

6.1.1 Pointwise convergence
Definition 6.1.1. For every n ∈ N let fn : S→ R be a function. We say the sequence { fn}∞

n=1
converges pointwise to f : S→ R, if for every x ∈ S we have

f (x) = lim
n→∞

fn(x).

As limits of sequences of numbers are unique, given a sequence { fn} that converges pointwise,
the limit function f is unique. It is common to say that fn : S→R converges to f on T ⊂ S for some
f : T → R. In that case we mean f (x) = lim fn(x) for every x ∈ T . In other words, the restrictions
of fn to T converge pointwise to f .

Example 6.1.2: On [−1,1] the sequence of functions defined by fn(x) := x2n converges pointwise
to f : [−1,1]→ R, where

f (x) =

{
1 if x =−1 or x = 1,
0 otherwise.

See  Figure 6.1 .
To see this is so, first take x ∈ (−1,1). Then 0≤ x2 < 1. We have seen before that∣∣x2n−0

∣∣= (x2)
n→ 0 as n→ ∞.

Therefore lim fn(x) = 0.
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x2 x4 x6 x16

Figure 6.1: Graphs of f1, f2, f3, and f8 for fn(x) := x2n.

When x = 1 or x = −1, then x2n = 1 for all n and hence lim fn(x) = 1. For all other x, the
sequence { fn(x)} does not converge.

Often, functions are given as a series. In this case, we use the notion of pointwise convergence
to find the values of the function.

Example 6.1.3: We write
∞

∑
k=0

xk

to denote the limit of the functions

fn(x) :=
n

∑
k=0

xk.

When studying series, we saw that on x ∈ (−1,1) the fn converge pointwise to

1
1− x

.

The subtle point here is that while 1
1−x is defined for all x 6= 1, and fn are defined for all x (even

at x = 1), convergence only happens on (−1,1).
Therefore, when we write

f (x) :=
∞

∑
k=0

xk

we mean that f is defined on (−1,1) and is the pointwise limit of the partial sums.

Example 6.1.4: Let fn(x) := sin(nx). Then fn does not converge pointwise to any function on any
interval. It may converge at certain points, such as when x = 0 or x = π . It is left as an exercise that
in any interval [a,b], there exists an x such that sin(xn) does not have a limit as n goes to infinity.
See  Figure 6.2 .

Before we move to uniform convergence, let us reformulate pointwise convergence in a different
way. We leave the proof to the reader, it is a simple application of the definition of convergence of a
sequence of real numbers.
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Figure 6.2: Graphs of sin(nx) for n = 1,2, . . . ,10, with higher n in lighter gray.

Proposition 6.1.5. Let fn : S→ R and f : S→ R be functions. Then { fn} converges pointwise to f
if and only if for every x ∈ S, and every ε > 0, there exists an N ∈N such that for all n≥ N we have

| fn(x)− f (x)|< ε.

The key point here is that N can depend on x, not just on ε . That is, for each x we can pick a
different N. If we can pick one N for all x, we have what is called uniform convergence.

6.1.2 Uniform convergence
Definition 6.1.6. Let fn : S→ R and f : S→ R be functions. We say the sequence { fn} converges
uniformly to f , if for every ε > 0 there exists an N ∈ N such that for all n≥ N we have

| fn(x)− f (x)|< ε for all x ∈ S.

In uniform convergence, N cannot depend on x. Given ε > 0, we must find an N that works for
all x ∈ S. See  Figure 6.3 for an illustration.

f − ε

f

f + ε
fn

Figure 6.3: In uniform convergence, for n≥ N, the functions fn are within a strip of ±ε from f .

Uniform convergence implies pointwise convergence, and the proof follows by  Proposition 6.1.5 :

Proposition 6.1.7. Let { fn} be a sequence of functions fn : S→ R. If { fn} converges uniformly to
f : S→ R, then { fn} converges pointwise to f .
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The converse does not hold.

Example 6.1.8: The functions fn(x) := x2n do not converge uniformly on [−1,1], even though
they converge pointwise. To see this, suppose for contradiction that the convergence is uniform.
For ε := 1/2, there would have to exist an N such that x2N =

∣∣x2N−0
∣∣< 1/2 for all x ∈ (−1,1) (as

fn(x) converges to 0 on (−1,1)). But that means that for any sequence {xk} in (−1,1) such that
lim xk = 1 we have x2N

k < 1/2 for all k. On the other hand x2N is a continuous function of x (it is a
polynomial), therefore we obtain a contradiction

1 = 12N = lim
k→∞

x2N
k ≤ 1/2.

However, if we restrict our domain to [−a,a] where 0 < a < 1, then { fn} converges uniformly
to 0 on [−a,a]. First note that a2n→ 0 as n→ ∞. Thus given ε > 0, pick N ∈ N such that a2n < ε

for all n≥ N. Then for any x ∈ [−a,a] we have |x| ≤ a. Therefore, for n≥ N∣∣x2n∣∣= |x|2n ≤ a2n < ε.

6.1.3 Convergence in uniform norm
For bounded functions there is another more abstract way to think of uniform convergence. To every
bounded function we assign a certain nonnegative number (called the uniform norm). This number
measures the “distance” of the function from 0. We can then “measure” how far two functions are
from each other. We then translate a statement about uniform convergence into a statement about a
certain sequence of real numbers converging to zero.

Definition 6.1.9. Let f : S→ R be a bounded function. Define

‖ f‖u := sup
{
| f (x)| : x ∈ S

}
.

‖·‖u is called the uniform norm.

To use this notation  

*
 and this concept, the domain S must be fixed. Some authors use the

notation ‖ f‖S to emphasize the dependence on S.

Proposition 6.1.10. A sequence of bounded functions fn : S→R converges uniformly to f : S→R,
if and only if

lim
n→∞
‖ fn− f‖u = 0.

Proof. First suppose lim‖ fn− f‖u = 0. Let ε > 0 be given. Then there exists an N such that for
n≥ N we have ‖ fn− f‖u < ε . As ‖ fn− f‖u is the supremum of | fn(x)− f (x)|, we see that for all
x ∈ S we have | fn(x)− f (x)| ≤ ‖ fn− f‖u < ε .

On the other hand, suppose { fn} converges uniformly to f . Let ε > 0 be given. Then find N
such that | fn(x)− f (x)|< ε for all x ∈ S. Taking the supremum we see that ‖ fn− f‖u ≤ ε . Hence
lim‖ fn− f‖u = 0.

*The notation nor terminology is not completely standardized. The norm is also called the sup norm or infinity
norm, and in addition to ‖ f‖u and ‖ f‖S it is sometimes written as ‖ f‖∞ or ‖ f‖∞,S.
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Sometimes it is said that { fn} converges to f in uniform norm instead of converges uniformly.
The proposition says that the two notions are the same thing.

Example 6.1.11: Let fn : [0,1] → R be defined by fn(x) := nx+sin(nx2)
n . Then we claim { fn}

converges uniformly to f (x) := x. Let us compute:

‖ fn− f‖u = sup
{∣∣∣∣nx+ sin(nx2)

n
− x
∣∣∣∣ : x ∈ [0,1]

}
= sup

{∣∣sin(nx2)
∣∣

n
: x ∈ [0,1]

}
≤ sup

{
1/n : x ∈ [0,1]

}
= 1/n.

Using uniform norm, we define Cauchy sequences in a similar way as we define Cauchy
sequences of real numbers.

Definition 6.1.12. Let fn : S→ R be bounded functions. The sequence is Cauchy in the uniform
norm or uniformly Cauchy if for every ε > 0, there exists an N ∈ N such that for m,k ≥ N we have

‖ fm− fk‖u < ε.

Proposition 6.1.13. Let fn : S→ R be bounded functions. Then { fn} is Cauchy in the uniform
norm if and only if there exists an f : S→ R and { fn} converges uniformly to f .

Proof. Let us first suppose { fn} is Cauchy in the uniform norm. Let us define f . Fix x, then the
sequence { fn(x)} is Cauchy because

| fm(x)− fk(x)| ≤ ‖ fm− fk‖u .

Thus { fn(x)} converges to some real number. Define f : S→ R by

f (x) := lim
n→∞

fn(x).

The sequence { fn} converges pointwise to f . To show that the convergence is uniform, let ε > 0
be given. Find an N such that for m,k ≥ N we have ‖ fm− fk‖u < ε/2. In other words for all x we
have | fm(x)− fk(x)| < ε/2. We take the limit as k goes to infinity. Then | fm(x)− fk(x)| goes to
| fm(x)− f (x)|. Consequently for all x we get

| fm(x)− f (x)| ≤ ε/2 < ε.

And hence { fn} converges uniformly.
For the other direction, suppose { fn} converges uniformly to f . Given ε > 0, find N such that

for all n≥ N we have | fn(x)− f (x)|< ε/4 for all x ∈ S. Therefore for all m,k ≥ N we have

| fm(x)− fk(x)|= | fm(x)− f (x)+ f (x)− fk(x)| ≤ | fm(x)− f (x)|+ | f (x)− fk(x)|< ε/4+ ε/4.

Take supremum over all x to obtain

‖ fm− fk‖u ≤ ε/2 < ε.
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6.1.4 Exercises
Exercise 6.1.1: Let f and g be bounded functions on [a,b]. Prove

‖ f +g‖u ≤ ‖ f‖u +‖g‖u .

Exercise 6.1.2:

a) Find the pointwise limit
ex/n

n
for x ∈ R.

b) Is the limit uniform on R?

c) Is the limit uniform on [0,1]?

Exercise 6.1.3: Suppose fn : S→ R are functions that converge uniformly to f : S→ R. Suppose A ⊂ S.
Show that the sequence of restrictions { fn|A} converges uniformly to f |A.

Exercise 6.1.4: Suppose { fn} and {gn} defined on some set A converge to f and g respectively pointwise.
Show that { fn +gn} converges pointwise to f +g.

Exercise 6.1.5: Suppose { fn} and {gn} defined on some set A converge to f and g respectively uniformly on
A. Show that { fn +gn} converges uniformly to f +g on A.

Exercise 6.1.6: Find an example of a sequence of functions { fn} and {gn} that converge uniformly to some
f and g on some set A, but such that { fngn} (the multiple) does not converge uniformly to f g on A. Hint: Let
A := R, let f (x) := g(x) := x. You can even pick fn = gn.

Exercise 6.1.7: Suppose there exists a sequence of functions {gn} uniformly converging to 0 on A. Now
suppose we have a sequence of functions { fn} and a function f on A such that

| fn(x)− f (x)| ≤ gn(x)

for all x ∈ A. Show that { fn} converges uniformly to f on A.

Exercise 6.1.8: Let { fn}, {gn} and {hn} be sequences of functions on [a,b]. Suppose { fn} and {hn} converge
uniformly to some function f : [a,b]→ R and suppose fn(x) ≤ gn(x) ≤ hn(x) for all x ∈ [a,b]. Show that
{gn} converges uniformly to f .

Exercise 6.1.9: Let fn : [0,1]→ R be a sequence of increasing functions (that is, fn(x) ≥ fn(y) whenever
x≥ y). Suppose fn(0) = 0 and lim

n→∞
fn(1) = 0. Show that { fn} converges uniformly to 0.

Exercise 6.1.10: Let { fn} be a sequence of functions defined on [0,1]. Suppose there exists a sequence of
distinct numbers xn ∈ [0,1] such that

fn(xn) = 1.

Prove or disprove the following statements:

a) True or false: There exists { fn} as above that converges to 0 pointwise.

b) True or false: There exists { fn} as above that converges to 0 uniformly on [0,1].

Exercise 6.1.11: Fix a continuous h : [a,b]→ R. Let f (x) := h(x) for x ∈ [a,b], f (x) := h(a) for x < a and
f (x) := h(b) for all x > b. First show that f : R→ R is continuous. Now let fn be the function g from

 Exercise 5.3.7 with ε = 1/n, defined on the interval [a,b]. That is,

fn(x) :=
n
2

∫ x+1/n

x−1/n
f .

Show that { fn} converges uniformly to h on [a,b].
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Exercise 6.1.12: Prove that if a sequence of functions fn : S→ R converge uniformly to a bounded function
f : S→ R, then there exists an N such that for all n≥ N, the fn are bounded.

Exercise 6.1.13: Suppose there is a single constant B and a sequence of functions fn : S→ R that are
bounded by B, that is | fn(x)| ≤ B for all x ∈ S. Suppose that { fn} converges pointwise to f : S→ R. Prove
that f is bounded.

Exercise 6.1.14 (requires  §2.6 ): In  Example 6.1.3 we saw ∑∞
k=0 xk converges pointwise to 1

1−x on (−1,1).

a) Show that for any 0≤ c < 1, the series ∑∞
k=0 xk converges uniformly on [−c,c].

b) Show that the series ∑∞
k=0 xk does not converge uniformly on (−1,1).
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6.2 Interchange of limits
Note: 1–2.5 lectures, subsections on derivatives and power series (which requires  §2.6 ) optional.

Large parts of modern analysis deal mainly with the question of the interchange of two limiting
operations. When we have a chain of two limits, we cannot always just swap the limits. For instance,

0 = lim
n→∞

(
lim
k→∞

n/k

n/k+1

)
6= lim

k→∞

(
lim
n→∞

n/k

n/k+1

)
= 1.

When talking about sequences of functions, interchange of limits comes up quite often. We treat
two cases. First we look at continuity of the limit, and second we look at the integral of the limit.

6.2.1 Continuity of the limit
If we have a sequence { fn} of continuous functions, is the limit continuous? Suppose f is the
(pointwise) limit of { fn}. If lim xk = x we are interested in the following interchange of limits. The
equality we have to prove (it is not always true) is marked with a question mark. In fact, the limits
to the left of the question mark might not even exist.

lim
k→∞

f (xk) = lim
k→∞

(
lim
n→∞

fn(xk)
)

?
= lim

n→∞

(
lim
k→∞

fn(xk)
)
= lim

n→∞
fn(x) = f (x).

We wish to find conditions on the sequence { fn} so that the equation above holds. If we only require
pointwise convergence, then the limit of a sequence of functions need not be continuous, and the
equation above need not hold.

Example 6.2.1: Define fn : [0,1]→ R as

fn(x) :=

{
1−nx if x < 1/n,

0 if x≥ 1/n.

See  Figure 6.4 .
Each function fn is continuous. Fix an x ∈ (0,1]. If n≥ 1/x, then x≥ 1/n. Therefore for n≥ 1/x

we have fn(x) = 0, and so
lim
n→∞

fn(x) = 0.

On the other hand if x = 0, then
lim
n→∞

fn(0) = lim
n→∞

1 = 1.

Thus the pointwise limit of fn is the function f : [0,1]→ R defined by

f (x) :=

{
1 if x = 0,
0 if x > 0.

The function f is not continuous at 0.

If we, however, require the convergence to be uniform, the limits can be interchanged.
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1

1/n

Figure 6.4: Graph of fn(x).

Theorem 6.2.2. Let { fn} be a sequence of continuous functions fn : S→ R converging uniformly
to f : S→ R. Then f is continuous.

Proof. Let x ∈ S be fixed. Let {xn} be a sequence in S converging to x.
Let ε > 0 be given. As { fk} converges uniformly to f , we find a k ∈ N such that

| fk(y)− f (y)|< ε/3

for all y ∈ S. As fk is continuous at x, we find an N ∈ N such that for m≥ N we have

| fk(xm)− fk(x)|< ε/3.

Thus for m≥ N we have

| f (xm)− f (x)|= | f (xm)− fk(xm)+ fk(xm)− fk(x)+ fk(x)− f (x)|
≤ | f (xm)− fk(xm)|+ | fk(xm)− fk(x)|+ | fk(x)− f (x)|
< ε/3+ ε/3+ ε/3 = ε.

Therefore
{

f (xm)
}

converges to f (x) and hence f is continuous at x. As x was arbitrary, f is
continuous everywhere.

6.2.2 Integral of the limit
Again, if we simply require pointwise convergence, then the integral of a limit of a sequence of
functions need not be equal to the limit of the integrals.

Example 6.2.3: Define fn : [0,1]→ R as

fn(x) :=


0 if x = 0,
n−n2x if 0 < x < 1/n,

0 if x≥ 1/n.
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n

1/n

Figure 6.5: Graph of fn(x).

See  Figure 6.5 .
Each fn is Riemann integrable (it is continuous on (0,1] and bounded), and it is easy to see

∫ 1

0
fn =

∫ 1/n

0
(n−n2x) dx = 1/2.

Let us compute the pointwise limit of { fn}. Fix an x ∈ (0,1]. For n≥ 1/x we have x≥ 1/n and so
fn(x) = 0. Therefore,

lim
n→∞

fn(x) = 0.

We also have fn(0) = 0 for all n. Therefore the pointwise limit of { fn} is the zero function. Thus

1/2 = lim
n→∞

∫ 1

0
fn(x) dx 6=

∫ 1

0

(
lim
n→∞

fn(x)
)

dx =
∫ 1

0
0 dx = 0.

But if we again require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.4. Let { fn} be a sequence of Riemann integrable functions fn : [a,b]→ R converging
uniformly to f : [a,b]→ R. Then f is Riemann integrable and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Let ε > 0 be given. As fn goes to f uniformly, we find an M ∈ N such that for all n≥M
we have | fn(x)− f (x)| < ε

2(b−a) for all x ∈ [a,b]. In particular, by reverse triangle inequality
| f (x)|< ε

2(b−a) + | fn(x)| for all x, hence f is bounded as fn is bounded. Note that fn is integrable

214



6.2. INTERCHANGE OF LIMITS 215

and compute

∫ b

a
f −

∫ b

a
f =

∫ b

a

(
f (x)− fn(x)+ fn(x)

)
dx−

∫ b

a

(
f (x)− fn(x)+ fn(x)

)
dx

≤
∫ b

a

(
f (x)− fn(x)

)
dx+

∫ b

a
fn(x) dx−

∫ b

a

(
f (x)− fn(x)

)
dx−

∫ b

a
fn(x) dx

=
∫ b

a

(
f (x)− fn(x)

)
dx+

∫ b

a
fn(x) dx−

∫ b

a

(
f (x)− fn(x)

)
dx−

∫ b

a
fn(x) dx

=
∫ b

a

(
f (x)− fn(x)

)
dx−

∫ b

a

(
f (x)− fn(x)

)
dx

≤ ε

2(b−a)
(b−a)+

ε

2(b−a)
(b−a) = ε.

The first inequality is  Proposition 5.2.5 . The second inequality follows from  Proposition 5.1.8 and
the fact that for all x ∈ [a,b] we have −ε

2(b−a) < f (x)− fn(x)< ε

2(b−a) . As ε > 0 was arbitrary, f is
Riemann integrable.

Finally we compute
∫ b

a f . We apply  Proposition 5.1.10  in the calculation. Again, for n ≥M
(where M is the same as above) we have∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣= ∣∣∣∣∫ b

a

(
f (x)− fn(x)

)
dx
∣∣∣∣

≤ ε

2(b−a)
(b−a) =

ε

2
< ε.

Therefore {∫ b
a fn} converges to

∫ b
a f .

Example 6.2.5: Suppose we wish to compute

lim
n→∞

∫ 1

0

nx+ sin(nx2)

n
dx.

It is impossible to compute the integrals for any particular n using calculus as sin(nx2) has no closed-
form antiderivative. However, we can compute the limit. We have shown before that nx+sin(nx2)

n
converges uniformly on [0,1] to x. By  Theorem 6.2.4 , the limit exists and

lim
n→∞

∫ 1

0

nx+ sin(nx2)

n
dx =

∫ 1

0
x dx = 1/2.

Example 6.2.6: If convergence is only pointwise, the limit need not even be Riemann integrable.
On [0,1] define

fn(x) :=

{
1 if x = p/q in lowest terms and q≤ n,
0 otherwise.

The function fn differs from the zero function at finitely many points; there are only finitely many
fractions in [0,1] with denominator less than or equal to n. So fn is integrable and

∫ 1
0 fn =

∫ 1
0 0 = 0.
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It is an easy exercise to show that { fn} converges pointwise to the Dirichlet function

f (x) :=

{
1 if x ∈Q,

0 otherwise,

which is not Riemann integrable.

Example 6.2.7: In fact, if the convergence is only pointwise, the limit of bounded functions is not
even necessarily bounded. Define fn : [0,1]→ R by

fn(x) :=

{
0 if x < 1/n,

1/x else.

For every n we get that | fn(x)| ≤ n for all x ∈ [0,1] so the functions are bounded. However fn
converge pointwise to

f (x) :=

{
0 if x = 0,
1/x else,

which is unbounded.

6.2.3 Derivative of the limit
While uniform convergence is enough to swap limits with integrals, it is not, however, enough
to swap limits with derivatives, unless you also have uniform convergence of the derivatives
themselves.

Example 6.2.8: Let fn(x) := sin(nx)
n . Then fn converges uniformly to 0. See  Figure 6.6 . The

derivative of the limit is 0. But f ′n(x) = cos(nx), which does not converge even pointwise, for
example f ′n(π) = (−1)n. Furthermore, f ′n(0) = 1 for all n, which does converge, but not to 0.

Figure 6.6: Graphs of sin(nx)
n for n = 1,2, . . . ,10, with higher n in lighter gray.

Example 6.2.9: Let fn(x) := 1
1+nx2 . If x 6= 0, then limn→∞ fn(x) = 0 and limn→∞ fn(0) = 1. Hence

{ fn} converges pointwise to a function that is not continuous at 0. We compute

f ′n(x) =
−2nx

(1+nx2)2 .
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For every x, limn→∞ f ′n(x) = 0, so the derivatives converge pointwise to 0, but the reader can check
that the convergence is not uniform on any closed interval containing 0. The limit of fn is not
differentiable at 0, it is not even continuous at 0.

See the exercises for more examples. Using the fundamental theorem of calculus we find an
answer for continuously differentiable functions. The following theorem is true even if we do not
assume continuity of the derivatives, but the proof is more difficult.

Theorem 6.2.10. Let I be a bounded interval and let fn : I → R be continuously differentiable
functions. Suppose { f ′n} converges uniformly to g : I→ R, and suppose

{
fn(c)

}∞
n=1 is a convergent

sequence for some c ∈ I. Then { fn} converges uniformly to a continuously differentiable function
f : I→ R, and f ′ = g.

Proof. Define f (c) := limn→∞ fn(c). As f ′n are continuous and hence Riemann integrable, then via
the fundamental theorem of calculus, we find that for x ∈ I,

fn(x) = fn(c)+
∫ x

c
f ′n.

As { f ′n} converges uniformly on I, it converges uniformly on [c,x] (or [x,c] if x < c). Therefore, we
find that the limit on the right hand side exists. Let us define f at the remaining points by this limit:

f (x) := lim
n→∞

fn(c)+ lim
n→∞

∫ x

c
f ′n = f (c)+

∫ x

c
g.

The function g is continuous, being the uniform limit of continuous functions. Hence f is differen-
tiable and f ′(x) = g(x) for all x ∈ I by the second form of the fundamental theorem.

It remains to prove uniform convergence. Suppose I has a lower bound a and upper bound b.
Let ε > 0 be given. Take M such that for n≥M we have | f (c)− fn(c)|< ε/2, and |g(x)− f ′n(x)|<
ε/2(b−a) for all x ∈ I. Then

| f (x)− fn(x)|=
∣∣∣∣ f (c)+∫ x

c
g− fn(c)−

∫ x

c
f ′n

∣∣∣∣
≤ | f (c)− fn(c)|+

∣∣∣∣∫ x

c
g−

∫ x

c
f ′n

∣∣∣∣
= | f (c)− fn(c)|+

∣∣∣∣∫ x

c

(
g(s)− f ′n(s)

)
ds
∣∣∣∣

<
ε

2
+

ε

2(b−a)
(b−a) = ε.

The proof goes through without boundedness of I, except for the uniform convergence of fn to
f . As an example suppose I = R and let fn(x) := x/n. Then f ′n(x) = 1/n, which converges uniformly
to 0. However, { fn} converges to 0 only pointwise.

6.2.4 Convergence of power series
In  §2.6 we saw that a power series converges absolutely inside its radius of convergence, so it
converges pointwise. Let us show that it (and all its derivatives) also converges uniformly. This fact
allows us to swap several types of limits. Not only is the limit continuous, we can integrate and
even differentiate convergent power series term by term.
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Proposition 6.2.11. Let ∑∞
n=0 cn(x−a)n be a convergent power series with a radius of convergence

0 < ρ ≤ ∞. Then the series converges uniformly in [a− r,a+ r] for any 0 < r < ρ .
In particular, the series defines a continuous function on (a−ρ,a+ρ) (if ρ < ∞), or R (if

ρ = ∞).

Proof. Let I := (a−ρ,a+ρ) if ρ < ∞, or let I :=R if ρ = ∞. Take 0 < r < ρ . The series converges
absolutely for any x ∈ I, in particular if x = a+ r. Therefore ∑∞

n=0 |cn|rn converges. Given ε > 0,
find M such that for all k ≥M,

∞

∑
n=k+1

|cn|rn < ε.

For any x ∈ [a− r,a+ r] and any m > k∣∣∣∣∣ m

∑
n=0

cn(x−a)n−
k

∑
n=0

cn(x−a)n

∣∣∣∣∣=
∣∣∣∣∣ m

∑
n=k+1

cn(x−a)n

∣∣∣∣∣
≤

m

∑
n=k+1

|cn| |x−a|n ≤
m

∑
n=k+1

|cn|rn ≤
∞

∑
n=k+1

|cn|rn < ε.

The partial sums are therefore uniformly Cauchy on [a− r,a+ r] and hence converge uniformly on
that set.

Moreover, the partial sums are polynomials, which are continuous, and so their uniform limit on
[a− r,a+ r] is a continuous function. As r < ρ was arbitrary, the limit function is continuous on all
of I.

As we said, we will show that power series can be differentiated and integrated term by term.
The differentiated or integrated series is again a power series, and we will show it has the same
radius of convergence. Therefore, any power series defines an infinitely differentiable function.

We first prove that we can antidifferentiate, as integration only needs uniform limits.

Corollary 6.2.12. Let ∑∞
n=0 cn(x−a)n be a convergent power series with a radius of convergence

0 < ρ ≤ ∞. Let I := (a−ρ,a+ρ) if ρ < ∞ or I := R if ρ = ∞. Let f : I→ R be the limit. Then∫ x

a
f =

∞

∑
n=1

cn−1

n
(x−a)n,

where the radius of convergence of this series is at least ρ .

Proof. Take 0 < r < ρ . The partial sums ∑k
n=0 cn(x−a)n converge uniformly on [a− r,a+ r]. For

any fixed x ∈ [a− r,a+ r], the convergence is also uniform on [a,x] (or [x,a] if x < a). Hence,∫ x

a
f =

∫ x

a
lim
k→∞

k

∑
n=0

cn(s−a)n ds = lim
k→∞

∫ x

a

k

∑
n=0

cn(s−a)n ds = lim
k→∞

k+1

∑
n=1

cn−1

n
(x−a)n.

Corollary 6.2.13. Let ∑∞
n=0 cn(x−a)n be a convergent power series with a radius of convergence

0 < ρ ≤ ∞. Let I := (a−ρ,a+ρ) if ρ < ∞ or I := R if ρ = ∞. Let f : I→ R be the limit. Then f
is a differentiable function, and

f ′(x) =
∞

∑
n=0

(n+1)cn+1(x−a)n,

where the radius of convergence of this series is ρ .
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Proof. Take 0 < r < ρ . The series converges uniformly on [a− r,a+ r], but we need uniform
convergence of the derivative. Let

R := limsup
n→∞

|cn|1/n .

As the series is convergent R < ∞, and the radius of convergence is 1/R (or ∞ if R = 0).
Let ε > 0 be given. In  Example 2.2.14 we saw lim n1/n = 1. Hence there exists an N such that

for all n≥ N, we have n1/n < 1+ ε .
So

R = limsup
n→∞

|cn|1/n ≤ limsup
n→∞

|ncn|1/n ≤ (1+ ε) limsup
n→∞

|cn|1/n = (1+ ε)R.

As ε was arbitrary, limsupn→∞ |ncn|1/n = R. Therefore, ∑∞
n=1 ncn(x−a)n has radius of convergence

ρ , and by dividing by (x−a) we find ∑∞
n=0(n+1)cn+1(x−a)n has radius of convergence ρ as well.

Consequently, the partial sums ∑k
n=0(n+ 1)cn+1(x−a)n, which are derivatives of the partial

sums ∑k+1
n=0 cn(x−a)n, converge uniformly on [a−r,a+r]. Furthermore, the series clearly converges

at x = a. We may thus apply  Theorem 6.2.10 , and we are done as r < ρ was arbitrary.

Example 6.2.14: We could have used this result to define the exponential function. That is, the
power series

f (x) :=
∞

∑
n=0

xn

n!

has radius of convergence ρ = ∞. Furthermore, f (0) = 1, and by differentiating term by term we
find that f ′(x) = f (x).

Example 6.2.15: The series
∞

∑
n=1

nxn

converges to x
(1−x)2 on (−1,1).

Proof: On (−1,1), ∑∞
n=0 xn converges to 1

1−x . The derivative ∑∞
n=1 nxn−1 then converges on the

same interval to 1
(1−x)2 . Multiplying by x obtains the result.

6.2.5 Exercises
Exercise 6.2.1: While uniform convergence preserves continuity, it does not preserve differentiability. Find
an explicit example of a sequence of differentiable functions on [−1,1] that converge uniformly to a function
f such that f is not differentiable. Hint: There are many possibilities, simplest is perhaps to combine |x|
and n

2 x2 + 1
2n , another is to consider

√
x2 +(1/n)2. Show that these functions are differentiable, converge

uniformly, and then show that the limit is not differentiable.

Exercise 6.2.2: Let fn(x) = xn

n . Show that { fn} converges uniformly to a differentiable function f on [0,1]
(find f ). However, show that f ′(1) 6= lim

n→∞
f ′n(1).

Note: The previous two exercises show that we cannot simply swap limits with derivatives, even if the
convergence is uniform. See also  Exercise 6.2.7 below.
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Exercise 6.2.3: Let f : [0,1]→ R be a Riemann integrable (hence bounded) function. Find lim
n→∞

∫ 1

0

f (x)
n

dx.

Exercise 6.2.4: Show lim
n→∞

∫ 2

1
e−nx2

dx = 0. Feel free to use what you know about the exponential function

from calculus.

Exercise 6.2.5: Find an example of a sequence of continuous functions on (0,1) that converges pointwise to
a continuous function on (0,1), but the convergence is not uniform.

Note: In the previous exercise, (0,1) was picked for simplicity. For a more challenging exercise, replace
(0,1) with [0,1].

Exercise 6.2.6: True/False; prove or find a counterexample to the following statement: If { fn} is a sequence
of everywhere discontinuous functions on [0,1] that converge uniformly to a function f , then f is everywhere
discontinuous.

Exercise 6.2.7: For a continuously differentiable function f : [a,b]→ R, define

‖ f‖C1 := ‖ f‖u +
∥∥ f ′
∥∥

u .

Suppose { fn} is a sequence of continuously differentiable functions such that for every ε > 0, there exists an
M such that for all n,k ≥M we have

‖ fn− fk‖C1 < ε.

Show that { fn} converges uniformly to some continuously differentiable function f : [a,b]→ R.

Suppose f : [0,1]→ R is Riemann integrable. For the following two exercises define the number

‖ f‖L1 :=
∫ 1

0
| f (x)| dx.

It is true that | f | is integrable whenever f is, see  Exercise 5.2.15  . The number is called the L1-norm and
defines another very common type of convergence called the L1-convergence. It is however a bit more subtle.

Exercise 6.2.8: Suppose { fn} is a sequence of Riemann integrable functions on [0,1] that converges uniformly
to 0. Show that

lim
n→∞
‖ fn‖L1 = 0.

Exercise 6.2.9: Find a sequence { fn} of Riemann integrable functions on [0,1] converging pointwise to 0,
but

lim
n→∞
‖ fn‖L1 does not exist (is ∞).

Exercise 6.2.10 (Hard): Prove Dini’s theorem: Let fn : [a,b]→ R be a sequence of continuous functions
such that

0≤ fn+1(x)≤ fn(x)≤ ·· · ≤ f1(x) for all n ∈ N.

Suppose { fn} converges pointwise to 0. Show that { fn} converges to zero uniformly.

Exercise 6.2.11: Suppose fn : [a,b]→ R is a sequence of continuous functions that converges pointwise to a
continuous f : [a,b]→ R. Suppose that for any x ∈ [a,b] the sequence {| fn(x)− f (x)|} is monotone. Show
that the sequence { fn} converges uniformly.
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Exercise 6.2.12: Find a sequence of Riemann integrable functions fn : [0,1]→ R such that { fn} converges
to zero pointwise, and such that

a)
{∫ 1

0 fn
}∞

n=1 increases without bound,

b)
{∫ 1

0 fn
}∞

n=1 is the sequence −1,1,−1,1,−1,1, . . ..

It is possible to define a joint limit of a double sequence {xn,m} of real numbers (that is a function from
N×N to R). We say L is the joint limit of {xn,m} and write

lim
n→∞
m→∞

xn,m = L, or lim
(n,m)→∞

xn,m = L,

if for every ε > 0, there exists an M such that if n≥M and m≥M, then |xn,m−L|< ε .

Exercise 6.2.13: Suppose the joint limit (see above) of {xn,m} is L, and suppose that for all n, lim
m→∞

xn,m exists,
and for all m, lim

n→∞
xn,m exists. Then show lim

n→∞
lim

m→∞
xn,m = lim

m→∞
lim
n→∞

xn,m = L.

Exercise 6.2.14: A joint limit (see above) does not mean the iterated limits even exist. Consider xn,m :=
(−1)n+m

min{n,m} .

a) Show that for no n does lim
m→∞

xn,m exist, and for no m does lim
n→∞

xn,m exist. So neither lim
n→∞

lim
m→∞

xn,m nor
lim

m→∞
lim
n→∞

xn,m makes any sense at all.

b) Show that the joint limit of {xn,m} exists and equals 0.

Exercise 6.2.15: We say that a sequence of functions fn : R→ R converges uniformly on compact subsets if
for every k ∈ N, the sequence { fn} converges uniformly on [−k,k].

a) Prove that if fn : R→ R is a sequence of continuous functions converging uniformly on compact subsets,
then the limit is continuous.

b) Prove that if fn : R→ R is a sequence of functions Riemann integrable on any closed and bounded
interval [a,b], and converging uniformly on compact subsets to an f : R→ R, then for any interval [a,b],
we have f ∈R[a,b], and

∫ b
a f = limn→∞

∫ b
a fn.

Exercise 6.2.16 (Challenging): Find a sequence of continuous functions fn : [0,1]→ R that converge to
the popcorn function f : [0,1]→ R, that is the function such that f (p/q) := 1

q (if p/q is in lowest terms)
and f (x) := 0 if x is not rational (note that f (0) = f (1) = 1), see  Example 3.2.12 . So a pointwise limit of
continuous functions can have a dense set of discontinuities. See also the next exercise.

Exercise 6.2.17 (Challenging): The Dirichlet function f : [0,1]→ R, that is the function such that f (x) := 1
if x ∈Q and f (x) := 0 if x /∈Q, is not the pointwise limit of continuous functions, although this is difficult
to show. Prove, however, that f is a pointwise limit of functions that are themselves pointwise limits of
continuous functions themselves.

Exercise 6.2.18:

a) Find a sequence of Lipschitz continuous functions on [0,1] whose uniform limit is
√

x, which is a
non-Lipschitz function.

b) On the other hand, show that if fn : S→ R are Lipschitz with a uniform constant K (meaning all of them
satisfy the definition with the same constant) and { fn} converges pointwise to f : S→ R, then the limit f
is a Lipschitz continuous function with Lipschitz constant K.
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Exercise 6.2.19 (requires  §2.6 ): If ∑∞
n=0 cn(x−a)n has radius of convergence ρ , show that the term by term

integral ∑∞
n=1

cn−1
n (x−a)n has radius of convergence ρ . Note that we only proved above that the radius of

convergence was at least ρ .

Exercise 6.2.20 (requires  §2.6 and  §4.3 ): Suppose f (x) := ∑∞
n=0 cn(x−a)n converges in (a−ρ,a+ρ).

a) Suppose that f (k)(a) = 0 for all k = 0,1,2,3, . . .. Prove that cn = 0 for all n, or in other words, f (x) = 0
for all x ∈ (a−ρ,a+ρ).

b) Using part a) prove a version of the so-called “identity theorem for analytic functions”: If there exists an
ε > 0 such that f (x) = 0 for all x ∈ (a− ε,a+ ε), then f (x) = 0 for all x ∈ (a−ρ,a+ρ).

Exercise 6.2.21: Let fn(x) := x
1+(nx)2 . Notice that fn are differentiable functions.

a) Show that { fn} converges uniformly to 0.

b) Show that | f ′n(x)| ≤ 1 for all x and all n.

c) Show that { f ′n} converges pointwise to a function discontinuous at the origin.

d) Let {an} be an enumeration of the rational numbers. Define

gn(x) :=
n

∑
k=1

2−k fn(x−ak).

Show that {gn} converges uniformly to 0.

e) Show that {g′n} converges pointwise to a function ψ that is discontinuous at every rational number and
continuous at every irrational number. In particular, limn→∞ g′n(x) 6= 0 for every rational number x.
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6.3 Picard’s theorem
Note: 1–2 lectures (can be safely skipped)

A first semester course in analysis should have a pièce de résistance caliber theorem. We
pick a theorem whose proof combines everything we have learned. It is more sophisticated than
the fundamental theorem of calculus, the first highlight theorem of this course. The theorem we
are talking about is Picard’s theorem 

*
 on existence and uniqueness of a solution to an ordinary

differential equation. Both the statement and the proof are beautiful examples of what one can
do with the material we mastered so far. It is also a good example of how analysis is applied as
differential equations are indispensable in science of every stripe.

6.3.1 First order ordinary differential equation
Modern science is described in the language of differential equations. That is, equations involving
not only the unknown, but also its derivatives. The simplest nontrivial form of a differential equation
is the so-called first order ordinary differential equation

y′ = F(x,y).

Generally we also specify an initial condition y(x0) = y0. The solution of the equation is a function
y(x) such that y(x0) = y0 and y′(x) = F

(
x,y(x)

)
.

When F involves only the x variable, the solution is given by the fundamental theorem of
calculus. On the other hand, when F depends on both x and y we need far more firepower. It is not
always true that a solution exists, and if it does, that it is the unique solution. Picard’s theorem gives
us certain sufficient conditions for existence and uniqueness.

6.3.2 The theorem
We need a definition of continuity in two variables. A point in the plane R2 = R×R is denoted by
an ordered pair (x,y). For simplicity, we give the following sequential definition of continuity.

Definition 6.3.1. Let U ⊂ R2 be a set, F : U → R a function, and (x,y) ∈U a point. The function
F is continuous at (x,y) if for every sequence

{
(xn,yn)

}∞
n=1 of points in U such that lim xn = x and

lim yn = y, we have
lim
n→∞

F(xn,yn) = F(x,y).

We say F is continuous if it is continuous at all points in U .

Theorem 6.3.2 (Picard’s theorem on existence and uniqueness). Let I,J ⊂ R be closed bounded
intervals, let I◦ and J◦ be their interiors 

†
 , and let (x0,y0) ∈ I◦× J◦. Suppose F : I× J → R is

continuous and Lipschitz in the second variable, that is, there exists an L ∈ R such that

|F(x,y)−F(x,z)| ≤ L |y− z| for all y,z ∈ J,x ∈ I.

Then there exists an h > 0 and a unique differentiable function f : [x0−h,x0 +h]→ J ⊂ R, such
that

f ′(x) = F
(
x, f (x)

)
and f (x0) = y0. (6.1)

*Named for the French mathematician  Charles Émile Picard (1856–1941).
†By interior of [a,b] we mean (a,b).
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Proof. Suppose we could find a solution f . Using the fundamental theorem of calculus we integrate
the equation f ′(x) = F

(
x, f (x)

)
, f (x0) = y0, and write ( 6.1 ) as the integral equation

f (x) = y0 +
∫ x

x0

F
(
t, f (t)

)
dt. (6.2)

The idea of our proof is that we try to plug in approximations to a solution to the right-hand side
of ( 6.2 ) to get better approximations on the left hand side of ( 6.2 ). We hope that in the end the
sequence converges and solves ( 6.2 ) and hence ( 6.1 ). The technique below is called Picard iteration,
and the individual functions fk are called the Picard iterates.

Without loss of generality, suppose x0 = 0 (exercise below). Another exercise tells us that F is
bounded as it is continuous. Therefore pick some M > 0 so that |F(x,y)| ≤M for all (x,y) ∈ I× J.
Pick α > 0 such that [−α,α]⊂ I and [y0−α,y0 +α]⊂ J. Define

h := min
{

α,
α

M+Lα

}
.

Observe [−h,h]⊂ I.
Set f0(x) := y0. We define fk inductively. Assuming fk−1([−h,h])⊂ [y0−α,y0 +α], we see

F
(
t, fk−1(t)

)
is a well-defined function of t for t ∈ [−h,h]. Further if fk−1 is continuous on [−h,h],

then F
(
t, fk−1(t)

)
is continuous as a function of t on [−h,h] (left as an exercise). Define

fk(x) := y0 +
∫ x

0
F
(
t, fk−1(t)

)
dt,

and fk is continuous on [−h,h] by the fundamental theorem of calculus. To see that fk maps [−h,h]
to [y0−α,y0 +α], we compute for x ∈ [−h,h]

| fk(x)− y0|=
∣∣∣∣∫ x

0
F
(
t, fk−1(t)

)
dt
∣∣∣∣≤M |x| ≤Mh≤M

α

M+Lα
≤ α.

We now define fk+1 and so on, and we have defined a sequence { fk} of functions. We need to show
that it converges to a function f that solves the equation ( 6.2 ) and therefore ( 6.1 ).

We wish to show that the sequence { fk} converges uniformly to some function on [−h,h]. First,
for t ∈ [−h,h] we have the following useful bound∣∣F(t, fn(t)

)
−F

(
t, fk(t)

)∣∣≤ L | fn(t)− fk(t)| ≤ L‖ fn− fk‖u ,

where ‖ fn− fk‖u is the uniform norm, that is the supremum of | fn(t)− fk(t)| for t ∈ [−h,h]. Now
note that |x| ≤ h≤ α

M+Lα
. Therefore

| fn(x)− fk(x)|=
∣∣∣∣∫ x

0
F
(
t, fn−1(t)

)
dt−

∫ x

0
F
(
t, fk−1(t)

)
dt
∣∣∣∣

=

∣∣∣∣∫ x

0
F
(
t, fn−1(t)

)
−F

(
t, fk−1(t)

)
dt
∣∣∣∣

≤ L‖ fn−1− fk−1‖u |x|

≤ Lα

M+Lα
‖ fn−1− fk−1‖u .
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Let C := Lα

M+Lα
and note that C < 1. Taking supremum on the left-hand side we get

‖ fn− fk‖u ≤C‖ fn−1− fk−1‖u .

Without loss of generality, suppose n≥ k. Then by  induction we can show

‖ fn− fk‖u ≤Ck ‖ fn−k− f0‖u .

For x ∈ [−h,h] we have
| fn−k(x)− f0(x)|= | fn−k(x)− y0| ≤ α.

Therefore,
‖ fn− fk‖u ≤Ck ‖ fn−k− f0‖u ≤Ck

α.

As C < 1, { fn} is uniformly Cauchy and by  Proposition 6.1.13  we obtain that { fn} converges
uniformly on [−h,h] to some function f : [−h,h]→ R. The function f is the uniform limit of
continuous functions and therefore continuous. Furthermore, since fn([−h,h])⊂ [y0−α,y0 +α]
for all n, then f ([−h,h])⊂ [y0−α,y0 +α] (why?).

We now need to show that f solves ( 6.2 ). First, as before we notice∣∣F(t, fn(t)
)
−F

(
t, f (t)

)∣∣≤ L | fn(t)− f (t)| ≤ L‖ fn− f‖u .

As ‖ fn− f‖u converges to 0, then F
(
t, fn(t)

)
converges uniformly to F

(
t, f (t)

)
for t ∈ [−h,h].

Hence, for x ∈ [−h,h] the convergence is uniform for t ∈ [0,x] (or [x,0] if x < 0). Therefore,

y0 +
∫ x

0
F(t, f (t)

)
dt = y0 +

∫ x

0
F
(
t, lim

n→∞
fn(t)

)
dt

= y0 +
∫ x

0
lim
n→∞

F
(
t, fn(t)

)
dt (by continuity of F)

= lim
n→∞

(
y0 +

∫ x

0
F
(
t, fn(t)

)
dt
)

(by uniform convergence)

= lim
n→∞

fn+1(x) = f (x).

We apply the fundamental theorem of calculus ( Theorem 5.3.3  ) to show that f is differentiable and
its derivative is F

(
x, f (x)

)
. It is obvious that f (0) = y0.

Finally, what is left to do is to show uniqueness. Suppose g : [−h,h]→ J ⊂R is another solution.
As before we use the fact that

∣∣F(t, f (t)
)
−F

(
t,g(t)

)∣∣≤ L‖ f −g‖u. Then

| f (x)−g(x)|=
∣∣∣∣y0 +

∫ x

0
F
(
t, f (t)

)
dt−

(
y0 +

∫ x

0
F
(
t,g(t)

)
dt
)∣∣∣∣

=

∣∣∣∣∫ x

0
F
(
t, f (t)

)
−F

(
t,g(t)

)
dt
∣∣∣∣

≤ L‖ f −g‖u |x| ≤ Lh‖ f −g‖u ≤
Lα

M+Lα
‖ f −g‖u .

As before, C = Lα

M+Lα
< 1. By taking supremum over x ∈ [−h,h] on the left hand side we obtain

‖ f −g‖u ≤C‖ f −g‖u .

This is only possible if ‖ f −g‖u = 0. Therefore, f = g, and the solution is unique.
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6.3.3 Examples
Let us look at some examples. The proof of the theorem gives us an explicit way to find an h that
works. It does not, however, give us the best h. It is often possible to find a much larger h for which
the conclusion of the theorem holds.

The proof also gives us the Picard iterates as approximations to the solution. So the proof
actually tells us how to obtain the solution, not just that the solution exists.

Example 6.3.3: Consider
f ′(x) = f (x), f (0) = 1.

That is, we let F(x,y) = y, and we are looking for a function f such that f ′(x) = f (x). Let us forget
for the moment that we solved this equation in  §5.4 .

We pick any I that contains 0 in the interior. We pick an arbitrary J that contains 1 in its
interior. We can use L = 1. The theorem guarantees an h > 0 such that there exists a unique solution
f : [−h,h]→ R. This solution is usually denoted by

ex := f (x).

We leave it to the reader to verify that by picking I and J large enough the proof of the theorem
guarantees that we are able to pick α such that we get any h we want as long as h < 1/2. We omit
the calculation.

Of course, we know this function exists as a function for all x, so an arbitrary h ought to work.
By same reasoning as above, no matter what x0 and y0 are, the proof guarantees an arbitrary h as
long as h < 1/2. Fix such an h. We get a unique function defined on [x0−h,x0 +h]. After defining
the function on [−h,h] we find a solution on the interval [0,2h] and notice that the two functions
must coincide on [0,h] by uniqueness. We thus iteratively construct the exponential for all x ∈ R.
Therefore Picard’s theorem could be used to prove the existence and uniqueness of the exponential.

Let us compute the Picard iterates. We start with the constant function f0(x) := 1. Then

f1(x) = 1+
∫ x

0
f0(s) ds = 1+ x,

f2(x) = 1+
∫ x

0
f1(s) ds = 1+

∫ x

0
(1+ s) ds = 1+ x+

x2

2
,

f3(x) = 1+
∫ x

0
f2(s) ds = 1+

∫ x

0

(
1+ s+

s2

2

)
ds = 1+ x+

x2

2
+

x3

6
.

We recognize the beginning of the Taylor series for the exponential.

Example 6.3.4: Consider the equation

f ′(x) =
(

f (x)
)2 and f (0) = 1.

From elementary differential equations we know

f (x) =
1

1− x
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is the solution. The solution is only defined on (−∞,1). That is, we are able to use h < 1, but never
a larger h. The function that takes y to y2 is not Lipschitz as a function on all of R. As we approach
x = 1 from the left, the solution becomes larger and larger. The derivative of the solution grows as
y2, and so the L required has to be larger and larger as y0 grows. If we apply the theorem with x0
close to 1 and y0 =

1
1−x0

we find that the h that the proof guarantees is smaller and smaller as x0
approaches 1.

The h from the proof is not the best h. By picking α correctly, the proof of the theorem
guarantees h = 1−

√
3/2≈ 0.134 (we omit the calculation) for x0 = 0 and y0 = 1, even though we

saw above that any h < 1 should work.

Example 6.3.5: Consider the equation

f ′(x) = 2
√
| f (x)|, f (0) = 0.

The function F(x,y) = 2
√
|y| is continuous, but not Lipschitz in y (why?). The equation does not

satisfy the hypotheses of the theorem. The function

f (x) =

{
x2 if x≥ 0,
−x2 if x < 0,

is a solution, but f (x) = 0 is also a solution. A solution exists, but is not unique.

Example 6.3.6: Consider y′ = ϕ(x) where ϕ(x) := 0 if x ∈ Q and ϕ(x) := 1 if x 6∈ Q. In other
words, the F(x,y) = ϕ(x) is discontinuous. The equation has no solution regardless of the initial
conditions. A solution would have derivative ϕ , but ϕ does not have the intermediate value property
at any point (why?). No solution exists by  Darboux’s theorem .

The examples show that without the Lipschitz condition, a solution might exist but not be a
unique, and without continuity of F , we may not have a solution at all. It is in fact a theorem, the
Peano existence theorem, that if F is continuous a solution exists (but may not be unique).

Remark 6.3.7. It is possible to weaken what we mean by “solution to y′ = F(x,y)” by focusing on
the integral equation f (x) = y0 +

∫ x
x0

F
(
t, f (t)

)
dt. For example, let H be the Heaviside function  

*
 ,

that is H(t) := 0 for t < 0 and H(t) := 1 for t ≥ 0. Then y′ = H(t), y(0) = 0, is a common equation.
The “solution” is the ramp function f (x) := 0 if x < 0 and f (x) := x if x ≥ 0, since this function
satisfies f (x) =

∫ x
0 H(t)dt. Notice, however, that f ′(0) does not exist, so f is only a so-called weak

solution to the differential equation.

6.3.4 Exercises
Exercise 6.3.1: Let I,J ⊂ R be intervals. Let F : I× J→ R be a continuous function of two variables and
suppose f : I→ J be a continuous function. Show that F

(
x, f (x)

)
is a continuous function on I.

Exercise 6.3.2: Let I,J ⊂R be closed bounded intervals. Show that if F : I×J→R is continuous, then F is
bounded.

*Named for the English engineer, mathematician, and physicist  Oliver Heaviside (1850–1825).
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Exercise 6.3.3: We proved Picard’s theorem under the assumption that x0 = 0. Prove the full statement of
Picard’s theorem for an arbitrary x0.

Exercise 6.3.4: Let f ′(x) = x f (x) be our equation. Start with the initial condition f (0) = 2 and find the
Picard iterates f0, f1, f2, f3, f4.

Exercise 6.3.5: Suppose F : I× J→ R is a function that is continuous in the first variable, that is, for any
fixed y the function that takes x to F(x,y) is continuous. Further, suppose F is Lipschitz in the second variable,
that is, there exists a number L such that

|F(x,y)−F(x,z)| ≤ L |y− z| for all y,z ∈ J,x ∈ I.

Show that F is continuous as a function of two variables. Therefore, the hypotheses in the theorem could be
made even weaker.

Exercise 6.3.6: A common type of equation one encounters are linear first order differential equations, that
is equations of the form

y′+ p(x)y = q(x), y(x0) = y0.

Prove Picard’s theorem for linear equations. Suppose I is an interval, x0 ∈ I, and p : I→R and q : I→R are
continuous. Show that there exists a unique differentiable f : I→ R, such that y = f (x) satisfies the equation
and the initial condition. Hint: Assume existence of the exponential function and use the integrating factor
formula for existence of f (prove that it works):

f (x) := e−
∫ x

x0
p(s)ds

(∫ x

x0

e
∫ t

x0
p(s)dsq(t) dt + y0

)
.

Exercise 6.3.7: Consider the equation f ′(x) = f (x), from  Example 6.3.3 . Show that given any x0 and any y0,
and any positive h < 1/2, we can pick α > 0 large enough that the proof of Picard’s theorem guarantees a
solution for the initial condition f (x0) = y0 in the interval [x0−h,x0 +h].

Exercise 6.3.8: Consider the equation y′ = y1/3x.

a) Show that for the initial condition y(1) = 1, Picard’s theorem applies. Find an α > 0, M, L, and h that
would work in the proof.

b) Show that for the initial condition y(1) = 0, Picard’s theorem does not apply.

c) Find a solution for y(1) = 0 anyway.

Exercise 6.3.9: Consider the equation xy′ = 2y.

a) Show that y =Cx2 is a solution for any C.

b) Show that for any x0 6= 0, and any y0, Picard’s theorem applies for the initial condition y(x0) = y0.

c) Show that y(0) = y0 is solvable if and only if y0 = 0.
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Chapter 7

Metric Spaces

7.1 Metric spaces
Note: 1.5 lectures

As mentioned in the introduction, the main idea in analysis is to take limits. In  chapter 2 we
learned to take limits of sequences of real numbers. And in  chapter 3  we learned to take limits of
functions as a real number approached some other real number.

We want to take limits in more complicated contexts. For example, we want to have sequences
of points in 3-dimensional space. We wish to define continuous functions of several variables. We
even want to define functions on spaces that are a little harder to describe, such as the surface of the
earth. We still want to talk about limits there.

Finally, we have seen the limit of a sequence of functions in  chapter 6 . We wish to unify all these
notions so that we do not have to reprove theorems over and over again in each context. The concept
of a metric space is an elementary yet powerful tool in analysis. And while it is not sufficient to
describe every type of limit we find in modern analysis, it gets us very far indeed.

Definition 7.1.1. Let X be a set, and let d : X×X → R be a function such that for all x,y,z ∈ X

(i) d(x,y)≥ 0 (nonnegativity),

(ii) d(x,y) = 0 if and only if x = y, (identity of indiscernibles),

(iii) d(x,y) = d(y,x) (symmetry),

(iv) d(x,z)≤ d(x,y)+d(y,z) (triangle inequality).

The pair (X ,d) is called a metric space. The function d is called the metric or the distance function.
Sometimes we write just X as the metric space instead of (X ,d), if the metric is clear from context.

The geometric idea is that d is the distance between two points. Items  (i) – (iii) have obvious
geometric interpretation: Distance is always nonnegative, the only point that is distance 0 away
from x is x itself, and finally that the distance from x to y is the same as the distance from y to x.
The triangle inequality  (iv) has the interpretation given in  Figure 7.1 .

For the purposes of drawing, it is convenient to draw figures and diagrams in the plane with the
metric being the euclidean distance. However, that is only one particular metric space. Just because
a certain fact seems to be clear from drawing a picture does not mean it is true in every metric space.
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x
y

z

d(x,y)

d(y,z)d(x,z)

longer

shorter

Figure 7.1: Diagram of the triangle inequality in metric spaces.

You might be getting sidetracked by intuition from euclidean geometry, whereas the concept of a
metric space is a lot more general.

Let us give some examples of metric spaces.

Example 7.1.2: The set of real numbers R is a metric space with the metric

d(x,y) := |x− y| .
Items  (i) – (iii) of the definition are easy to verify. The triangle inequality  (iv) follows immediately
from the standard triangle inequality for real numbers:

d(x,z) = |x− z|= |x− y+ y− z| ≤ |x− y|+ |y− z|= d(x,y)+d(y,z).

This metric is the standard metric on R. If we talk about R as a metric space without mentioning a
specific metric, we mean this particular metric.

Example 7.1.3: We can also put a different metric on the set of real numbers. For example, take
the set of real numbers R together with the metric

d(x,y) :=
|x− y|
|x− y|+1

.

Items  (i) – (iii) are again easy to verify. The triangle inequality  (iv) is a little bit more difficult. Note
that d(x,y) = ϕ(|x− y|) where ϕ(t) = t

t+1 and ϕ is an increasing function (positive derivative).
Hence

d(x,z) = ϕ(|x− z|)
= ϕ(|x− y+ y− z|)
≤ ϕ(|x− y|+ |y− z|)

=
|x− y|+ |y− z|
|x− y|+ |y− z|+1

=
|x− y|

|x− y|+ |y− z|+1
+

|y− z|
|x− y|+ |y− z|+1

≤ |x− y|
|x− y|+1

+
|y− z|
|y− z|+1

= d(x,y)+d(y,z).
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The function d is thus a metric, and we have an example of a nonstandard metric on R. With this
metric, d(x,y)< 1 for all x,y ∈ R. That is, any two points are less than 1 unit apart.

An important metric space is the n-dimensional euclidean space Rn = R×R×·· ·×R. We use
the following notation for points: x = (x1,x2, . . . ,xn) ∈ Rn. We will not write~x nor x for a vector,
we simply give it a name such as x and we will remember that x is a vector. We also write simply
0 ∈ Rn to mean the point (0,0, . . . ,0). Before making Rn a metric space, we prove an important
inequality, the so-called Cauchy–Schwarz inequality.

Lemma 7.1.4 (Cauchy–Schwarz inequality 

*
 ). If x = (x1,x2, . . . ,xn) ∈ Rn, y = (y1,y2, . . . ,yn) ∈ Rn,

then ( n

∑
j=1

x jy j

)2

≤
( n

∑
j=1

x2
j

)( n

∑
j=1

y2
j

)
.

Proof. Any square of a real number is nonnegative. Hence any sum of squares is nonnegative:

0≤
n

∑
j=1

n

∑
k=1

(x jyk− xky j)
2

=
n

∑
j=1

n

∑
k=1

(
x2

jy
2
k + x2

ky2
j −2x jxky jyk

)
=

( n

∑
j=1

x2
j

)( n

∑
k=1

y2
k

)
+

( n

∑
j=1

y2
j

)( n

∑
k=1

x2
k

)
−2
( n

∑
j=1

x jy j

)( n

∑
k=1

xkyk

)
.

We relabel and divide by 2 to obtain

0≤
( n

∑
j=1

x2
j

)( n

∑
j=1

y2
j

)
−
( n

∑
j=1

x jy j

)2

,

which is precisely what we wanted.

Example 7.1.5: Let us construct the standard metric for Rn. Define

d(x,y) :=
√
(x1− y1)

2 +(x2− y2)
2 + · · ·+(xn− yn)

2 =

√
n

∑
j=1

(x j− y j)
2.

For n = 1, the real line, this metric agrees with what we did above. For n > 1, the only tricky part of
the definition to check, as before, is the triangle inequality. It is less messy to work with the square

*Sometimes it is called the Cauchy–Bunyakovsky–Schwarz inequality.  Karl Hermann Amandus Schwarz (1843–
1921) was a German mathematician and  Viktor Yakovlevich Bunyakovsky (1804–1889) was a Russian mathematician.
What we stated should really be called the Cauchy inequality, as Bunyakovsky and Schwarz provided proofs for infinite
dimensional versions.

231

https://en.wikipedia.org/wiki/Hermann_Schwarz
https://en.wikipedia.org/wiki/Viktor_Bunyakovsky


232 CHAPTER 7. METRIC SPACES

of the metric. In the following estimate, note the use of the Cauchy–Schwarz inequality.

(
d(x,z)

)2
=

n

∑
j=1

(x j− z j)
2

=
n

∑
j=1

(x j− y j + y j− z j)
2

=
n

∑
j=1

(
(x j− y j)

2 +(y j− z j)
2 +2(x j− y j)(y j− z j)

)
=

n

∑
j=1

(x j− y j)
2 +

n

∑
j=1

(y j− z j)
2 +2

n

∑
j=1

(x j− y j)(y j− z j)

≤
n

∑
j=1

(x j− y j)
2 +

n

∑
j=1

(y j− z j)
2 +2

√
n

∑
j=1

(x j− y j)
2

n

∑
j=1

(y j− z j)
2

=

(√
n

∑
j=1

(x j− y j)
2 +

√
n

∑
j=1

(y j− z j)
2

)2

=
(
d(x,y)+d(y,z)

)2
.

Because the square root is an increasing function, the inequality is preserved when we take the
square root of both sides, and we obtain the triangle inequality.

Example 7.1.6: The set of complex numbers C is the set of numbers z = x+ iy, where x and y are
in R. By imposing i2 =−1, we make C into a field. For the purposes of taking limits, the set C is
regarded as the metric space R2, where z = x+ iy ∈C corresponds to (x,y) ∈R2. For any z = x+ iy
define the complex modulus by |z| :=

√
x2 + y2. Then for any two complex numbers z1 = x1 + iy1

and z2 = x2 + iy2, the distance is

d(z1,z2) =

√
(x1− x2)

2 +(y1− y2)
2 = |z1− z2|.

Furthermore, when working with complex numbers it is often convenient to write the metric in
terms of the so-called complex conjugate: that is, the conjugate of z = x+ iy is z̄ := x− iy. Then
|z|2 = x2 + y2 = zz̄, and so |z1− z2|2 = (z1− z2)(z1− z2).

Example 7.1.7: An example to keep in mind is the so-called discrete metric. For any set X , define

d(x,y) :=

{
1 if x 6= y,
0 if x = y.

That is, all points are equally distant from each other. When X is a finite set, we can draw a diagram,
see for example  Figure 7.2  . Of course, in the diagram the distances are not the normal euclidean
distances in the plane. Things become subtle when X is an infinite set such as the real numbers.

While this particular example seldom comes up in practice, it gives a useful “smell test.” If you
make a statement about metric spaces, try it with the discrete metric. To show that (X ,d) is indeed
a metric space is left as an exercise.
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1

1 1
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1
b

c

d
e

a

Figure 7.2: Sample discrete metric space {a,b,c,d,e}, the distance between any two points is 1.

Example 7.1.8: Let C([a,b],R) be the set of continuous real-valued functions on the interval [a,b].
Define the metric on C([a,b],R) as

d( f ,g) := sup
x∈[a,b]

| f (x)−g(x)| .

Let us check the properties. First, d( f ,g) is finite as | f (x)−g(x)| is a continuous function on a
closed bounded interval [a,b], and so is bounded. It is clear that d( f ,g)≥ 0, it is the supremum of
nonnegative numbers. If f = g, then | f (x)−g(x)|= 0 for all x and hence d( f ,g) = 0. Conversely,
if d( f ,g) = 0, then for any x we have | f (x)−g(x)| ≤ d( f ,g) = 0, and hence f (x) = g(x) for all
x and f = g. That d( f ,g) = d(g, f ) is equally trivial. To show the triangle inequality we use the
standard triangle inequality.

d( f ,g) = sup
x∈[a,b]

| f (x)−g(x)|= sup
x∈[a,b]

| f (x)−h(x)+h(x)−g(x)|

≤ sup
x∈[a,b]

(
| f (x)−h(x)|+ |h(x)−g(x)|

)
≤ sup

x∈[a,b]
| f (x)−h(x)|+ sup

x∈[a,b]
|h(x)−g(x)|= d( f ,h)+d(h,g).

When treating C([a,b],R) as a metric space without mentioning a metric, we mean this particular
metric. Notice that d( f ,g) = ‖ f −g‖u, the uniform norm of  Definition 6.1.9 .

This example may seem esoteric at first, but it turns out that working with spaces such as
C([a,b],R) is really the meat of a large part of modern analysis. Treating sets of functions as metric
spaces allows us to abstract away a lot of the grubby detail and prove powerful results such as

 Picard’s theorem with less work.

Example 7.1.9: Another useful example of a metric space is the sphere with a metric usually called
the great circle distance. Let S2 be the unit sphere in R3, that is S2 := {x ∈ R3 : x2

1 + x2
2 + x2

3 = 1}.
Take x and y in S2, draw a line through the origin and x, and another line through the origin and y,
and let θ be the angle that the two lines make. Then define d(x,y) := θ . See  Figure 7.3  . The law of
cosines from vector calculus says d(x,y) = arccos(x1y1 + x2y2 + x3y3). It is relatively easy to see
that this function satisfies the first three properties of a metric. Triangle inequality is harder to prove,
and requires a bit more trigonometry and linear algebra than we wish to indulge in right now, so let
us leave it without proof.
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0
y

θ

S2 x

Figure 7.3: The great circle distance on the unit sphere.

This distance is the shortest distance between points on a sphere if we are allowed to travel on
the sphere only. It is easy to generalize to arbitrary diameters. If we take a sphere of radius r, we
let the distance be d(x,y) := rθ . As an example, this is the standard distance you would use if you
compute a distance on the surface of the earth, such as computing the distance a plane travels from
London to Los Angeles.

Oftentimes it is useful to consider a subset of a larger metric space as a metric space itself. We
obtain the following proposition, which has a trivial proof.

Proposition 7.1.10. Let (X ,d) be a metric space and Y ⊂ X. Then the restriction d|Y×Y is a metric
on Y .

Definition 7.1.11. If (X ,d) is a metric space, Y ⊂ X , and d′ := d|Y×Y , then (Y,d′) is said to be a
subspace of (X ,d).

It is common to simply write d for the metric on Y , as it is the restriction of the metric on X .
Sometimes we say d′ is the subspace metric and Y has the subspace topology.

A subset of the real numbers is bounded whenever all its elements are at most some fixed
distance from 0. When dealing with an arbitrary metric space there may not be some natural fixed
point 0, but for the purposes of boundedness it does not matter.

Definition 7.1.12. Let (X ,d) be a metric space. A subset S⊂ X is said to be bounded if there exists
a p ∈ X and a B ∈ R such that

d(p,x)≤ B for all x ∈ S.

We say (X ,d) is bounded if X itself is a bounded subset.

For example, the set of real numbers with the standard metric is not a bounded metric space. It
is not hard to see that a subset of the real numbers is bounded in the sense of  chapter 1 if and only if
it is bounded as a subset of the metric space of real numbers with the standard metric.

On the other hand, if we take the real numbers with the discrete metric, then we obtain a bounded
metric space. In fact, any set with the discrete metric is bounded.

There are other equivalent ways we could generalize boundedness, and are left as exercises.
Suppose X is nonempty to avoid a technicality. Then S⊂ X being bounded is equivalent to either

(i) For every p ∈ X , there exists a B > 0 such that d(p,x)≤ B for all x ∈ S.

(ii) diam(S) := sup
{

d(x,y) : x,y ∈ S
}
< ∞.

The quantity diam(S) is called the diameter of a set and is usually only defined for a nonempty set.
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7.1.1 Exercises
Exercise 7.1.1: Show that for any set X, the discrete metric (d(x,y) = 1 if x 6= y and d(x,x) = 0) does give a
metric space (X ,d).

Exercise 7.1.2: Let X := {0} be a set. Can you make it into a metric space?

Exercise 7.1.3: Let X := {a,b} be a set. Can you make it into two distinct metric spaces? (define two distinct
metrics on it)

Exercise 7.1.4: Let the set X := {A,B,C} represent 3 buildings on campus. Suppose we wish our distance to
be the time it takes to walk from one building to the other. It takes 5 minutes either way between buildings A
and B. However, building C is on a hill and it takes 10 minutes from A and 15 minutes from B to get to C. On
the other hand it takes 5 minutes to go from C to A and 7 minutes to go from C to B, as we are going downhill.
Do these distances define a metric? If so, prove it, if not, say why not.

Exercise 7.1.5: Suppose (X ,d) is a metric space and ϕ : [0,∞)→ R is an increasing function such that
ϕ(t) ≥ 0 for all t and ϕ(t) = 0 if and only if t = 0. Also suppose ϕ is subadditive, that is, ϕ(s+ t) ≤
ϕ(s)+ϕ(t). Show that with d′(x,y) := ϕ

(
d(x,y)

)
, we obtain a new metric space (X ,d′).

Exercise 7.1.6: Let (X ,dX) and (Y,dY ) be metric spaces.

a) Show that (X×Y,d) with d
(
(x1,y1),(x2,y2)

)
:= dX(x1,x2)+dY (y1,y2) is a metric space.

b) Show that (X×Y,d) with d
(
(x1,y1),(x2,y2)

)
:= max

{
dX(x1,x2),dY (y1,y2)

}
is a metric space.

Exercise 7.1.7: Let X be the set of continuous functions on [0,1]. Let ϕ : [0,1]→ (0,∞) be continuous.
Define

d( f ,g) :=
∫ 1

0
| f (x)−g(x)|ϕ(x) dx.

Show that (X ,d) is a metric space.

Exercise 7.1.8: Let (X ,d) be a metric space. For nonempty bounded subsets A and B let

d(x,B) := inf
{

d(x,b) : b ∈ B
}

and d(A,B) := sup
{

d(a,B) : a ∈ A
}
.

Now define the Hausdorff metric as

dH(A,B) := max
{

d(A,B),d(B,A)
}
.

Note: dH can be defined for arbitrary nonempty subsets if we allow the extended reals.

a) Let Y ⊂P(X) be the set of bounded nonempty subsets. Prove that (Y,dH) is a so-called pseudometric
space: dH satisfies the metric properties  (i) ,  (iii) ,  (iv) , and further dH(A,A) = 0 for all A ∈ Y .

b) Show by example that d itself is not symmetric, that is d(A,B) 6= d(B,A).

c) Find a metric space X and two different nonempty bounded subsets A and B such that dH(A,B) = 0.

Exercise 7.1.9: Let (X ,d) be a nonempty metric space and S⊂ X a subset. Prove:

a) S is bounded if and only if for every p ∈ X, there exists a B > 0 such that d(p,x)≤ B for all x ∈ S.

b) A nonempty S is bounded if and only if diam(S) := sup{d(x,y) : x,y ∈ S}< ∞.
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Exercise 7.1.10:

a) Working in R, compute diam
(
[a,b]

)
.

b) Working in Rn, for any r > 0, let Br := {x2
1 + x2

2 + · · ·+ x2
n < r2}. Compute diam(Br).

c) Suppose (X ,d) is a metric space with at least two points, d is the discrete metric, and p ∈ X. Compute
diam({p}) and diam(X), then conclude that (X ,d) is bounded.

Exercise 7.1.11:

a) Find a metric d on N, such that N is an unbounded set in (N,d).
b) Find a metric d on N, such that N is a bounded set in (N,d).
c) Find a metric d on N such that for any n ∈ N and any ε > 0 there exists an m ∈ N such that d(n,m)< ε .

Exercise 7.1.12: Let C1([a,b],R) be the set of once continuously differentiable functions on [a,b]. Define

d( f ,g) := ‖ f −g‖u +‖ f ′−g′‖u,

where ‖·‖u is the uniform norm. Prove that d is a metric.

Exercise 7.1.13: Consider `2 the set of sequences {xn} of real numbers such that ∑∞
n=1 x2

n < ∞.

a) Prove the Cauchy–Schwarz inequality for two sequences {xn} and {yn} in `2:( ∞

∑
n=1

xnyn

)2

≤
( ∞

∑
n=1

x2
n

)( ∞

∑
n=1

y2
n

)
.

b) Prove that `2 is a metric space with the metric d(x,y) :=
√

∑∞
n=1 (xn− yn)

2.
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7.2 Open and closed sets
Note: 2 lectures

7.2.1 Topology
Before we get to convergence, we define the so-called topology. That is, we define closed and open
sets in a metric space. Before doing so, let us define two special sets.

Definition 7.2.1. Let (X ,d) be a metric space, x ∈ X , and δ > 0. Define the open ball, or simply
ball, of radius δ around x as

B(x,δ ) :=
{

y ∈ X : d(x,y)< δ
}
.

Define the closed ball as
C(x,δ ) :=

{
y ∈ X : d(x,y)≤ δ

}
.

When dealing with different metric spaces, it is sometimes vital to emphasize which metric
space the ball is in. We do this by writing BX(x,δ ) := B(x,δ ) or CX(x,δ ) :=C(x,δ ).

Example 7.2.2: Take the metric space R with the standard metric. For x ∈ R and δ > 0,

B(x,δ ) = (x−δ ,x+δ ) and C(x,δ ) = [x−δ ,x+δ ].

Example 7.2.3: Be careful when working on a subspace. Consider the metric space [0,1] as a
subspace of R. Then in [0,1],

B(0,1/2) = B[0,1](0,1/2) =
{

y ∈ [0,1] : |0− y|< 1/2
}
= [0,1/2).

This is different from BR(0,1/2) = (−1/2,1/2). The important thing to keep in mind is which metric
space we are working in.

Definition 7.2.4. Let (X ,d) be a metric space. A subset V ⊂ X is open if for every x ∈ V , there
exists a δ > 0 such that B(x,δ )⊂V . See  Figure 7.4 . A subset E ⊂ X is closed if the complement
Ec = X \E is open. When the ambient space X is not clear from context, we say V is open in X and
E is closed in X .

If x ∈ V and V is open, then we say V is an open neighborhood of x (or sometimes just
neighborhood).

Intuitively, an open set V is a set that does not include its “boundary.” Wherever we are in V , we
are allowed to “wiggle” a little bit and stay in V . Similarly, a set E is closed if everything not in E
is some distance away from E. The open and closed balls are examples of open and closed sets (this
must still be proved). But not every set is either open or closed. Generally, most subsets are neither.

Example 7.2.5: The set (0,∞) ⊂ R is open: Given any x ∈ (0,∞), let δ := x. Then B(x,δ ) =
(0,2x)⊂ (0,∞).

The set [0,∞) ⊂ R is closed: Given x ∈ (−∞,0) = [0,∞)c, let δ := −x. Then B(x,δ ) =
(−2x,0)⊂ (−∞,0) = [0,∞)c.
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x

V

B(x,δ )

δ

Figure 7.4: Open set in a metric space. Note that δ depends on x.

The set [0,1)⊂ R is neither open nor closed. First, every ball in R around 0, B(0,δ ) = (−δ ,δ ),
contains negative numbers and hence is not contained in [0,1). So [0,1) is not open. Second, every
ball in R around 1, B(1,δ ) = (1−δ ,1+δ ), contains numbers strictly less than 1 and greater than
0 (e.g. 1− δ/2 as long as δ < 2). Thus [0,1)c = R\ [0,1) is not open, and [0,1) is not closed.

Proposition 7.2.6. Let (X ,d) be a metric space.

(i) /0 and X are open.

(ii) If V1,V2, . . . ,Vk are open, then
k⋂

j=1

Vj

is also open. That is, a finite intersection of open sets is open.

(iii) If {Vλ}λ∈I is an arbitrary collection of open sets, then⋃
λ∈I

Vλ

is also open. That is, a union of open sets is open.

The index set I in  (iii) can be arbitrarily large. By
⋃

λ∈I Vλ we simply mean the set of all x such
that x ∈Vλ for at least one λ ∈ I.

Proof. The sets X and /0 are obviously open in X .
Let us prove  (ii) . If x ∈ ⋂k

j=1Vj, then x ∈ Vj for all j. As Vj are all open, for every j there
exists a δ j > 0 such that B(x,δ j)⊂Vj. Take δ := min{δ1,δ2, . . . ,δk} and notice δ > 0. We have
B(x,δ )⊂ B(x,δ j)⊂Vj for every j and so B(x,δ )⊂⋂k

j=1Vj. Consequently the intersection is open.
Let us prove  (iii) . If x ∈ ⋃λ∈I Vλ , then x ∈ Vλ for some λ ∈ I. As Vλ is open, there exists a

δ > 0 such that B(x,δ )⊂Vλ . But then B(x,δ )⊂⋃λ∈I Vλ , and so the union is open.

Example 7.2.7: The main thing to notice is the difference between items  (ii) and  (iii) . Item  (ii) is
not true for an arbitrary intersection, for example

⋂∞
n=1(−1/n,1/n) = {0}, which is not open.

The proof of the following analogous proposition for closed sets is left as an exercise.
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Proposition 7.2.8. Let (X ,d) be a metric space.

(i) /0 and X are closed.

(ii) If {Eλ}λ∈I is an arbitrary collection of closed sets, then⋂
λ∈I

Eλ

is also closed. That is, an intersection of closed sets is closed.

(iii) If E1,E2, . . . ,Ek are closed, then
k⋃

j=1

E j

is also closed. That is, a finite union of closed sets is closed.

Despite the naming, we have not yet shown that the open ball is open and the closed ball is
closed. Let us show these facts now to justify the terminology.

Proposition 7.2.9. Let (X ,d) be a metric space, x ∈ X, and δ > 0. Then B(x,δ ) is open and C(x,δ )
is closed.

Proof. Let y ∈ B(x,δ ). Let α := δ −d(x,y). As α > 0, consider z ∈ B(y,α). Then

d(x,z)≤ d(x,y)+d(y,z)< d(x,y)+α = d(x,y)+δ −d(x,y) = δ .

Therefore, z∈B(x,δ ) for every z∈B(y,α). So B(y,α)⊂B(x,δ ) and B(x,δ ) is open. See  Figure 7.5 .

x
δ

z

B(x,δ )

α

y

Figure 7.5: Proof that B(x,δ ) is open: B(y,α)⊂ B(x,δ ) with the triangle inequality illustrated.

The proof that C(x,δ ) is closed is left as an exercise.

Again be careful about what is the metric space we are working in. As [0,1/2) is an open ball in
[0,1], this means that [0,1/2) is an open set in [0,1]. On the other hand [0,1/2) is neither open nor
closed in R.

Proposition 7.2.10. Let a < b be two real numbers. Then (a,b), (a,∞), and (−∞,b) are open in R.
Also [a,b], [a,∞), and (−∞,b] are closed in R.

The proof is left as an exercise. Keep in mind that there are many other open and closed sets in
the set of real numbers.
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Proposition 7.2.11. Suppose (X ,d) is a metric space, and Y ⊂ X. Then U ⊂ Y is open in Y (in
the subspace topology), if and only if there exists an open set V ⊂ X (so open in X), such that
V ∩Y =U.

For example, let X := R, Y := [0,1], U := [0,1/2). We saw that U is an open set in Y . We may
take V := (−1/2,1/2).

Proof. Suppose V ⊂ X is open and x ∈V ∩Y . Let U :=V ∩Y . As V is open, there exists a δ > 0
such that BX(x,δ )⊂V . Then

BY (x,δ ) = BX(x,δ )∩Y ⊂V ∩Y =U.

The proof of the opposite direction, that is, that if U ⊂ Y is open in the subspace topology there
exists a V is left as  Exercise 7.2.12 .

A hint for finshing the proof (the exercise) is that a useful way to think about an open set is as a
union of open balls. If U is open, then for each x ∈U , there is a δx > 0 (depending on x) such that
B(x,δx)⊂U . Then U =

⋃
x∈U B(x,δx).

In case of an open subset of an open set or a closed subset of a closed set, matters are simpler.

Proposition 7.2.12. Suppose (X ,d) is a metric space, V ⊂ X is open, and E ⊂ X is closed.

(i) U ⊂V is open in the subspace topology if and only if U is open in X.

(ii) F ⊂ E is closed in the subspace topology if and only if F is closed in X.

Proof. Let us prove  (i) and leave  (ii) to an exercise.
If U ⊂V is open in the subspace topology, by  Proposition 7.2.11 , there exists a set W ⊂ X open

in X , such that U =W ∩V . Intersection of two open sets is open so U is open in X .
Now suppose U is open in X , then U =U∩V . So U is open in V again by  Proposition 7.2.11 .

7.2.2 Connected sets

Let us generalize the idea of an interval to general metric spaces. One of the main features of an
interval in R is that it is connected—that we can continuously move from one point of it to another
point without jumping. For example, in R we usually study functions on intervals, and in more
general metric spaces we usually study functions on connected sets.

Definition 7.2.13. A nonempty 

*
 metric space (X ,d) is connected if the only subsets of X that are

both open and closed (so-called clopen subsets) are /0 and X itself. If a nonempty (X ,d) is not
connected we say it is disconnected.

When we apply the term connected to a nonempty subset A ⊂ X , we mean that A with the
subspace topology is connected.

*Some authors do not exclude the empty set from the definition, and the empty set would then be connected. We
avoid the empty set for essentially the same reason why 1 is neither a prime nor a composite number: Our connected
sets have exactly two clopen subsets and disconnected sets have more than two. The empty set has exactly one.
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In other words, a nonempty X is connected if whenever we write X = X1∪X2 where X1∩X2 = /0
and X1 and X2 are open, then either X1 = /0 or X2 = /0. So to show X is disconnected, we need to
find nonempty disjoint open sets X1 and X2 whose union is X . For subsets, we state this idea as a
proposition. The proposition is illustrated in  Figure 7.6 .

Proposition 7.2.14. Let (X ,d) be a metric space. A nonempty set S⊂ X is disconnected if and only
if there exist open sets U1 and U2 in X, such that U1∩U2∩S = /0, U1∩S 6= /0, U2∩S 6= /0, and

S =
(
U1∩S

)
∪
(
U2∩S

)
.

S
S

U2
U1

Figure 7.6: Disconnected subset. Notice that U1∩U2 need not be empty, but U1∩U2∩S = /0.

Proof. First suppose S is disconnected: there are nonempty disjoint S1 and S2 that are open in S and
S = S1∪S2.  Proposition 7.2.11 says there exist U1 and U2 that are open in X such that U1∩S = S1
and U2∩S = S2.

For the other direction start with the U1 and U2. Then U1 ∩ S and U2 ∩ S are open in S by
 Proposition 7.2.11 . Via the discussion before the proposition, S is disconnected.

Example 7.2.15: Let S⊂R be such that x < z < y with x,y∈ S and z /∈ S. Claim: S is disconnected.
Proof: Notice (

(−∞,z)∩S
)
∪
(
(z,∞)∩S

)
= S.

Proposition 7.2.16. A nonempty set S⊂ R is connected if and only if it is an interval or a single
point.

Proof. Suppose S is connected. If S is a single point, then we are done. So suppose x < y and
x,y ∈ S. If z ∈ R is such that x < z < y, then (−∞,z)∩S is nonempty and (z,∞)∩S is nonempty.
The two sets are disjoint. As S is connected, we must have they their union is not S, so z ∈ S. By

 Proposition 1.4.1 , S is an interval.
If S is a single point, it is connected. Therefore, suppose S is an interval. Consider open subsets

U1 and U2 of R, such that U1∩S and U2∩S are nonempty, and S =
(
U1∩S

)
∪
(
U2∩S

)
. We will

show that U1∩ S and U2∩ S contain a common point, so they are not disjoint, proving that S is
connected. Suppose x ∈U1∩S and y ∈U2∩S. Without loss of generality, assume x < y. As S is
an interval, [x,y]⊂ S. Note that U2∩ [x,y] 6= /0, and let z := inf(U2∩ [x,y]). We wish to show that
z ∈U1. If z = x, then z ∈U1. If z > x, then for any δ > 0 the ball B(z,δ ) = (z−δ ,z+δ ) contains
points of [x,y] not in U2, as z is the infimum of such points. So z /∈U2 as U2 is open. Therefore,
z ∈U1 as every point of [x,y] is in U1 or U2. As U1 is open, B(z,δ )⊂U1 for a small enough δ > 0.
As z is the infimum of the nonempty set U2∩ [x,y], there must exist some w ∈U2∩ [x,y] such that
w ∈ [z,z+δ )⊂ B(z,δ )⊂U1. Therefore, w ∈U1∩U2∩ [x,y]. So U1∩S and U2∩S are not disjoint,
and S is connected. See  Figure 7.7 .
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U2U1

x y
z w

(z−δ ,z+δ )

Figure 7.7: Proof that an interval is connected.

Example 7.2.17: Oftentimes a ball B(x,δ ) is connected, but this is not necessarily true in every
metric space. For a simplest example, take a two point space {a,b} with the discrete metric. Then
B(a,2) = {a,b}, which is not connected as B(a,1) = {a} and B(b,1) = {b} are open and disjoint.

7.2.3 Closure and boundary
Sometimes we wish to take a set and throw in everything that we can approach from the set. This
concept is called the closure.

Definition 7.2.18. Let (X ,d) be a metric space and A⊂ X . The closure of A is the set

A :=
⋂
{E ⊂ X : E is closed and A⊂ E}.

That is, A is the intersection of all closed sets that contain A.

Proposition 7.2.19. Let (X ,d) be a metric space and A⊂ X. The closure A is closed, and A⊂ A.
Furthermore, if A is closed, then A = A.

Proof. The closure is an intersection of closed sets, so A is closed. There is at least one closed set
containing A, namely X itself, so A⊂ A. If A is closed, then A is a closed set that contains A. So
A⊂ A, and thus A = A.

Example 7.2.20: The closure of (0,1) in R is [0,1]. Proof: If E is closed and contains (0,1), then
E must contain 0 and 1 (why?). Thus [0,1]⊂ E. But [0,1] is also closed. Therefore, the closure
(0,1) = [0,1].

Example 7.2.21: Be careful to notice what ambient metric space you are working with. If X =
(0,∞), then the closure of (0,1) in (0,∞) is (0,1]. Proof: Similarly as above, (0,1] is closed in
(0,∞) (why?). Any closed set E that contains (0,1) must contain 1 (why?). Therefore, (0,1]⊂ E,
and hence (0,1) = (0,1] when working in (0,∞).

Let us justify the statement that the closure is everything that we can “approach” from the set.

Proposition 7.2.22. Let (X ,d) be a metric space and A ⊂ X. Then x ∈ A if and only if for every
δ > 0, B(x,δ )∩A 6= /0.

Proof. Let us prove the two contrapositives. Let us show that x /∈ A if and only if there exists a
δ > 0 such that B(x,δ )∩A = /0.
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First suppose x /∈ A. We know A is closed. Thus there is a δ > 0 such that B(x,δ ) ⊂ Ac. As
A⊂ A we see that B(x,δ )⊂ Ac ⊂ Ac and hence B(x,δ )∩A = /0.

On the other hand, suppose there is a δ > 0, such that B(x,δ )∩ A = /0. In other words,
A ⊂ B(x,δ )c. As B(x,δ )c is a closed set, x 6∈ B(x,δ )c, and A is the intersection of closed sets
containing A, we have x /∈ A.

We can also talk about the interior of a set (points we cannot approach from the complement),
and the boundary of a set (points we can approach both from the set and its complement).

Definition 7.2.23. Let (X ,d) be a metric space and A⊂ X . The interior of A is the set

A◦ := {x ∈ A : there exists a δ > 0 such that B(x,δ )⊂ A}.

The boundary of A is the set
∂A := A\A◦.

Example 7.2.24: Suppose A := (0,1] and X := R. Then it is not hard to see that A = [0,1],
A◦ = (0,1), and ∂A = {0,1}.

Example 7.2.25: Consider X := {a,b} with the discrete metric, and let A := {a}. Then A = A◦= A
and ∂A = /0.

Proposition 7.2.26. Let (X ,d) be a metric space and A⊂ X. Then A◦ is open and ∂A is closed.

Proof. Given x ∈ A◦, there is a δ > 0 such that B(x,δ )⊂ A. If z ∈ B(x,δ ), then as open balls are
open, there is an ε > 0 such that B(z,ε)⊂ B(x,δ )⊂ A. So z ∈ A◦. Therefore, B(x,δ )⊂ A◦, and A◦

is open.
As A◦ is open, then ∂A = A\A◦ = A∩ (A◦)c is closed.

The boundary is the set of points that are close to both the set and its complement. See  Figure 7.8 

for the a diagram of the next proposition.

Proposition 7.2.27. Let (X ,d) be a metric space and A⊂ X. Then x ∈ ∂A if and only if for every
δ > 0, B(x,δ )∩A and B(x,δ )∩Ac are both nonempty.

x

δ

B(x,δ )

Ac

A

∂A

Figure 7.8: Boundary is the set where every ball contains points in the set and also its complement.
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Proof. Suppose x ∈ ∂A = A\A◦ and let δ > 0 be arbitrary. By  Proposition 7.2.22 , B(x,δ ) contains
a point of A. If B(x,δ ) contained no points of Ac, then x would be in A◦. Hence B(x,δ ) contains a
point of Ac as well.

Let us prove the other direction by contrapositive. Suppose x /∈ ∂A, so x /∈ A or x ∈ A◦. If x /∈ A,
then B(x,δ ) ⊂ Ac for some δ > 0 as A is closed. So B(x,δ )∩A is empty, because Ac ⊂ Ac. If
x ∈ A◦, then B(x,δ )⊂ A for some δ > 0, so B(x,δ )∩Ac is empty.

We obtain the following immediate corollary about closures of A and Ac. We simply apply
 Proposition 7.2.22 .

Corollary 7.2.28. Let (X ,d) be a metric space and A⊂ X. Then ∂A = A∩Ac.

7.2.4 Exercises

Exercise 7.2.1: Prove  Proposition 7.2.8 . Hint: Apply  Proposition 7.2.6 to the the complements of the sets.

Exercise 7.2.2: Finish the proof of  Proposition 7.2.9 by proving that C(x,δ ) is closed.

Exercise 7.2.3: Prove  Proposition 7.2.10 .

Exercise 7.2.4: Suppose (X ,d) is a nonempty metric space with the discrete topology. Show that X is
connected if and only if it contains exactly one element.

Exercise 7.2.5: Take Q with the standard metric, d(x,y) = |x− y|, as our metric space. Prove that Q is
totally disconnected, that is, show that for every x,y ∈Q with x 6= y, there exists an two open sets U and V ,
such that x ∈U, y ∈V , U ∩V = /0, and U ∪V =Q.

Exercise 7.2.6: Show that in any metric space, every open set can be written as a union of closed sets.

Exercise 7.2.7: In any metric space, prove:

a) E is closed if and only if ∂E ⊂ E.

b) U is open if and only if ∂U ∩U = /0.

Exercise 7.2.8: In any metric space, prove:

a) Show that A is open if and only if A◦ = A.

b) Suppose that U is an open set and U ⊂ A. Show that U ⊂ A◦.

Exercise 7.2.9: Let X be a set and d, d′ be two metrics on X. Suppose there exists an α > 0 and β > 0 such
that αd(x,y)≤ d′(x,y)≤ βd(x,y) for all x,y ∈ X. Show that U is open in (X ,d) if and only if U is open in
(X ,d′). That is, the topologies of (X ,d) and (X ,d′) are the same.

Exercise 7.2.10: Suppose {Si}, i ∈N, is a collection of connected subsets of a metric space (X ,d), and there
exists an x ∈ X such that x ∈ Si for all i ∈ N. Show that

⋃∞
i=1 Si is connected.
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Exercise 7.2.11: Let A be a connected set in a metric space.

a) Is A connected? Prove or find a counterexample.

b) Is A◦ connected? Prove or find a counterexample.

Hint: Think of sets in R2.

Exercise 7.2.12: Finish the proof of  Proposition 7.2.11 . Suppose (X ,d) is a metric space and Y ⊂ X. Show
that with the subspace metric on Y , if a set U ⊂ Y is open (in Y ), then there exists an open set V ⊂ X such
that U =V ∩Y .

Exercise 7.2.13: Let (X ,d) be a metric space.

a) For any x ∈ X and δ > 0, show B(x,δ )⊂C(x,δ ).

b) Is it always true that B(x,δ ) =C(x,δ )? Prove or find a counterexample.

Exercise 7.2.14: Let (X ,d) be a metric space and A⊂ X. Show that A◦ =
⋃{V : V is open and V ⊂ A}.

Exercise 7.2.15: Finish the proof of  Proposition 7.2.12 .

Exercise 7.2.16: Let (X ,d) be a metric space. Show that there exists a bounded metric d′ such that (X ,d′)
has the same open sets, that is, the topology is the same.

Exercise 7.2.17: Let (X ,d) be a metric space.

a) Prove that for every x ∈ X, there either exists a δ > 0 such that B(x,δ ) = {x}, or B(x,δ ) is infinite for
every δ > 0.

b) Find an explicit example of (X ,d), X infinite, where for every δ > 0 and every x ∈ X, the ball B(x,δ ) is
finite.

c) Find an explicit example of (X ,d) where for every δ > 0 and every x ∈ X, the ball B(x,δ ) is countably
infinite.

d) Prove that if X is uncountable, then there exists an x ∈ X and a δ > 0 such that B(x,δ ) is uncountable.

Exercise 7.2.18: For every x ∈Rn and every δ > 0 define the “rectangle” R(x,δ ) := (x1−δ ,x1+δ )×(x2−
δ ,x2 +δ )×·· ·× (xn−δ ,xn +δ ). Show that these sets generate the same open sets as the balls in standard
metric. That is, show that a set U ⊂ Rn is open in the sense of the standard metric if and only if for every
point x ∈U, there exists a δ > 0 such that R(x,δ )⊂U.

245



246 CHAPTER 7. METRIC SPACES

7.3 Sequences and convergence
Note: 1 lecture

7.3.1 Sequences
The notion of a sequence in a metric space is very similar to a sequence of real numbers. The related
definitions are essentially the same as those for real numbers in the sense of  chapter 2 , where R
with the standard metric d(x,y) = |x− y| is replaced by an arbitrary metric space (X ,d).

Definition 7.3.1. A sequence in a metric space (X ,d) is a function x : N→ X . As before we write
xn for the nth element in the sequence and use the notation {xn}, or more precisely

{xn}∞
n=1.

A sequence {xn} is bounded if there exists a point p ∈ X and B ∈ R such that

d(p,xn)≤ B for all n ∈ N.

In other words, the sequence {xn} is bounded whenever the set {xn : n ∈ N} is bounded.
If {n j}∞

j=1 is a sequence of natural numbers such that n j+1 > n j for all j, then the sequence
{xn j}∞

j=1 is said to be a subsequence of {xn}.

Similarly we define convergence. Again, we cheat a little and use the definite article in front of
the word limit before we prove that the limit is unique. See  Figure 7.9 , for an idea of the definition.

Definition 7.3.2. A sequence {xn} in a metric space (X ,d) is said to converge to a point p ∈ X , if
for every ε > 0, there exists an M ∈ N such that d(xn, p)< ε for all n≥M. The point p is said to
be the limit of {xn}. We write

lim
n→∞

xn := p.

A sequence that converges is convergent. Otherwise, the sequence is divergent.

ε
p

x1
x2

x3

x4

x5

x6
x7

x8

x9

x10

Figure 7.9: Sequence converging to p. The first 10 points are shown and M = 7 for this ε .

Let us prove that the limit is unique. The proof is almost identical (word for word) to the proof
of the same fact for sequences of real numbers,  Proposition 2.1.6 . Proofs of many results we know
for sequences of real numbers can be adapted to the more general settings of metric spaces. We
must replace |x− y| with d(x,y) in the proofs and apply the triangle inequality correctly.
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Proposition 7.3.3. A convergent sequence in a metric space has a unique limit.

Proof. Suppose the sequence {xn} has limits x and y. Take an arbitrary ε > 0. From the definition
find an M1 such that for all n≥M1, d(xn,x)< ε/2. Similarly find an M2 such that for all n≥M2 we
have d(xn,y)< ε/2. Now take an n such that n≥M1 and also n≥M2, and estimate

d(y,x)≤ d(y,xn)+d(xn,x)

<
ε

2
+

ε

2
= ε.

As d(y,x)< ε for all ε > 0, then d(x,y) = 0 and y = x. Hence the limit (if it exists) is unique.

The proofs of the following propositions are left as exercises.

Proposition 7.3.4. A convergent sequence in a metric space is bounded.

Proposition 7.3.5. A sequence {xn} in a metric space (X ,d) converges to p ∈ X if and only if there
exists a sequence {an} of real numbers such that

d(xn, p)≤ an for all n ∈ N,

and
lim
n→∞

an = 0.

Proposition 7.3.6. Let {xn} be a sequence in a metric space (X ,d).

(i) If {xn} converges to p ∈ X, then every subsequence {xnk} converges to p.

(ii) If for some K ∈ N the K-tail {xn}∞
n=K+1 converges to p ∈ X, then {xn} converges to p.

Example 7.3.7: Take C([0,1],R) be the set of continuous functions with the metric being the
uniform metric. We saw that we obtain a metric space. If we look at the definition of convergence,
we notice that it is identical to uniform convergence. That is, { fn} converges uniformly if and only
if it converges in the metric space sense.

Remark 7.3.8. It is perhaps surprising that on the set of functions f : [a,b]→ R (continuous or not)
there is no metric that gives pointwise convergence. Although the proof of this fact is beyond the
scope of this book.

7.3.2 Convergence in euclidean space
In the euclidean space Rn, a sequence converges if and only if every component converges:

Proposition 7.3.9. Let {x j}∞
j=1 be a sequence in Rn, where we write x j =

(
x j,1,x j,2, . . . ,x j,n

)
∈ Rn.

Then {x j}∞
j=1 converges if and only if {x j,k}∞

j=1 converges for every k = 1,2, . . . ,n, in which case

lim
j→∞

x j =
(

lim
j→∞

x j,1, lim
j→∞

x j,2, . . . , lim
j→∞

x j,n

)
.
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Proof. Suppose the sequence {x j}∞
j=1 converges to y = (y1,y2, . . . ,yn) ∈ Rn. Given ε > 0, there

exists an M, such that for all j ≥M we have

d(y,x j)< ε.

Fix some k = 1,2, . . . ,n. For j ≥M we have

∣∣yk− x j,k
∣∣=√(yk− x j,k

)2 ≤
√

n

∑̀
=1

(
y`− x j,`

)2
= d(y,x j)< ε.

Hence the sequence {x j,k}∞
j=1 converges to yk.

For the other direction, suppose {x j,k}∞
j=1 converges to yk for every k = 1,2, . . . ,n. Given ε > 0,

pick an M, such that if j ≥M, then
∣∣yk− x j,k

∣∣< ε/
√

n for all k = 1,2, . . . ,n. Then

d(y,x j) =

√
n

∑
k=1

(
yk− x j,k

)2
<

√√√√ n

∑
k=1

(
ε√
n

)2

=

√
n

∑
k=1

ε2

n
= ε.

That is, the sequence {x j} converges to y = (y1,y2, . . . ,yn) ∈ Rn.

Example 7.3.10: As we said, the set C of complex numbers z = x+ iy is considered as the metric
space R2. The proposition says that the sequence {z j}∞

j=1 = {x j + iy j}∞
j=1 converges to z = x+ iy if

and only if {x j} converges to x and {y j} converges to y.

7.3.3 Convergence and topology
The topology—the set of open sets of a space—encodes which sequences converge.

Proposition 7.3.11. Let (X ,d) be a metric space and {xn} a sequence in X. Then {xn} converges
to x ∈ X if and only if for every open neighborhood U of x, there exists an M ∈ N such that for all
n≥M we have xn ∈U.

Proof. Suppose {xn} converges to x. Let U be an open neighborhood of x, then there exists an
ε > 0 such that B(x,ε)⊂U . As the sequence converges, find an M ∈ N such that for all n≥M we
have d(x,xn)< ε , or in other words xn ∈ B(x,ε)⊂U .

Let us prove the other direction. Given ε > 0, let U := B(x,ε) be the neighborhood of x. Then
there is an M ∈N such that for n≥M we have xn ∈U = B(x,ε) or in other words, d(x,xn)< ε .

A closed set contains the limits of its convergent sequences.

Proposition 7.3.12. Let (X ,d) be a metric space, E ⊂ X a closed set, and {xn} a sequence in E
that converges to some x ∈ X. Then x ∈ E.

Proof. Let us prove the contrapositive. Suppose {xn} is a sequence in X that converges to x ∈ Ec.
As Ec is open,  Proposition 7.3.11 says that there is an M such that for all n≥M, xn ∈ Ec. So {xn}
is not a sequence in E.

To take a closure of a set A, we take A, and we throw in points that are limits of sequences in A.
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Proposition 7.3.13. Let (X ,d) be a metric space and A⊂ X. Then x ∈ A if and only if there exists
a sequence {xn} of elements in A such that lim xn = x.

Proof. Let x ∈ A. For every n ∈ N, by  Proposition 7.2.22 there exists a point xn ∈ B(x,1/n)∩A. As
d(x,xn)< 1/n, we have lim xn = x.

For the other direction, see  Exercise 7.3.1 .

7.3.4 Exercises
Exercise 7.3.1: Finish the proof of  Proposition 7.3.13 . Let (X ,d) be a metric space and let A⊂ X. Let E be
the set of all x ∈ X such that there exists a sequence {xn} in A that converges to x. Show E = A.

Exercise 7.3.2:

a) Show that d(x,y) := min{1, |x− y|} defines a metric on R.

b) Show that a sequence converges in (R,d) if and only if it converges in the standard metric.

c) Find a bounded sequence in (R,d) that contains no convergent subsequence.

Exercise 7.3.3: Prove  Proposition 7.3.4 .

Exercise 7.3.4: Prove  Proposition 7.3.5 .

Exercise 7.3.5: Suppose {xn}∞
n=1 converges to x. Suppose f : N→ N is a one-to-one function. Show that

{x f (n)}∞
n=1 converges to x.

Exercise 7.3.6: Let (X ,d) be a metric space where d is the discrete metric. Suppose {xn} is a convergent
sequence in X. Show that there exists a K ∈ N such that for all n≥ K we have xn = xK .

Exercise 7.3.7: A set S⊂ X is said to be dense in X if X ⊂ S or in other words if for every x ∈ X, there exists
a sequence {xn} in S that converges to x. Prove that Rn contains a countable dense subset.

Exercise 7.3.8 (Tricky): Suppose {Un}∞
n=1 is a decreasing (Un+1 ⊂Un for all n) sequence of open sets in a

metric space (X ,d) such that
⋂∞

n=1Un = {p} for some p ∈ X. Suppose {xn} is a sequence of points in X such
that xn ∈Un. Does {xn} necessarily converge to p? Prove or construct a counterexample.

Exercise 7.3.9: Let E ⊂ X be closed and let {xn} be a sequence in X converging to p ∈ X. Suppose xn ∈ E
for infinitely many n ∈ N. Show p ∈ E.

Exercise 7.3.10: Take R∗ = {−∞} ∪R∪ {∞} be the extended reals. Define d(x,y) :=
∣∣ x

1+|x| −
y

1+|y|
∣∣ if

x,y ∈ R, define d(∞,x) :=
∣∣1− x

1+|x|
∣∣, d(−∞,x) :=

∣∣1+ x
1+|x|

∣∣ for all x ∈ R, and let d(∞,−∞) := 2.

a) Show that (R∗,d) is a metric space.

b) Suppose {xn} is a sequence of real numbers such that for every M ∈R, there exists an N such that xn ≥M
for all n≥ N. Show that lim xn = ∞ in (R∗,d).

c) Show that a sequence of real numbers converges to a real number in (R∗,d) if and only if it converges in
R with the standard metric.

Exercise 7.3.11: Suppose {Vn}∞
n=1 is a sequence of open sets in (X ,d) such that Vn+1 ⊃ Vn for all n. Let

{xn} be a sequence such that xn ∈Vn+1 \Vn and suppose {xn} converges to p ∈ X. Show that p ∈ ∂V where
V =

⋃∞
n=1Vn.
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Exercise 7.3.12: Prove  Proposition 7.3.6 .

Exercise 7.3.13: Let (X ,d) be a metric space and {xn} a sequence in X. Prove that {xn} converges to p ∈ X
if and only if every subsequence of {xn} has a subsequence that converges to p.

Exercise 7.3.14: Consider Rn, and let d be the standard euclidean metric. Let d′(x,y) := ∑n
`=1 |x`− y`| and

d′′(x,y) := max{|x1− y1| , |x2− y2| , · · · , |xn− yn|}.
a) Use  Exercise 7.1.6 , to show that (Rn,d′) and (Rn,d′′) are metric spaces.

b) Let {x j}∞
j=1 be a sequence in Rn and p ∈ Rn. Prove that the following statements are equivalent:

(1) {x j} converges to p in (Rn,d).
(2) {x j} converges to p in (Rn,d′).
(3) {x j} converges to p in (Rn,d′′).
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7.4 Completeness and compactness
Note: 2 lectures

7.4.1 Cauchy sequences and completeness
Just like with sequences of real numbers we define Cauchy sequences.

Definition 7.4.1. Let (X ,d) be a metric space. A sequence {xn} in X is a Cauchy sequence if for
every ε > 0 there exists an M ∈ N such that for all n≥M and all k ≥M we have

d(xn,xk)< ε.

The definition is again simply a translation of the concept from the real numbers to metric
spaces. So a sequence of real numbers is Cauchy in the sense of  chapter 2  if and only if it is Cauchy
in the sense above, provided we equip the real numbers with the standard metric d(x,y) = |x− y|.
Proposition 7.4.2. A convergent sequence in a metric space is Cauchy.

Proof. Suppose {xn} converges to x. Given ε > 0, there is an M such that for n ≥ M we have
d(x,xn)< ε/2. Hence for all n,k ≥M we have d(xn,xk)≤ d(xn,x)+d(x,xk)< ε/2+ ε/2 = ε .

Definition 7.4.3. Let (X ,d) be a metric space. We say X is complete or Cauchy-complete if every
Cauchy sequence {xn} in X converges to an x ∈ X .

Proposition 7.4.4. The space Rn with the standard metric is a complete metric space.

For R = R1 completeness was proved in  chapter 2  . The proof of the proposition above is a
reduction to the one dimensional case.

Proof. Let {x j}∞
j=1 be a Cauchy sequence in Rn, where we write x j =

(
x j,1,x j,2, . . . ,x j,n

)
∈Rn. As

the sequence is Cauchy, given ε > 0, there exists an M such that for all i, j ≥M,

d(xi,x j)< ε.

Fix some k = 1,2, . . . ,n. For i, j ≥M,

∣∣xi,k− x j,k
∣∣=√(xi,k− x j,k

)2 ≤
√

n

∑̀
=1

(
xi,`− x j,`

)2
= d(xi,x j)< ε.

Hence the sequence {x j,k}∞
j=1 is Cauchy. As R is complete the sequence converges; there exists

a yk ∈ R such that yk = lim j→∞ x j,k. Write y = (y1,y2, . . . ,yn) ∈ Rn. By  Proposition 7.3.9  , {x j}
converges to y ∈ Rn, and hence Rn is complete.

A subset of Rn with the subspace metric need not be complete. For example, (0,1] with the
subspace metric is not complete as {1/n} is a Cauchy sequence in (0,1] with no limit in (0,1]. But
see also  Exercise 7.4.16 .

In the language of metric spaces, the results on continuity of section  §6.2 , say that the metric
space C([a,b],R) of  Example 7.1.8 is complete. The proof follows by “unrolling the definitions,”
and is left as an exercise.
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Proposition 7.4.5. The space of continuous functions C([a,b],R) with the uniform norm as metric
is a complete metric space.

Once we have one complete metric space, any closed subspace is also a complete metric space.
After all, one way to think of a closed set is that it contains all points that can be reached from the
set via a sequence. The proof is again an exercise.

Proposition 7.4.6. Suppose (X ,d) is a complete metric space and E ⊂ X is closed, then E is a
complete metric space with the subspace topology.

7.4.2 Compactness
Definition 7.4.7. Let (X ,d) be a metric space and K ⊂ X . The set K is said to be compact if for
any collection of open sets {Uλ}λ∈I such that

K ⊂
⋃
λ∈I

Uλ ,

there exists a finite subset {λ1,λ2, . . . ,λk} ⊂ I such that

K ⊂
k⋃

j=1

Uλ j .

A collection of open sets {Uλ}λ∈I as above is said to be an open cover of K. So a way to say
that K is compact is to say that every open cover of K has a finite subcover.

Example 7.4.8: Let R be the metric space with the standard metric.
The set R is not compact. Proof: Take the sets U j := (− j, j). Any x ∈ R is in some U j

(by the  Archimedean property ), so we have an open cover. Suppose we have a finite subcover
R⊂U j1 ∪U j2 ∪·· ·∪U jk , and suppose j1 < j2 < · · ·< jk. Then R⊂U jk , but that is a contradiction
as jk ∈ R on one hand and jk /∈U jk = (− jk, jk) on the other.

The set (0,1)⊂R is also not compact. Proof: Take the sets U j := (1/j,1− 1/j) for j = 3,4,5, . . ..
As above (0,1) =

⋃∞
j=3U j. And similarly as above, if there exists a finite subcover, then there is

one U j such that (0,1)⊂U j, which again leads to a contradiction.
The set {0} ⊂ R is compact. Proof: Given any open cover {Uλ}λ∈I , there must exist a λ0 such

that 0 ∈Uλ0 as it is a cover. But then Uλ0 gives a finite subcover.
We will prove below that [0,1], and in fact any closed and bounded interval [a,b] is compact.

Proposition 7.4.9. Let (X ,d) be a metric space. A compact set K ⊂ X is closed and bounded.

Proof. First, we prove that a compact set is bounded. Fix p ∈ X . We have the open cover

K ⊂
∞⋃

n=1

B(p,n) = X .

If K is compact, then there exists some set of indices n1 < n2 < .. . < nk such that

K ⊂
k⋃

j=1

B(p,n j) = B(p,nk).
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As K is contained in a ball, K is bounded. See left hand side of  Figure 7.10 .
Next, we show a set that is not closed is not compact. Suppose K 6= K, that is, there is a point

x ∈ K \K. If y 6= x, then y /∈C(x,1/n) for n ∈ N such that 1/n < d(x,y). Furthermore x /∈ K, so

K ⊂
∞⋃

n=1

C(x,1/n)c.

A closed ball is closed, so its complement C(x,1/n)c is open, and we have an open cover. If we take
any finite collection of indices n1 < n2 < .. . < nk, then

k⋃
j=1

C(x,1/n j)
c =C(x,1/nk)

c

As x is in the closure of K, then C(x,1/nk)∩K 6= /0. So there is no finite subcover and K is not
compact. See right hand side of  Figure 7.10 .

K

1
2

B(p,3)

B(p,2)

3

B(p,1)

p

C(x,1)

C(x,1/4)

C(x,1/2)

C(x,1/3)
x

K

Figure 7.10: Proving compact set is bounded (left) and closed (right).

We prove below that in a finite dimensional euclidean space every closed bounded set is compact.
So closed bounded sets of Rn are examples of compact sets. It is not true that in every metric space,
closed and bounded is equivalent to compact. A simple example is an incomplete metric space
such as (0,1) with the subspace metric from R. There are many complete and very useful metric
spaces where closed and bounded is not enough to give compactness: C([a,b],R) is a complete
metric space, but the closed unit ball C(0,1) is not compact, see  Exercise 7.4.8 . However, see also

 Exercise 7.4.12 .
A useful property of compact sets in a metric space is that every sequence in the set has a

convergent subsequence converging to a point in the set. Such sets are called sequentially compact.
Let us prove that in the context of metric spaces, a set is compact if and only if it is sequentially
compact. First we prove a lemma.

Lemma 7.4.10 (Lebesgue covering lemma  

*
 ). Let (X ,d) be a metric space and K ⊂ X. Suppose

every sequence in K has a subsequence convergent in K. Given an open cover {Uλ}λ∈I of K, there
exists a δ > 0 such that for every x ∈ K, there exists a λ ∈ I with B(x,δ )⊂Uλ .

*Named after the French mathematician  Henri Léon Lebesgue (1875–1941). The number δ is sometimes called the
Lebesgue number of the cover.
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Proof. We prove the lemma by contrapositive. If the conclusion is not true, then there is an open
cover {Uλ}λ∈I of K with the following property. For every n ∈ N there exists an xn ∈ K such that
B(xn,1/n) is not a subset of any Uλ . Take any x ∈ K. There is a λ ∈ I such that x ∈Uλ . As Uλ is
open, there is an ε > 0 such that B(x,ε) ⊂Uλ . Take M such that 1/M < ε/2. If y ∈ B(x, ε/2) and
n≥M, then

B(y,1/n)⊂ B(y,1/M)⊂ B(y, ε/2)⊂ B(x,ε)⊂Uλ ,

where B(y, ε/2) ⊂ B(x,ε) follows by triangle inequality. See  Figure 7.11 . In other words, for all
n ≥M, xn /∈ B(x, ε/2). The sequence cannot have a subsequence converging to x. As x ∈ K was
arbitrary we are done.

ε

B(x,ε)

B(y, ε/2)

y
x

B(x, ε/2)

B(y,1/n)

ε/2
Uλ

Figure 7.11: Proof of Lebesgue covering lemma. Note that B(y, ε/2)⊂ B(x,ε) by triangle inequality.

It is important to recognize what the lemma says. It says that if K is sequentially compact, then
given any cover there is a single δ > 0. The δ depends on the cover, but of course it does not depend
on x.

For example, let K := [−10,10] and for n ∈ Z let Un := (n,n+2) define sets in an open cover.
Take x ∈ K. There is an n ∈ Z, such that n≤ x < n+1. If n≤ x < n+ 1/2, then B

(
x,1/2

)
⊂Un−1.

If n+ 1/2 ≤ x < n+1, then B
(
x,1/2

)
⊂Un. So δ = 1/2. If instead we let U ′n :=

(n
2 ,

n+2
2

)
, then we

again obtain an open cover, but now the best δ we can find is 1/4.
On the other hand, N⊂ R is not sequentially compact. It is an exercise to find a cover for which

no δ > 0 works.

Theorem 7.4.11. Let (X ,d) be a metric space. Then K ⊂ X is compact if and only if every sequence
in K has a subsequence converging to a point in K.

Proof. Claim: Let K ⊂ X be a subset of X and {xn} a sequence in K. Suppose that for each x ∈ K,
there is a ball B(x,αx) for some αx > 0 such that xn ∈ B(x,αx) for only finitely many n ∈ N. Then
K is not compact.

Proof of the claim: Notice
K ⊂

⋃
x∈K

B(x,αx).

Any finite collection of these balls is going to contain only finitely many xn. Thus for any finite
collection of such balls there is an xn ∈ K that is not in the union. Therefore, K is not compact and
the claim is proved.
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So suppose that K is compact and {xn} is a sequence in K. Then there exists an x ∈ K such that
for any δ > 0, B(x,δ ) contains xk for infinitely many k ∈ N. We define the subsequence inductively.
The ball B(x,1) contains some xk so let n1 := k. Suppose n j−1 is defined. There must exist a
k > n j−1 such that xk ∈ B(x,1/j). So define n j := k. We now posses a subsequence {xn j}∞

j=1. Since
d(x,xn j)< 1/j,  Proposition 7.3.5 says lim xn j = x.

For the other direction, suppose every sequence in K has a subsequence converging in K. Take
an open cover {Uλ}λ∈I of K. Using the Lebesgue covering lemma above, find a δ > 0 such that for
every x ∈ K, there is a λ ∈ I with B(x,δ )⊂Uλ .

Pick x1 ∈ K and find λ1 ∈ I such that B(x1,δ ) ⊂Uλ1 . If K ⊂Uλ1 , we stop as we have found
a finite subcover. Otherwise, there must be a point x2 ∈ K \Uλ1 . Note that d(x2,x1) ≥ δ . There
must exist some λ2 ∈ I such that B(x2,δ )⊂Uλ2 . We work inductively. Suppose λn−1 is defined.
Either Uλ1 ∪Uλ2 ∪·· ·∪Uλn−1 is a finite cover of K, in which case we stop, or there must be a point
xn ∈ K \

(
Uλ1 ∪Uλ2 ∪ ·· · ∪Uλn−1

)
. Note that d(xn,x j) ≥ δ for all j = 1,2, . . . ,n− 1. Next, there

must be some λn ∈ I such that B(xn,δ )⊂Uλn . See  Figure 7.12 .

δ

x1Uλ1

K
x2 x3

x4

Uλ2

Uλ3

Figure 7.12: Covering K by Uλ . The points x1,x2,x3,x4, the three sets Uλ1 , Uλ2 , Uλ2 , and the first three
balls of radius δ are drawn.

Either at some point we obtain a finite subcover of K, or we obtain an infinite sequence {xn} as
above. For contradiction, suppose that there is no finite subcover and we have the sequence {xn}.
For all n and k, n 6= k, we have d(xn,xk)≥ δ , so no subsequence of {xn} can be Cauchy. Hence no
subsequence of {xn} can be convergent, which is a contradiction.

Example 7.4.12: The Bolzano–Weierstrass theorem for sequences of real numbers (  Theorem 2.3.8 )
says that any bounded sequence in R has a convergent subsequence. Therefore, any sequence in a
closed interval [a,b]⊂ R has a convergent subsequence. The limit must also be in [a,b] as limits
preserve non-strict inequalities. Hence a closed bounded interval [a,b]⊂ R is compact.

Proposition 7.4.13. Let (X ,d) be a metric space and let K ⊂ X be compact. If E ⊂ K is a closed
set, then E is compact.

Because K is closed, then E is closed in K if and only if it is closed in X , see  Proposition 7.2.12 .

Proof. Let {xn} be a sequence in E. It is also a sequence in K. Therefore, it has a convergent
subsequence {xn j} that converges to some x ∈ K. As E is closed the limit of a sequence in E is also
in E and so x ∈ E. Thus E must be compact.
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Theorem 7.4.14 (Heine–Borel 

*
 ). A closed bounded subset K ⊂ Rn is compact.

So subsets of Rn are compact if and only if they are closed and bounded, a condition that is
much easier to check. Let us reiterate that the Heine–Borel theorem only holds for Rn and not for
metric spaces in general. In general, compact implies closed and bounded, but not vice versa.

Proof. For R= R1 if K ⊂ R is closed and bounded, then any sequence {xk} in K is bounded, so it
has a convergent subsequence by Bolzano–Weierstrass theorem (  Theorem 2.3.8 ). As K is closed,
the limit of the subsequence must be an element of K. So K is compact.

Let us carry out the proof for n = 2 and leave arbitrary n as an exercise. As K ⊂ R2 is bounded,
there exists a set B = [a,b]× [c,d]⊂ R2 such that K ⊂ B. We will show that B is compact. Then K,
being a closed subset of a compact B, is also compact.

Let
{
(xk,yk)

}∞
k=1 be a sequence in B. That is, a≤ xk ≤ b and c≤ yk ≤ d for all k. A bounded

sequence of real numbers has a convergent subsequence so there is a subsequence {xk j}∞
j=1 that is

convergent. The subsequence {yk j}∞
j=1 is also a bounded sequence so there exists a subsequence

{yk ji
}∞

i=1 that is convergent. A subsequence of a convergent sequence is still convergent, so {xk ji
}∞

i=1
is convergent. Let

x := lim
i→∞

xk ji
and y := lim

i→∞
yk ji

.

By  Proposition 7.3.9 ,
{
(xk ji

,yk ji
)
}∞

i=1 converges to (x,y). Furthermore, as a≤ xk ≤ b and c≤ yk ≤ d
for all k, we know that (x,y) ∈ B.

Example 7.4.15: The discrete metric provides interesting counterexamples again. Let (X ,d) be a
metric space with the discrete metric, that is d(x,y) = 1 if x 6= y. Suppose X is an infinite set. Then:

(i) (X ,d) is a complete metric space.

(ii) Any subset K ⊂ X is closed and bounded.

(iii) A subset K ⊂ X is compact if and only if it is a finite set.

(iv) The conclusion of the Lebesgue covering lemma is always satisfied with e.g. δ = 1/2, even
for noncompact K ⊂ X .

The proofs of the statements above are either trivial or are relegated to the exercises below.

Remark 7.4.16. A subtle issue with Cauchy sequences, completeness, compactness, and convergence
is that compactness and convergence only depend on the topology, that is, on which sets are the
open sets. On the other hand, Cauchy sequences and completeness depend on the actual metric. See

 Exercise 7.4.19 .

7.4.3 Exercises
Exercise 7.4.1: Let (X ,d) be a metric space and A a finite subset of X. Show that A is compact.

Exercise 7.4.2: Let A = {1/n : n ∈ N} ⊂ R.

a) Show that A is not compact directly using the definition.

b) Show that A∪{0} is compact directly using the definition.

*Named after the German mathematician  Heinrich Eduard Heine (1821–1881), and the French mathematician  Félix
Édouard Justin Émile Borel (1871–1956).
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Exercise 7.4.3: Let (X ,d) be a metric space with the discrete metric.

a) Prove that X is complete.

b) Prove that X is compact if and only if X is a finite set.

Exercise 7.4.4:

a) Show that the union of finitely many compact sets is a compact set.

b) Find an example where the union of infinitely many compact sets is not compact.

Exercise 7.4.5: Prove  Theorem 7.4.14  for arbitrary dimension. Hint: The trick is to use the correct notation.

Exercise 7.4.6: Show that a compact set K is a complete metric space (using the subspace metric).

Exercise 7.4.7: Let C([a,b],R) be the metric space as in  Example 7.1.8  . Show that C([a,b],R) is a complete
metric space.

Exercise 7.4.8 (Challenging): Let C([0,1],R) be the metric space of  Example 7.1.8 . Let 0 denote the zero
function. Then show that the closed ball C(0,1) is not compact (even though it is closed and bounded). Hints:
Construct a sequence of distinct continuous functions { fn} such that d( fn,0) = 1 and d( fn, fk) = 1 for all
n 6= k. Show that the set { fn : n ∈ N} ⊂C(0,1) is closed but not compact. See  chapter 6 for inspiration.

Exercise 7.4.9 (Challenging): Show that there exists a metric on R that makes R into a compact set.

Exercise 7.4.10: Suppose (X ,d) is complete and suppose we have a countably infinite collection of nonempty
compact sets E1 ⊃ E2 ⊃ E3 ⊃ ·· · . Prove

⋂∞
j=1 E j 6= /0.

Exercise 7.4.11 (Challenging): Let C([0,1],R) be the metric space of  Example 7.1.8 . Let K be the set
of f ∈C([0,1],R) such that f is equal to a quadratic polynomial, i.e. f (x) = a+ bx+ cx2, and such that
| f (x)| ≤ 1 for all x ∈ [0,1], that is f ∈C(0,1). Show that K is compact.

Exercise 7.4.12 (Challenging): Let (X ,d) be a complete metric space. Show that K ⊂ X is compact if
and only if K is closed and such that for every ε > 0 there exists a finite set of points x1,x2, . . . ,xn with
K ⊂⋃n

j=1 B(x j,ε). Note: Such a set K is said to be totally bounded, so in a complete metric space a set is
compact if and only if it is closed and totally bounded.

Exercise 7.4.13: Take N⊂R using the standard metric. Find an open cover of N such that the conclusion of
the Lebesgue covering lemma does not hold.

Exercise 7.4.14: Prove the general Bolzano–Weierstrass theorem: Any bounded sequence {xk} in Rn has a
convergent subsequence.

Exercise 7.4.15: Let X be a metric space and C ⊂P(X) the set of nonempty compact subsets of X. Using
the Hausdorff metric from  Exercise 7.1.8 , show that (C,dH) is a metric space. That is, show that if L and K
are nonempty compact subsets, then dH(L,K) = 0 if and only if L = K.

Exercise 7.4.16: Prove  Proposition 7.4.6 . That is, let (X ,d) be a complete metric space and E ⊂ X a closed
set. Show that E with the subspace metric is a complete metric space.

Exercise 7.4.17: Let (X ,d) be an incomplete metric space. Show that there exists a closed and bounded set
E ⊂ X that is not compact.
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Exercise 7.4.18: Let (X ,d) be a metric space and K ⊂ X. Prove that K is compact as a subset of (X ,d) if
and only if K is compact as a subset of itself with the subspace metric.

Exercise 7.4.19: Consider two metrics on R. Let d(x,y) := |x− y| be the standard metric, and let d′(x,y) :=∣∣ x
1+|x| −

y
1+|y|

∣∣.
a) Show that (R,d′) is a metric space (if you have done  Exercise 7.3.10 , the computation is the same).

b) Show that the topology is the same, that is, a set is open in (R,d) if and only if it is open in (R,d′).
c) Show that a set is compact in (R,d) if and only if it is compact in (R,d′).
d) Show that a sequence converges in (R,d) if and only if it converges in (R,d′).
e) Find a sequence of real numbers that is Cauchy in (R,d′) but not Cauchy in (R,d).
f) While (R,d) is complete, show that (R,d′) is not complete.

Exercise 7.4.20: Let (X ,d) be a complete metric space. We say a set S ⊂ X is relatively compact if the
closure S is compact. Prove that S ⊂ X is relatively compact if and only if given any sequence {xn} in S,
there exists a subsequence {xnk} that converges (in X).
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7.5 Continuous functions
Note: 1.5–2 lectures

7.5.1 Continuity
Definition 7.5.1. Let (X ,dX) and (Y,dY ) be metric spaces and c ∈ X . Then f : X → Y is contin-
uous at c if for every ε > 0 there is a δ > 0 such that whenever x ∈ X and dX(x,c) < δ , then
dY
(

f (x), f (c)
)
< ε .

When f : X → Y is continuous at all c ∈ X , then we simply say that f is a continuous function.

The definition agrees with the definition from  chapter 3 when f is a real-valued function on the
real line, if we take the standard metric on R.

Proposition 7.5.2. Let (X ,dX) and (Y,dY ) be metric spaces. Then f : X→Y is continuous at c∈ X
if and only if for every sequence {xn} in X converging to c, the sequence { f (xn)} converges to f (c).

Proof. Suppose f is continuous at c. Let {xn} be a sequence in X converging to c. Given ε > 0,
there is a δ > 0 such that dX(x,c) < δ implies dY

(
f (x), f (c)

)
< ε . So take M such that for all

n≥M, we have dX(xn,c)< δ , then dY
(

f (xn), f (c)
)
< ε . Hence { f (xn)} converges to f (c).

On the other hand suppose f is not continuous at c. Then there exists an ε > 0, such that for
every n ∈ N there exists an xn ∈ X , with dX(xn,c)< 1/n such that dY

(
f (xn), f (c)

)
≥ ε . Then {xn}

converges to c, but { f (xn)} does not converge to f (c).

Example 7.5.3: Suppose f : R2→ R is a polynomial. That is,

f (x,y) =
d

∑
j=0

d− j

∑
k=0

a jk x jyk = a00 +a10 x+a01 y+a20 x2 +a11 xy+a02 y2 + · · ·+a0d yd,

for some d ∈ N (the degree) and a jk ∈ R. Then we claim f is continuous. Let {(xn,yn)}∞
n=1 be a

sequence in R2 that converges to (x,y) ∈ R2. We proved that this means lim xn = x and lim yn = y.
By  Proposition 2.2.5 we have

lim
n→∞

f (xn,yn) = lim
n→∞

d

∑
j=0

d− j

∑
k=0

a jk x j
nyk

n =
d

∑
j=0

d− j

∑
k=0

a jk x jyk = f (x,y).

So f is continuous at (x,y), and as (x,y) was arbitrary f is continuous everywhere. Similarly, a
polynomial in n variables is continuous.

Be careful about taking limits separately. In  Exercise 7.5.2 you are asked to prove that the
function defined by f (x,y) := xy

x2+y2 outside the origin and f (0,0) := 0, is not continuous at the
origin. See  Figure 7.13 . However, for any y, the function g(x) := f (x,y) is continuous, and for any
x, the function h(y) := f (x,y) is continuous.

Example 7.5.4: Let X be a metric space and f : X → C a complex-valued function. We write
f (p) = g(p)+ ih(p), where g : X → R and h : X → R are the real and imaginary parts of f . Then
f is continuous at c ∈ X if and only if its real and imaginary parts are continuous at c. This fact
follows because { f (pn) = g(pn)+ ih(pn)}∞

n=1 converges to f (p) = g(p)+ ih(p) if and only if
{g(pn)} converges to g(p) and {h(pn)} converges to h(p).
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x

y

z

Figure 7.13: Graph of xy
x2+y2 .

7.5.2 Compactness and continuity
Continuous maps do not map closed sets to closed sets. For example, f : (0,1)→ R defined by
f (x) := x takes the set (0,1), which is closed in (0,1), to the set (0,1), which is not closed in R.
On the other hand continuous maps do preserve compact sets.

Lemma 7.5.5. Let (X ,dX) and (Y,dY ) be metric spaces and f : X → Y a continuous function. If
K ⊂ X is a compact set, then f (K) is a compact set.

Proof. A sequence in f (K) can be written as { f (xn)}∞
n=1, where {xn}∞

n=1 is a sequence in K. The
set K is compact and therefore there is a subsequence {xn j}∞

j=1 that converges to some x ∈ K. By
continuity,

lim
j→∞

f (xn j) = f (x) ∈ f (K).

So every sequence in f (K) has a subsequence convergent to a point in f (K), and f (K) is compact
by  Theorem 7.4.11 .

As before, f : X → R achieves an absolute minimum at c ∈ X if

f (x)≥ f (c) for all x ∈ X .

On the other hand, f achieves an absolute maximum at c ∈ X if

f (x)≤ f (c) for all x ∈ X .

Theorem 7.5.6. Let (X ,d) be a compact metric space and f : X → R a continuous function. Then
f is bounded and in fact f achieves an absolute minimum and an absolute maximum on X.

Proof. As X is compact and f is continuous, then f (X)⊂ R is compact. Hence f (X) is closed and
bounded. In particular, sup f (X) ∈ f (X) and inf f (X) ∈ f (X), because both the sup and the inf can
be achieved by sequences in f (X) and f (X) is closed. Therefore, there is some x ∈ X such that
f (x) = sup f (X) and some y ∈ X such that f (y) = inf f (X).
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7.5.3 Continuity and topology
Let us see how to define continuity in terms of the topology, that is, the open sets. We have already
seen that topology determines which sequences converge, and so it is no wonder that the topology
also determines continuity of functions.

Lemma 7.5.7. Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X → Y is continuous at
c ∈ X if and only if for every open neighborhood U of f (c) in Y , the set f−1(U) contains an open
neighborhood of c in X. See  Figure 7.14 .

f
U

W

f (c)

f−1(U)

c

Figure 7.14: For every neighborhood U of f (c), the set f−1(U) contains an open neighborhood W of c.

Proof. First suppose that f is continuous at c. Let U be an open neighborhood of f (c) in Y , then
BY
(

f (c),ε
)
⊂U for some ε > 0. By continuity of f , there exists a δ > 0 such that whenever x is

such that dX(x,c)< δ , then dY
(

f (x), f (c)
)
< ε . In other words,

BX(c,δ )⊂ f−1(BY
(

f (c),ε
))
⊂ f−1(U),

and BX(c,δ ) is an open neighborhood of c.
For the other direction, let ε > 0 be given. If f−1(BY

(
f (c),ε

))
contains an open neighborhood

W of c, it contains a ball. That is, there is some δ > 0 such that

BX(c,δ )⊂W ⊂ f−1(BY
(

f (c),ε
))
.

That means precisely that if dX(x,c)< δ , then dY
(

f (x), f (c)
)
< ε , and so f is continuous at c.

Theorem 7.5.8. Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X → Y is continuous if
and only if for every open U ⊂ Y , f−1(U) is open in X.

The proof follows from  Lemma 7.5.7 and is left as an exercise.

Example 7.5.9: Let f : X → Y be a continuous function.  Theorem 7.5.8  tells us that if E ⊂ Y is
closed, then f−1(E) = X \ f−1(Ec) is also closed. Therefore, if we have a continuous function
f : X → R, then the zero set of f , that is, f−1(0) = {x ∈ X : f (x) = 0}, is closed. We have just
proved the most basic result in algebraic geometry, the study of zero sets of polynomials: The zero
set of a polynomial is closed.

Similarly the set where f is nonnegative, that is, f−1([0,∞)
)
= {x ∈ X : f (x) ≥ 0} is closed.

On the other hand the set where f is positive, f−1((0,∞)
)
= {x ∈ X : f (x)> 0} is open.
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7.5.4 Uniform continuity
As for continuous functions on the real line, in the definition of continuity it is sometimes convenient
to be able to pick one δ for all points.

Definition 7.5.10. Let (X ,dX) and (Y,dY ) be metric spaces. Then f : X → Y is uniformly con-
tinuous if for every ε > 0 there is a δ > 0 such that whenever p,q ∈ X and dX(p,q) < δ , then
dY
(

f (p), f (q)
)
< ε .

A uniformly continuous function is continuous, but not necessarily vice versa as we have seen.

Theorem 7.5.11. Let (X ,dX) and (Y,dY ) be metric spaces. Suppose f : X → Y is continuous and
X is compact. Then f is uniformly continuous.

Proof. Let ε > 0 be given. For each c ∈ X , pick δc > 0 such that dY
(

f (x), f (c)
)
< ε/2 whenever

x ∈ B(c,δc). The balls B(c,δc) cover X , and the space X is compact. Apply the  Lebesgue covering
lemma to obtain a δ > 0 such that for every x ∈ X , there is a c ∈ X for which B(x,δ )⊂ B(c,δc).

If p,q ∈ X where dX(p,q)< δ , find a c ∈ X such that B(p,δ )⊂ B(c,δc). Then q ∈ B(c,δc). By
the triangle inequality and the definition of δc we have

dY
(

f (p), f (q)
)
≤ dY

(
f (p), f (c)

)
+dY

(
f (c), f (q)

)
< ε/2+ ε/2 = ε.

As an application of uniform continuity, let us prove a useful criterion for continuity of functions
defined by integrals. Let f (x,y) be a function of two variables and define

g(y) :=
∫ b

a
f (x,y) dx.

Question is, is g is continuous? We are really asking when do two limiting operations commute,
which is not always possible, so some extra hypothesis is necessary. A useful sufficient (but not
necessary) condition is that f is continuous on a closed rectangle.

Proposition 7.5.12. If f : [a,b]× [c,d]→R is a continuous function, then g : [c,d]→R defined by

g(y) :=
∫ b

a
f (x,y) dx is continuous.

Proof. Fix y ∈ [c,d], and let {yn} be a sequence in [c,d] converging to y. Let ε > 0 be given. As
f is continuous on [a,b]× [c,d], which is compact, f is uniformly continuous. In particular, there
exists a δ > 0 such that whenever ỹ ∈ [c,d] and |ỹ− y|< δ we have | f (x, ỹ)− f (x,y)|< ε for all
x ∈ [a,b]. If we let hn(x) := f (x,yn) and h(x) := f (x,y), we have just shown that hn : [a,b]→ R
converges uniformly to h : [a,b]→ R as n goes to ∞. Uniform convergence implies the limit can be
taken underneath the integral. So

lim
n→∞

g(yn) = lim
n→∞

∫ b

a
f (x,yn) dx =

∫ b

a
lim
n→∞

f (x,yn) dx =
∫ b

a
f (x,y) dx = g(y).

In applications, if we are interested in continuity at y0, we just need to apply the proposition in
[a,b]× [y0− ε,y0 + ε] for some small ε > 0. For example, if f is continuous in [a,b]×R, then g is
continuous on R.
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Example 7.5.13: Useful examples of uniformly continuous functions are again the so-called
Lipschitz continuous functions. That is, if (X ,dX) and (Y,dY ) are metric spaces, then f : X → Y is
called Lipschitz or K-Lipschitz if there exists a K ∈ R such that

dY
(

f (p), f (q)
)
≤ KdX(p,q) for all p,q ∈ X .

A Lipschitz function is uniformly continuous: Take δ = ε/K. A function can be uniformly continuous
but not Lipschitz, as we already saw:

√
x on [0,1] is uniformly continuous but not Lipschitz.

It is worth mentioning that, if a function is Lipschitz, it tends to be easiest to simply show it is
Lipschitz even if we are only interested in knowing continuity.

7.5.5 Cluster points and limits of functions
While we haven’t started the discussion of continuity with them and we won’t need them until
volume II, let us also translate the idea of a limit of a function from the real line to metric spaces.
Again we need to start with cluster points.

Definition 7.5.14. Let (X ,d) be a metric space and S⊂ X . A point p ∈ X is called a cluster point
of S if for every ε > 0, the set B(p,ε)∩S\{p} is not empty.

It is not enough that p is in the closure of S, it must be in the closure of S\{p} (exercise). So, p
is a cluster point if and only if there exists a sequence in S\{p} that converges to p.

Definition 7.5.15. Let (X ,dX), (Y,dY ) be metric spaces, S ⊂ X , p ∈ X a cluster point of S, and
f : S→ Y a function. Suppose there exists an L ∈ Y and for every ε > 0, there exists a δ > 0 such
that whenever x ∈ S\{p} and dX(x, p)< δ , then

dY
(

f (x),L
)
< ε.

Then we say f (x) converges to L as x goes to p, and L is the limit of f (x) as x goes to p. We write

lim
x→p

f (x) := L.

If f (x) does not converge as x goes to c, we say f diverges at p.

As usual, we used the definite article without showing that the limit is unique. The proof is a
direct translation of the proof from  chapter 3 , so we leave it as an exercise.

Proposition 7.5.16. Let (X ,dX) and (Y,dY ) be metric spaces, S ⊂ X, p ∈ X a cluster point of S,
and let f : S→ Y be a function such that f (x) converges as x goes to p. Then the limit of f (x) as x
goes to p is unique.

In any metric space, just like in R, continuous limits may be replaced by sequential limits. The
proof is again a direct translation of the proof from  chapter 3  , and we leave it as an exercise. The
upshot is that we really only need to prove things for sequential limits.

Lemma 7.5.17. Let (X ,dX) and (Y,dY ) be metric spaces, S⊂ X, p ∈ X a cluster point of S, and let
f : S→ Y be a function.

Then f (x) converges to L ∈ Y as x goes to p if and only if for every sequence {xn} in S \{p}
such that lim xn = p, the sequence { f (xn)} converges to L.
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By applying  Proposition 7.5.2 or the definition directly we find (exercise) as in  chapter 3 , that
for cluster points p of S⊂ X , the function f : S→ Y is continuous at p if and only if

lim
x→p

f (x) = f (p).

7.5.6 Exercises
Exercise 7.5.1: Consider N ⊂ R with the standard metric. Let (X ,d) be a metric space and f : X → N a
continuous function.

a) Prove that if X is connected, then f is constant (the range of f is a single value).

b) Find an example where X is disconnected and f is not constant.

Exercise 7.5.2: Let f : R2→ R be defined by f (0,0) := 0, and f (x,y) := xy
x2+y2 if (x,y) 6= (0,0).

a) Show that for any fixed x, the function that takes y to f (x,y) is continuous. Similarly for any fixed y, the
function that takes x to f (x,y) is continuous.

b) Show that f is not continuous.

Exercise 7.5.3: Suppose (X ,dX), (Y,dY ) are metric spaces and f : X → Y is continuous. Let A⊂ X.

a) Show that f (A)⊂ f (A).

b) Show that the subset can be proper.

Exercise 7.5.4: Prove  Theorem 7.5.8 . Hint: Use  Lemma 7.5.7 .

Exercise 7.5.5: Suppose f : X → Y is continuous for metric spaces (X ,dX) and (Y,dY ). Show that if X is
connected, then f (X) is connected.

Exercise 7.5.6: Prove the following version of the  intermediate value theorem . Let (X ,d) be a connected
metric space and f : X → R a continuous function. Suppose that there exist x0,x1 ∈ X and y ∈ R such that
f (x0)< y < f (x1). Then prove that there exists a z ∈ X such that f (z) = y. Hint: See  Exercise 7.5.5 .

Exercise 7.5.7: A continuous function f : X → Y for metric spaces (X ,dX) and (Y,dY ) is said to be proper if
for every compact set K ⊂ Y , the set f−1(K) is compact. Suppose a continuous f : (0,1)→ (0,1) is proper
and {xn} is a sequence in (0,1) that converges to 0. Show that { f (xn)} has no subsequence that converges in
(0,1).

Exercise 7.5.8: Let (X ,dX) and (Y,dY ) be metric spaces and f : X→Y be a one-to-one and onto continuous
function. Suppose X is compact. Prove that the inverse f−1 : Y → X is continuous.

Exercise 7.5.9: Take the metric space of continuous functions C([0,1],R). Let k : [0,1]× [0,1]→ R be a
continuous function. Given f ∈C([0,1],R) define

ϕ f (x) :=
∫ 1

0
k(x,y) f (y) dy.

a) Show that T ( f ) := ϕ f defines a function T : C([0,1],R)→C([0,1],R).
b) Show that T is continuous.
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Exercise 7.5.10: Let (X ,d) be a metric space.

a) If p ∈ X, show that f : X → R defined by f (x) := d(x, p) is continuous.

b) Define a metric on X×X as in  Exercise 7.1.6 part b, and show that g : X×X → R defined by g(x,y) :=
d(x,y) is continuous.

c) Show that if K1 and K2 are compact subsets of X, then there exists a p ∈ K1 and q ∈ K2 such that d(p,q)
is minimal, that is, d(p,q) = inf{d(x,y) : x ∈ K1,y ∈ K2}.

Exercise 7.5.11: Let (X ,d) be a compact metric space, let C(X ,R) be the set of real-valued continuous
functions. Define

d( f ,g) := ‖ f −g‖u := sup
x∈X
| f (x)−g(x)| .

a) Show that d makes C(X ,R) into a metric space.

b) Show that for any x ∈ X, the evaluation function Ex : C(X ,R)→ R defined by Ex( f ) := f (x) is a
continuous function.

Exercise 7.5.12: Let C([a,b],R) be the set of continuous functions and C1([a,b],R) the set of once continu-
ously differentiable functions on [a,b]. Define

dC( f ,g) := ‖ f −g‖u and dC1( f ,g) := ‖ f −g‖u +‖ f ′−g′‖u,

where ‖·‖u is the uniform norm. By  Example 7.1.8 and  Exercise 7.1.12 we know that C([a,b],R) with dC is a
metric space and so is C1([a,b],R) with dC1 .

a) Prove that the derivative operator D : C1([a,b],R)→C([a,b],R) defined by D( f ) := f ′ is continuous.

b) On the other hand if we consider the metric dC on C1([a,b],R), then prove the derivative operator is no
longer continuous. Hint: Consider sin(nx).

Exercise 7.5.13: Let (X ,d) be a metric space, S⊂ X, and p ∈ X. Prove that p is a cluster point of S if and
only if p ∈ S\{p}.

Exercise 7.5.14: Prove  Proposition 7.5.16 .

Exercise 7.5.15: Prove  Lemma 7.5.17 .

Exercise 7.5.16: Let (X ,dX) and (Y,dY ) be metric spaces, S⊂X, p∈X a cluster point of S, and let f : S→Y
be a function. Prove that f : S→ Y is continuous at p if and only if

lim
x→p

f (x) = f (p).

Exercise 7.5.17: Define

f (x,y) :=

{
2xy

x4+y2 if (x,y) 6= (0,0)

0 if (x,y) = (0,0).

a) Show that for every fixed y the function that takes x to f (x,y) is continuous and hence Riemann integrable.

b) For every fixed x, the function that takes y to f (x,y) is continuous.

c) Show that f is not continuous at (0,0).

d) Now show that g(y) :=
∫ 1

0 f (x,y) dx is not continuous at y = 0.

Note: Feel free to use what you know about arctan from calculus, in particular that d
ds

[
arctan(s)

]
= 1

1+s2 .
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Exercise 7.5.18: Prove a stronger version of  Proposition 7.5.12 : If f : (a,b)× (c,d)→ R is a bounded
continuous function, then g : (c,d)→ R defined by

g(y) :=
∫ b

a
f (x,y) dx is continuous.

Hint: First integrate over [a+ 1/n,b− 1/n].
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7.6 Fixed point theorem and Picard’s theorem again
Note: 1 lecture (optional, does not require  §6.3 )

In this section we prove the fixed point theorem for contraction mappings. As an application we
prove Picard’s theorem, which we proved without metric spaces in  §6.3 . The proof we present here
is similar, but the proof goes a lot smoother with metric spaces and the fixed point theorem.

7.6.1 Fixed point theorem
Definition 7.6.1. Let (X ,dX) and (Y,dY ) be metric spaces. A mapping f : X → Y is said to be a
contraction (or a contractive map) if it is a k-Lipschitz map for some k < 1, i.e. if there exists a
k < 1 such that

dY
(

f (p), f (q)
)
≤ k dX(p,q) for all p,q ∈ X .

If f : X → X is a map, x ∈ X is called a fixed point if f (x) = x.

Theorem 7.6.2 (Contraction mapping principle or Banach fixed point theorem  

*
 ). Let (X ,d) be a

nonempty complete metric space and f : X → X a contraction. Then f has a unique fixed point.

The words complete and contraction are necessary. See  Exercise 7.6.6 .

Proof. Pick any x0 ∈ X . Define a sequence {xn} by xn+1 := f (xn).

d(xn+1,xn) = d
(

f (xn), f (xn−1)
)
≤ kd(xn,xn−1)≤ ·· · ≤ knd(x1,x0).

Suppose m > n, then

d(xm,xn)≤
m−1

∑
i=n

d(xi+1,xi)

≤
m−1

∑
i=n

kid(x1,x0)

= knd(x1,x0)
m−n−1

∑
i=0

ki

≤ knd(x1,x0)
∞

∑
i=0

ki = knd(x1,x0)
1

1− k
.

In particular, the sequence is Cauchy (why?). Since X is complete, we let x := lim xn, and we claim
that x is our unique fixed point.

Fixed point? The function f is a contraction, so it is Lipschitz continuous:

f (x) = f (lim xn) = lim f (xn) = lim xn+1 = x.

Unique? Let x and y both be fixed points.

d(x,y) = d
(

f (x), f (y)
)
≤ k d(x,y).

As k < 1 this means that d(x,y) = 0 and hence x = y. The theorem is proved.

*Named after the Polish mathematician  Stefan Banach (1892–1945) who first stated the theorem in 1922.
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The proof is constructive. Not only do we know a unique fixed point exists. We also know how
to find it. Start with any point x0 ∈ X , and iterate f (x0), f ( f (x0)), f ( f ( f (x0))), etc. We can even
find how far away from the fixed point we are, see the exercises. The idea of the proof is therefore
used in real-world applications.

7.6.2 Picard’s theorem
Let us start with the metric space to which we will apply the fixed point theorem. That is, the space
C([a,b],R) of  Example 7.1.8 , the space of continuous functions f : [a,b]→ R with the metric

d( f ,g) := ‖ f −g‖u = sup
x∈[a,b]

| f (x)−g(x)| .

Convergence in this metric is convergence in uniform norm, or in other words, uniform convergence.
Therefore, C([a,b],R) is a complete metric space, see  Proposition 7.4.5 .

Consider now the ordinary differential equation

dy
dx

= F(x,y).

Given some x0,y0 we are looking for a function y = f (x) such that f (x0) = y0 and such that

f ′(x) = F
(
x, f (x)

)
.

To avoid having to come up with many names, we often simply write y′ = F(x,y) for the equation
and y(x) for the solution.

The simplest example is the equation y′ = y, y(0) = 1. The solution is the exponential y(x) = ex.
A somewhat more complicated example is y′ = −2xy, y(0) = 1, whose solution is the Gaussian
y(x) = e−x2

.
A subtle issue is how long does the solution exist. Consider the equation y′ = y2, y(0) = 1. Then

y(x) = 1
1−x is a solution. While F is a reasonably “nice” function and in particular it exists for all x

and y, the solution “blows up” at x = 1. For more examples related to Picard’s theorem see  §6.3 .
It may be strange that we are looking in C([a,b],R) for a differentiable function, but the idea is

to consider the corresponding integral equation

f (x) = y0 +
∫ x

0
F
(
t, f (t)

)
dt.

To solve this integral equation we only need a continuous function, and in some sense our task
should be easier—we have more candidate functions to try. This way of thinking is quite typical
when solving differential equations.

Theorem 7.6.3 (Picard’s theorem on existence and uniqueness). Let I,J ⊂R be closed and bounded
intervals, let I◦ and J◦ be their interiors, and let (x0,y0) ∈ I◦× J◦. Suppose F : I× J → R is
continuous and Lipschitz in the second variable, that is, there exists an L ∈ R such that

|F(x,y)−F(x,z)| ≤ L |y− z| for all y,z ∈ J,x ∈ I.

Then there exists an h > 0 and a unique differentiable function f : [x0−h,x0 +h]→ J ⊂ R, such
that

f ′(x) = F
(
x, f (x)

)
and f (x0) = y0.
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Proof. Without loss of generality assume x0 = 0 (exercise). As I× J is compact and F(x,y) is
continuous, it is bounded. So find an M > 0, such that |F(x,y)| ≤M for all (x,y) ∈ I× J. Pick
α > 0 such that [−α,α]⊂ I and [y0−α,y0 +α]⊂ J. Let

h := min
{

α,
α

M+Lα

}
.

Note [−h,h]⊂ I. Let
Y :=

{
f ∈C([−h,h],R) : f ([−h,h])⊂ J

}
.

That is, Y is the space of continuous functions on [−h,h] with values in J, in other words, exactly
those functions where F

(
x, f (x)

)
makes sense. The metric used is the standard metric given above.

It is left as an exercise to show that Y is closed (because J is closed). The space C([−h,h],R)
is complete, and a closed subset of a complete metric space is a complete metric space with the
subspace metric, see  Proposition 7.4.6 . So Y with the subspace metric is a complete metric space.

Define a mapping T : Y →C([−h,h],R) by

T ( f )(x) := y0 +
∫ x

0
F
(
t, f (t)

)
dt.

It is an exercise to check that T is well-defined, and that T ( f ) really is in C([−h,h],R).
Let f ∈ Y and |x| ≤ h. As F is bounded by M we have

|T ( f )(x)− y0|=
∣∣∣∣∫ x

0
F
(
t, f (t)

)
dt
∣∣∣∣

≤ |x|M ≤ hM ≤ αM
M+Lα

≤ α.

So T ( f )([−h,h])⊂ [y0−α,y0 +α]⊂ J, and T ( f ) ∈ Y . In other words, T (Y )⊂ Y . From now on,
we consider T as a mapping of Y to Y .

We claim T : Y → Y is a contraction. First, for x ∈ [−h,h] and f ,g ∈ Y , we have∣∣F(x, f (x)
)
−F

(
x,g(x)

)∣∣≤ L | f (x)−g(x)| ≤ Ld( f ,g).

Therefore,

|T ( f )(x)−T (g)(x)|=
∣∣∣∣∫ x

0
F
(
t, f (t)

)
−F

(
t,g(t)

)
dt
∣∣∣∣

≤ |x|Ld( f ,g)≤ hLd( f ,g)≤ Lα

M+Lα
d( f ,g).

We chose M > 0 and so Lα

M+Lα
< 1. The claim is proved by taking supremum over x ∈ [−h,h] of

the left hand side above to obtain d
(
T ( f ),T (g)

)
≤ Lα

M+Lα
d( f ,g).

We apply the fixed point theorem ( Theorem 7.6.2  ) to find a unique f ∈ Y such that T ( f ) = f ,
that is,

f (x) = y0 +
∫ x

0
F
(
t, f (t)

)
dt.

By the fundamental theorem of calculus (  Theorem 5.3.3 ), T ( f ) = f is differentiable, its deriva-
tive is F

(
x, f (x)

)
and T ( f )(0) = y0. Differentiable functions are continuous, so f is the unique

differentiable function f : [−h,h]→ J such that f ′(x) = F
(
x, f (x)

)
and f (0) = y0.
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7.6.3 Exercises
For more exercises related to Picard’s theorem see  §6.3 .

Exercise 7.6.1: Suppose J is a closed and bounded interval, and let Y :=
{

f ∈C([−h,h],R) : f ([−h,h])⊂ J
}

.
Show that Y ⊂C([−h,h],R) is closed. Hint: J is closed.

Exercise 7.6.2: In the proof of Picard’s theorem, show that if f : [−h,h]→ J is continuous, then F
(
t, f (t)

)
is continuous on [−h,h] as a function of t. Use this to show that

T ( f )(x) := y0 +
∫ x

0
F
(
t, f (t)

)
dt

is well-defined and that T ( f ) ∈C([−h,h],R).

Exercise 7.6.3: Prove that in the proof of Picard’s theorem, the statement “Without loss of generality assume
x0 = 0” is justified. That is, prove that if we know the theorem with x0 = 0, the theorem is true as stated.

Exercise 7.6.4: Let F : R→ R be defined by F(x) := kx+b where 0 < k < 1, b ∈ R.

a) Show that F is a contraction.

b) Find the fixed point and show directly that it is unique.

Exercise 7.6.5: Let f : [0, 1/4]→ [0, 1/4] be defined by f (x) := x2.

a) Show that f is a contraction, and find the best (smallest) k from the definition that works.

b) Find the fixed point and show directly that it is unique.

Exercise 7.6.6:

a) Find an example of a contraction f : X → X of a non-complete metric space X with no fixed point.

b) Find a 1-Lipschitz map f : X → X of a complete metric space X with no fixed point.

Exercise 7.6.7: Consider y′ = y2, y(0) = 1. Use the iteration scheme from the proof of the contraction
mapping principle. Start with f0(x) = 1. Find a few iterates (at least up to f2). Prove that the pointwise limit
of fn is 1

1−x , that is for every x with |x|< h for some h > 0, prove that lim
n→∞

fn(x) = 1
1−x .

Exercise 7.6.8: Suppose f : X → X is a contraction for k < 1. Suppose you use the iteration procedure with
xn+1 := f (xn) as in the proof of the fixed point theorem. Suppose x is the fixed point of f .

a) Show that d(x,xn)≤ knd(x1,x0)
1

1−k for all n ∈ N.

b) Suppose d(y1,y2)≤ 16 for all y1,y2 ∈ X, and k = 1/2. Find an N such that starting at any point x0 ∈ X,
d(x,xn)≤ 2−16 for all n≥ N.

Exercise 7.6.9: Let f (x) := x− x2−2
2x (you may recognize Newton’s method for

√
2).

a) Prove f
(
[1,∞)

)
⊂ [1,∞).

b) Prove that f : [1,∞)→ [1,∞) is a contraction.

c) Apply the fixed point theorem to find an x≥ 1 such that f (x) = x, and show that x =
√

2.

Exercise 7.6.10: Suppose f : X → X is a contraction, and (X ,d) is a metric space with the discrete metric,
that is d(x,y) = 1 whenever x 6= y. Show that f is constant, that is, there exists a c ∈ X such that f (x) = c for
all x ∈ X.

Exercise 7.6.11: Suppose (X ,d) is a nonempty complete metric space, f : X → X is a mapping, and denote
by f n the nth iterate of f . Suppose for every n there exists a kn > 0 such that d

(
f n(x), f n(y)

)
≤ kn d(x,y) for

all x,y ∈ X, where ∑∞
j=1 kn < ∞. Prove that f has a unique fixed point in X.
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complement,  10 
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completeness property,  22 
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composition of functions,  15 

conditionally convergent,  85 

connected,  240 

constant sequence,  47 

continuous at c,  111 ,  259 

continuous function,  111 

in a metric space,  259 

continuous function of two variables,  223 

continuously differentiable,  153 

contraction,  267 

contraction mapping principle,  267 

convergent
improper integral,  192 

power series,  97 
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series,  80 

converges
function,  104 ,  131 
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derivative,  141 
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difference quotient,  141 

differentiable,  141 
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infinitely,  157 ,  191 
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differential equation,  223 
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Dini’s theorem,  220 

direct image,  14 

Dirichlet function,  114 ,  139 ,  165 ,  216 ,  221 

disconnected,  240 

discontinuity,  114 

discontinuous,  114 

discrete metric,  232 

disjoint,  10 

distance function,  229 

divergent
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power series,  97 

sequence,  48 

sequence in a metric space,  246 

series,  80 

diverges,  104 

function in a metric space,  263 

diverges to infinity,  72 ,  133 

diverges to minus infinity,  72 

domain,  14 

element,  8 

elementary step function,  178 

empty set,  8 

equal,  9 

equivalence class,  16 

equivalence relation,  16 

euclidean space,  231 

Euler’s number,  189 

Euler–Mascheroni constant,  190 

even function,  185 

existence and uniqueness theorem,  223 ,  268 

exponential,  188 ,  189 

extended real numbers,  30 

extreme value theorem,  118 

field,  23 
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finite,  17 

finitely many discontinuities,  177 

first derivative,  155 

first derivative test,  151 

first order ordinary differential equation,  223 

fixed point,  267 

fixed point theorem,  267 

Fourier sine and cosine transforms,  202 

function,  13 

bounded,  118 

continuous,  111 ,  259 

differentiable,  141 

Lipschitz,  127 ,  263 

fundamental theorem of calculus,  180 

geometric series,  81 ,  100 

graph,  14 

great circle distance,  233 

greatest lower bound,  22 

half-open interval,  38 

harmonic series,  83 

Hausdorff metric,  235 

Heine–Borel theorem,  256 

identity of indiscernibles,  229 

image,  14 

improper integrals,  192 

increasing,  135 ,  150 

induction,  12 

induction hypothesis,  12 

infimum,  22 

infinite,  17 

infinite limit
of a function,  133 

of a sequence,  72 

infinitely differentiable,  157 ,  191 

infinity norm,  208 

initial condition,  223 

injection,  15 

injective,  15 

integers,  9 

integral test for series,  199 

integration by parts,  184 

interior,  243 

intermediate value theorem,  121 

intersection,  9 

interval,  38 

inverse function,  15 

inverse function theorem,  160 

inverse image,  14 

irrational,  27 

joint limit,  221 

L’Hôpital’s rule,  146 ,  154 

L’Hospital’s rule,  146 ,  154 

L1-convergence,  220 

L1-norm,  220 

Lagrange form,  156 

Laplace transform,  201 

least element,  12 

least upper bound,  21 

least-upper-bound property,  22 

Lebesgue covering lemma,  253 

Lebesgue number,  253 

Leibniz rule,  144 

liminf,  67 ,  73 

limit
infinite,  72 ,  133 

of a function,  104 

of a function at infinity,  131 

of a function in a metric space,  263 

of a sequence,  47 

of a sequence in a metric space,  246 

limit comparison test,  90 

limit inferior,  67 ,  73 

limit superior,  67 ,  73 

limsup,  67 ,  73 

linear first order differential equations,  228 

linearity of series,  83 

linearity of the derivative,  143 

linearity of the integral,  173 

Lipschitz continuous,  127 

in a metric space,  263 

logarithm,  186 ,  187 

logarithm base b,  190 

lower bound,  21 

lower Darboux integral,  164 

lower Darboux sum,  164 
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map,  13 

mapping,  13 

maximum,  30 

absolute,  118 

relative,  147 

strict relative,  157 

maximum-minimum theorem,  118 

mean value theorem,  149 

mean value theorem for integrals,  178 

member,  8 

Mertens’ theorem,  95 

metric,  229 

metric space,  229 

minimum,  30 

absolute,  118 

relative,  147 

strict relative,  157 

minimum-maximum theorem,  118 

modulus,  232 

monic polynomial,  122 ,  134 

monotone decreasing sequence,  50 

monotone function,  135 

monotone increasing sequence,  50 

monotone sequence,  50 

monotonic sequence,  50 

monotonicity of the integral,  174 

n times differentiable,  155 

naïve set theory,  8 

natural logarithm,  187 

natural numbers,  9 

negative,  23 

neighborhood,  237 

nondecreasing,  135 

nonincreasing,  135 

nonnegative,  23 

nonnegativity of a metric,  229 

nonpositive,  23 

nth derivative,  155 

nth derivative test,  158 

nth order Taylor polynomial,  155 

odd function,  185 

one-sided limits,  108 

one-to-one,  15 

onto,  15 

open ball,  237 

open cover,  252 

open interval,  38 

open neighborhood,  237 

open set,  237 

ordered field,  23 

ordered set,  21 

ordinary differential equation,  223 

p-series,  86 

p-test,  86 

p-test for integrals,  192 

partial sums,  80 

partition,  163 

Picard iterate,  224 

Picard iteration,  224 

Picard’s theorem,  223 ,  268 

pointwise convergence,  205 

polynomial,  112 

popcorn function,  115 ,  178 

positive,  23 

power series,  97 

power set,  18 

principle of induction,  12 

principle of strong induction,  13 

product rule,  144 

proper,  264 

proper subset,  9 

pseudometric space,  235 

quotient rule,  144 

radius of convergence,  98 

range,  14 

range of a sequence,  47 

ratio test for sequences,  63 

ratio test for series,  88 

rational functions,  99 

rational numbers,  9 

real numbers,  21 

rearrangement of a series,  94 

refinement of a partition,  165 

reflexive relation,  16 

relation,  15 
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relative maximum,  147 

relative minimum,  147 

relatively compact,  258 

remainder term in Taylor’s formula,  156 

removable discontinuity,  115 

removable singularity,  127 

restriction,  108 

reverse triangle inequality,  34 

Riemann integrable,  167 

Riemann integral,  167 

Rolle’s theorem,  148 

root test,  92 

secant line,  128 ,  141 

second derivative,  155 

second derivative test,  158 

sequence,  47 ,  246 

sequentially compact,  253 

series,  80 

set,  8 

set building notation,  9 

set theory,  8 

set-theoretic difference,  10 

set-theoretic function,  13 

sinc function,  197 

sphere,  233 

squeeze lemma,  56 

standard metric on Rn,  231 

standard metric on R,  230 

step function,  179 

strict relative maximum,  157 

strict relative minimum,  157 

strictly decreasing,  135 ,  150 

strictly increasing,  135 ,  150 

strictly monotone function,  135 

strong induction,  13 

subadditive,  235 

subcover,  252 

subsequence,  53 ,  246 

subset,  9 

subspace,  234 

subspace metric,  234 

subspace topology,  234 

sup norm,  208 

supremum,  21 

surjection,  15 

surjective,  15 

symmetric difference,  19 

symmetric relation,  16 

symmetry of a metric,  229 

tail of a sequence,  52 

Taylor polynomial,  155 

Taylor series,  157 

Taylor’s theorem,  155 

Thomae function,  115 ,  178 

topology,  237 

totally bounded,  257 

totally disconnected,  244 

transitive relation,  16 

triangle inequality,  33 ,  229 

unbounded closed intervals,  38 

unbounded interval,  38 

unbounded open intervals,  38 

uncountable,  17 

uniform convergence,  207 

uniform convergence on compact subsets,  221 

uniform norm,  208 

uniform norm convergence,  209 

uniformly Cauchy,  209 

uniformly continuous,  125 

in a metric space,  262 

union,  9 

unit sphere,  233 

universe,  8 

upper bound,  21 

upper Darboux integral,  164 

upper Darboux sum,  164 

Venn diagram,  10 

weak solution,  227 

well ordering property,  12 

zero set,  261 
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Notation Description Page
/0 the empty set  8 

{1,2,3} set with the given elements  8 

A := B define A to equal B  8 

x ∈ S x is an element of S  8 

x /∈ S x is not an element of S  8 

A⊂ B A is a subset of B  8 

A = B A and B are equal  9 

A ( B A is a proper subset of B  9 

{x ∈ S : P(x)} set building notation  9 

N the natural numbers: 1,2,3, . . .  9 

Z the integers: . . . ,−2,−1,0,1,2, . . .  9 

Q the rational numbers  9 

R the real numbers  9 

A∪B union of A and B  9 

A∩B intersection of A and B  9 

A\B set minus, elements of A not in B  10 

Bc set complement, elements not in B  10 

∞⋃
n=1

An union of all An for all n ∈ N  11 

∞⋂
n=1

An intersection of all An for all n ∈ N  11 

⋃
λ∈I

Aλ union of all Aλ for all λ ∈ I  11 

⋃
λ∈I

Aλ intersection of all Aλ for all λ ∈ I  11 

f : A→ B function with domain A and codomain B  13 
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Notation Description Page
A×B Cartesian product of A and B  13 

f (A) direct image of A by f  14 

f−1(A) inverse image of A by f  14 

f−1 inverse function  15 

f ◦g composition of functions  15 

[a] equivalence class of a  16 

|A| cardinality of a set A  16 

P(P) power set of A  18 

x = y x is equal to y  21 

x < y x is less than y  21 

x≤ y x is less than or equal to y  21 

x > y x is greater than y  21 

x≥ y x is greater than or equal to y  21 

sup E supremum of E  21 

inf E infimum of E  22 

C the complex numbers  24 

R∗ the extended real numbers  30 

∞ infinity  30 

max E maximum of E  30 

min E minimum of E  30 

|x| absolute value  33 

sup
x∈D

f (x) supremum of f (D)  35 

inf
x∈D

f (x) infimum of f (D)  35 

(a,b) open bounded interval  38 

[a,b] closed bounded interval  38 

(a,b], [a,b) half-open bounded interval  38 

(a,∞), (−∞,b) open unbounded interval  38 

[a,∞), (−∞,b] closed unbounded interval  38 

{xn}, {xn}∞
n=1 sequence  47 ,  246 

lim xn, lim
n→∞

xn limit of a sequence  48 ,  246 

{xn j}, {xn j}∞
j=1 subsequence  53 ,  246 
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Notation Description Page
limsup xn, limsup

n→∞
xn limit superior  67 ,  73 

liminf xn, liminf
n→∞

xn limit inferior  67 ,  73 

∑an,
∞

∑
n=1

an series  80 

k

∑
n=1

an sum a1 +a2 + · · ·+ak  80 

lim
x→c

f (x) limit of a function  104 ,  263 

f (x)→ L as x→ c f (x) converges to L as x goes to c  104 

lim
x→c+

f (x), lim
x→c−

f (x) one sided limit of a function  108 

lim
x→∞

f (x), lim
x→−∞

f (x) limit of a function at infinity  131 

f ′(x), d f
dx , d

dx

(
f (x)

)
derivative of f  141 

f ′′, f ′′′, f ′′′′ second, third, fourth derivative of f  155 

f (n) nth derivative of f  155 

L(P, f ) lower Darboux sum of f over partition P  164 

U(P, f ) upper Darboux sum of f over partition P  164 ∫ b

a
f lower Darboux integral  164 

∫ b

a
f upper Darboux integral  164 

R[a,b] Riemann integrable functions on [a,b]  167 ∫ b

a
f ,
∫ b

a
f (x) dx Riemann integral of f on [a,b]  167 

ln(x), log(x) natural logarithm function  187 

exp(x), ex exponential function  189 

xy exponentiation of x > 0 and y ∈ R  189 

e Euler’s number, base of the natural logarithm  189 

‖ f‖u uniform norm of f  208 

Rn the n-dimensional euclidean space  231 

C(S,R) continuous functions f : S→ R  233 

diam(S) diameter of S  234 
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Notation Description Page

C1(S,R) continuously differentiable functions f : S→ R  236 ,  265 

B(p,δ ), BX(p,δ ) open ball in a metric space  237 

C(p,δ ), CX(p,δ ) closed ball in a metric space  237 

A closure of A  242 

A◦ interior of A  243 

∂A boundary of A  243 
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