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To-do list: 

1. Proving the AM-GM inequality and introducing proof by mathematical induction. 

2. Exercise 1.2.10: 
Given that A, B ⊂ R>0 (both bounded and nonempty), consider the set 

C := {a · b | a ∈ A, b ∈ B} 

(where := means that we are defining C to be that way). Show that sup C = sup A · sup B. 

The Arithmetic Mean-Geometric Mean inequality (abbreviated as AM-GM) states that for n nonnegative real 
numbers x1, . . . , xn, 

x1 + · · · + xn √ 
n≥ x1 . . . xn. 

n 

In the homework, y’all proved the base case of n = 2. Note that this inequality is true for n = 1, but this is a more 
1trivial statement (x1 ≥ √ 
x1).1 

Normally we could try to use Standard Induction to prove this: 

1. First prove the base case (which is already done). 

2. Then, assume the statement is true for some k and show that this implies the statement is true for k + 1 

(where k is an arbitrary natural number). 

However, we will instead use a new method that is similar to Standard Induction: 

1. Prove that the statement is true for n = 2k using induction. 

2. Then, show this implies it is true for all natural numbers. 

The case where k = 1 was done in the homework. So now, assume that the AM-GM inequality is true for some k. 
Then, we want to show that the inequality is true for k + 1: 

x1 + · · · + x2k+1 (x1 + · · · + x2k ) + (x2k +1 + · · · + x2k+1 ) 
= . 

2k+1 2k+1 

Notice that we haven’t changed anything here, but we have separated the sum of 2k+1 terms into to sums of 2k 

terms. This allows us to apply what we have assumed: 
√ √ 

2k · ( 2k x1 . . . x2k + 2k x2k +1 . . . x2k+1 )
≥ 

2k+1 
√ √

( 2k x1 . . . x2k + 2k x2k +1 . . . x2k+1 ) 
= . 

2 

Now we can apply the base case with k = 1: q √ √ 
2k 

2k≥ x1 . . . x2k · x2k +1 . . . x2k+1 

2k+1√ 
= x1 . . . x2k+1 . 

Thus, we have shown the AM-GM inequality is true for n = 2k for all k ∈ N. To show the AM-GM inequality is 
true for all n (not just those which are powers of 2) we want to find the nearest m ≥ n such that m = 2k for some 

1



nonnegative integer k. Let 
x1 + · · · + xn 

µ = , 
n 

and let xn+1 = xn2 = · · · = xm = µ. Hence, 

x1 + · · · + xn 
µ = 

n 
m (x1 + · · · + xn)n= 

m 
x1 + · · · + xn + m−n (x1 + · · · + xn)n = 

m 
x1 + · · · + xn + (xn+1 + · · · + xm) 

= . 
m 

Applying the AM-GM inequality since m = 2k: 

√ 
µ ≥ 

µ ≥ 
p 
m

m 

x1 . . . xm 

x1 . . . xn · µm−n . 

Moving all the µ to the left hand side and dealing with exponents, we get 

√ 
µ ≥ n x1 . . . xn. 

Since µ is the arithmetic mean, we are complete with our proof. 
Now we will work on Exercise 1.2.10. 
Step 1: We want to show that C is bounded (i.e. that the supremum exists). Given that A is bounded, there 

exists an α such that a ≤ α for all a ∈ A. Similarly, there exists a β such that b ≤ β for all b ∈ B. Hence, since A 

and B only contain positive numbers, ab ≤ αβ for all a ∈ A and all b ∈ B. Therefore, C must be bounded as C is 
the set of all such ab. Proving the existence of a supremum is almost always the first step in proving a statement 
like this one. 

Step 2: Now that we know it exists, we want to show that sup C = sup A · sup B. We can do this by showing 
that 

sup C ≤ sup A · sup B and sup C ≥ sup A · sup B 

(a very common technique in analysis). It is clear that ⎧ ⎨0 ≤ a ≤ sup A ∀a ∈ A 
.⎩0 ≤ b ≤ sup B ∀b ∈ B 

Hence, ab ≤ sup A · sup B for all ab ∈ C. Hence, sup A · sup B is an upper bound for C, and thus 

sup C ≤ sup A · sup B. 

Now for the other direction. Fix b ∈ B (noting of course that b > 0 for all b ∈ B). Then, a ≤ sup C for all a ∈ A.b 

This implies that sup C is an upper bound for A. Since sup A is the least upper bound for A, this implies that for b 

all b ∈ B, 
sup C sup C 

sup A ≤ =⇒ b ≤ ∀b ∈ B. 
b sup A 

Note that sup A =6 0 as A =6 ∅, and A ⊂ R>0. Therefore, sup C is an upper bound for B, and hence sup A 

sup C 
sup B ≤ =⇒ sup A · sup B ≤ sup C. 

sup A 
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Therefore, sup C = sup A · sup B. 
We leave the following exercise to the student: Show that given A, B ⊂ R≥0 (such that A and B are bounded 

and nonempty), and C defined just as before, then sup C = sup A · sup B. The only di˙erence between this exercise 
and 1.2.10 is that before we were dealing with sets of only positive numbers, and now we want to include the 
possibility that A and/or B contain 0. 
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