SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 1

Two key topics for this class:

- How to write a mathematical proof.
- How to prove theorems.

Here is an example:

Intermediate value theorem:

- Suppose that $f:[a,b]\to \mathbf{R}$ is a continuous functions.
- Assume that f(a) < 0 and f(b) > 0.

The intermediate value theorem says that there exists a c between a and b where f(c) = 0.

- How do we prove this?
- If we draw a picture, then it seems obvious, but how to we actually prove this?

That a function is continuous basically means that when you draw the graph of the function the pencil is not allowed to leave the paper.

- How do we make this into a proper proof?
- What properties of the real values are needed for a proof?

This leads to several questions:

- Q1: What is a real number?
- Q2: Why is $\sqrt{2}$ a real number?
- Q3: What is $\sqrt{2}$?

The answer to these questions: **R** is a complete ordered field that contains the rational numbers **Q**.

Here is some notation:

- (1) **N** is the natural numbers. This means that $\mathbf{N} = \{1, 2, 3, \dots\}$.
- (2) **Z** is the integers. This means that $\mathbf{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots\}$.
- (3) **Q** is the rational numbers. So all numbers of the form $\frac{m}{n}$, where $m \in \mathbf{Z}$ and $n \in \mathbf{N}$.

Properties:

Rational numbers:

Rational numbers **Q** are numbers of the form $\frac{m}{n}$, where $m \in \mathbf{Z}$ and $n \in \mathbf{N}$.

(1) When are two numbers the same?

$$\frac{m_1}{n_1} = \frac{m_2}{n_2} \iff m_1 \, n_2 = m_2 \, n_1 \, .$$

(2) How do we add two numbers?

$$\frac{m_1}{n_1} + \frac{m_2}{n_2} = \frac{m_1 \, n_2 + m_2 \, n_1}{n_1 \, n_2} \, .$$

(3) How do we multiply two numbers?

$$\frac{m_1}{n_1} \, \frac{m_2}{n_2} = \frac{m_1 \, m_2}{n_1 \, n_2} \, .$$

(4) When is one number less than another?

$$\frac{m_1}{n_1} < \frac{m_2}{n_2} \iff m_1 \, n_2 < m_2 \, n_1 \, .$$

For this to make sense we need (for instance) to show that multiplication is well-defined:

This means that if we have two representations of the same rational number

$$\frac{m_1}{n_1} = \frac{m_2}{n_2}$$

and likewise

$$\frac{p_1}{q_1} = \frac{p_2}{q_2} \,,$$

then

$$\frac{m_1}{n_1} \, \frac{p_1}{q_1} = \frac{m_2}{n_2} \, \frac{p_2}{q_2} \, .$$

Proof. We have that $m_1 n_2 = m_2 n_1$ and $p_1 q_2 = p_2 q_1$. Therefore,

$$m_1 p_1 n_2 q_2 = m_1 n_2 p_1 q_2 = m_2 n_1 p_2 q_1$$
.

This illustrate how detailed a proof should be.

A Field:

Definition:

A Field \mathbf{F} is a set with two operations that we are denoting suggestively by "+" and " \cdot ". Those two operations satisfies the following axioms:

Additive properties:

- (1) $x, y \in \mathbf{F}$, then $x + y \in \mathbf{F}$.
- (2) x + y = y + x.
- (3) (x + y) + z = x + (y + z).
- (4) There exists an element $0 \in \mathbf{F}$ such that 0 + x = x for all $x \in \mathbf{F}$.
- (5) For all $x \in \mathbf{F}$ there exists an element, suggestively, denoted by (-x) such that x + (-x) = 0.

Multiplicative properties:

- (1) $x, y \in \mathbf{F}$, then $xy \in \mathbf{F}$.
- (2) xy = yx.
- (3) (xy)z = x(yz).
- (4) There exists an element, suggestively, denoted by 1 such that 1x = x for all $x \in \mathbf{F}$.
- (5) For all $x \in \mathbf{F} \setminus \{0\}$ there exists an element, suggestively, denoted by $\frac{1}{x}$ such that $x \frac{1}{x} = 1$.

The final axion that we need is an axiom that chains addition and multiplication together:

$$(x+y)z = xz + yz.$$

Theorem: For any field 'zero' is unique.

Proof. Suppose there are two. Let us denote them by 0_1 and 0_2 . Then

$$0_1 + 0_2 = 0_2$$

since 0_1 is a 'zero' and

$$0_1 + 0_2 = 0_1$$

since 0_2 is a 'zero' so $0_1 = 0_2$.

Examples: \mathbf{Q} is a Field, whereas \mathbf{N} and \mathbf{Z} are not Fields.

Ordered set: An ordered set S is a set with a relation < with the following properties:

- (1) For an $x, y \in \mathbf{S}$, one of the following holds: x < y or y < x or x = y.
- (2) If $x, y, z \in \mathbf{S}$ with x < y and y < z, then x < z.

Ordered Field:

An ordered Field is an ordered set that is also Field and has the following two additional properties that chains the operations in the Field together with the ordering:

- (1) If x < y, then x + z < y + z.
- (2) If x > 0 and y > 0, then xy > 0.

Example: \mathbf{Q} is an ordered Field.

Theorem: If x < y and z > 0, then x z < y z.

Proof. We need to show that xz < yz or equivalently yz - xz > 0. The latter can be rewritten as yz - xz = (y-x)z. Since y > x we have that y-x > 0 and the claim therefore follows since z > 0.

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis. in fo/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

 $\label{lem:https://classicalreal} $$ $$ https://classicalreal analysis.info/com/documents/TBB-All Chapters-Portrait.pdf (print-optimized) $$$

MIT, DEPT. OF MATH., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.