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Lecture 2 

The real numbers R is a complete ordered Field that contains Q. 

Question: What is the difference between R and Q?√ 
One difference is that R contains 2 and Q does not. 

√ 
22 is a number x so that x > 0 and x = 2. 

2Theorem: There does not exists a rational number x so that x = 2. 

Proof. We will argue by contradiction. So suppose that there exists a rational number x = m
n , 

where m ∈ Z and n ∈ N, so that x2 = m
n2

2 
= 2. We can assume m and n does not have a 

2 2 2common factor (other than one). We have that m = 2 n and so 2 is a factor in m and 
therefore in m itself. This means that m = 2 m1, where m1 is also an integer. It follows that 

2 2 2m = 4 m1 = 2 n and therefore 2 m1 = n and so n is also even. We have now that both m 
and n are even and so have 2 as a common factor. This is the desired contradiction. This 
show that there is no rational number x with the property that x2 = 2. � 

√ 
How do we add 2 to the number system? 

√ 
2 = 1.4142136 · · · 

√ 
So 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, → 2. 

√ 
2 is the limit of a sequence of numbers. 
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Completeness of R. (Least upper bound property.) 

Completeness is: If a subset A of R has an upper bound, then A has a least upper bound. 

Suppose that S is an ordered set and A is a subset of S, then M is an upper bound for A if 
for all a ∈ A we have that a ≤ M . 

Example: If A = {1, 2, 3} ⊂ Z, then 4 is an upper bound, whereas 2 is not an upper bound. 

Example: If S = Q, then N as a subset does not have an upper bound (we will return to 
this shortly). 

Least upper bound: Suppose that S is an ordered set and A is a subset that has an upper 
bound. We say that M is a least upper bound for A if M is an upper bound for A and for 
any other upper bound M1 we have that M ≤ M1. 

Complete ordered set: We say that an ordered set is complete if any subset that has an 
upper bound has a least upper bound. 

Theorem: There exists a complete ordered Field that contains Q. 

This Field is denoted by R. 

We will not prove this, as a proof would take us too far a field, rather we will take it for 
granted. 

√ 
Theorem: 2 ∈ R. 

√ 
Proof. Let A = (0, 2) ∩ Q. That is A consists of all the positive rational numbers a so that 
a2 < 2. Let x be the least upper bound for A. Note that A is nonempty (since 1 ∈ A) and 
that 2 is an upper bound for A. Note also that x ≥ 1 > 0 since it is an upper bound. We 

2need to show that x = 2. 
We will first show that x2 ≤ 2. Suppose not; so assume that x2 > 2. We will show that 

this leads to a contradiction. Consider 

(x − h)2 = x 2 − 2 xh + h2 > x 2 − 2 hx . 

As long as h > 0 is chosen so that 
2 hx < x 2 − 2 
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or, equivalently, that 
x2 − 2 

h < 
2 x 

then 
(x − h)2 > 2 

and therefore x − h is also an upper bound for A. This contradict that x is the least upper 
bound. We therefore have that if x is the least upper bound for A, then x2 ≤ 2. 

To show the reverse inequality (that x2 ≥ 2) we argue similarly. Assume that for the least 
upper bound x we have that x2 < 2. Consider x + h, where 0 < h < 1. We have that 

(x + h)2 = x 2 + 2 xh + h2 < x 2 + 2 xh + h = x 2 + h (2 x + 1) . 

Since we are assuming that x2 < 2 we can choose h positive so that 

2 − x2 

h < . 
2 x + 1 

We therefore have that 
(x + h)2 < x 2 + 2 − x 2 < 2 . 

This is the desired contradiction and show that x2 ≥ 2. Together with the first step we have 
that x2 = 2. � 

Corollary: Q is not complete. 
√ 

Proof. If Q was complete, then 2 ∈ Q but we have already proven that there is no rational 
number with the property that x2 = 2. � 

Archimedean property: For all x ∈ R, there exists a natural n ∈ N so that x < n. 

Proof. If this was not the case, then N would be bounded. To see that N is not bounded 
we argue as follows. Assume it is bounded and let α be the least upper bound for N. We 
would now have that for all n ∈ N that n ≤ α. Since n + 1 is also a natural number we 
would have that n +1 ≤ α as well. So, in fact, n ≤ α − 1 or in other words, since n was any 
natural number, α − 1 would be an upper bound contradicting that α was the least upper 
bound. � 

As a corollary of the Archimedean property we get the following: 

Corollary: If x < y, then there exists a rational number m
n such that 

m 
x < < y . 

n 
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Proof. Set β = 1 . From the Archimedean property we have that there exists a natural 
y−x 

number n with n > β. It follows that 
1 1 

0 < < . 
n β 

Now let m − 1 be the largest integer so that 

m − 1 ≤ xn . 
mIt follows that 
n has the desired property. � 
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