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Lecture 2

The real numbers R is a ordered Field that contains Q.

Question: What is the difference between R and Q?
One difference is that R, contains v/2 and Q does not.

V/2 is a number z so that x > 0 and 22 = 2.

Theorem: There does not exists a rational number z so that 22 = 2.

Proof. We will argue by contradiction. So suppose that there exists a rational number x =

m
")

where m € Z and n € N, so that 22 = ’7’;—22 = 2. We can assume m and n does not have a
common factor (other than one). We have that m? = 2n? and so 2 is a factor in m? and
therefore in m itself. This means that m = 2m;y, where m; is also an integer. It follows that
m? = 4m? = 2n? and therefore 2m; = n and so n is also even. We have now that both m
and n are even and so have 2 as a common factor. This is the desired contradiction. This
show that there is no rational number x with the property that 22 = 2. U

How do we add v/2 to the number system?
V2 =1.4142136 - - -
So 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, — /2.

V/2 is the limit of a sequence of numbers.
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Completeness of R. (Least upper bound property.)

Completeness is: If a subset A of R has an upper bound, then A has a least upper bound.

Suppose that S is an ordered set and A is a subset of S, then M is an upper bound for A if
for all a € A we have that a < M.

Example: If A ={1,2,3} C Z, then 4 is an upper bound, whereas 2 is not an upper bound.

Example: If S = Q, then N as a subset does not have an upper bound

Least upper bound: Suppose that S is an ordered set and A is a subset that has an upper
bound. We say that M is a least upper bound for A if M is an upper bound for A and for
any other upper bound M; we have that M < M;.

Complete ordered set: We say that an ordered set is complete if any subset that has an
upper bound has a least upper bound.

Theorem: There exists a complete ordered Field that contains Q.

This Field is denoted by R.

We will not prove this, as a proof would take us too far a field, rather we will take it for
granted.

Theorem: V2 € R.

Proof. Let A = (0,v/2)NQ. That is A consists of all the positive rational numbers a so that
a® < 2. Let = be the least upper bound for A. Note that A is nonempty (since 1 € A) and
that 2 is an upper bound for A. Note also that x > 1 > 0 since it is an upper bound. We
need to show that 22 = 2.

We will first show that 22 < 2. Suppose not; so assume that 22 > 2. We will show that
this leads to a contradiction. Consider

(x—h)P=2>-2zh+h*>2*—2hz.

As long as h > 0 is chosen so that
2hx < x? —2
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or, equivalently, that
x? -2

h <
2x

then
(x—h)*>2

and therefore x — h is also an upper bound for A. This contradict that z is the least upper
bound. We therefore have that if x is the least upper bound for A, then z? < 2.

To show the reverse inequality (that 22 > 2) we argue similarly. Assume that for the least
upper bound z we have that 22 < 2. Consider z + h, where 0 < h < 1. We have that

(x+h)?=2*+2zh+h*<2*+2xh+h=2>+h(Rz+1).
Since we are assuming that 22 < 2 we can choose h positive so that
2 — 2

h < )
2z +1

We therefore have that

(x+h)?<a?+2—-2"<2.
This is the desired contradiction and show that 22 > 2. Together with the first step we have
that 22 = 2. O

Corollary: Q is not complete.

Proof. If Q was complete, then v/2 € Q but we have already proven that there is no rational
number with the property that 2?2 = 2. O

Archimedean property: For all x € R, there exists a natural n € N so that = < n.

Proof. If this was not the case, then N would be bounded. To see that IN is not bounded
we argue as follows. Assume it is bounded and let o be the least upper bound for N. We
would now have that for all n € N that n < «. Since n + 1 is also a natural number we
would have that n 4+ 1 < a as well. So, in fact, n < o — 1 or in other words, since n was any

natural number, a — 1 would be an upper bound contradicting that a was the least upper
bound. O

As a corollary of the Archimedean property we get the following:

Corollary: If z < y, then there exists a rational number ™ such that

m
r< —<y.
n
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Proof. Set 8 = y%x From the Archimedean property we have that there exists a natural
number n with n > 5. It follows that
1 1
O0< —< —.
n B

Now let m — 1 be the largest integer so that
m—1<axn.

It follows that ™ has the desired property. 0
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