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TOBIAS HOLCK COLDING 

Lecture 4 

Theorem: R is a complete ordered Field that contains Q. 

S is an ordered set. A non-empty subset A of S is said to have an upper bound if there 
exists an M ∈ S such that for all a ∈ A we have that a ≤ M . 

Completeness is the property that every bounded non-empty subset has a least upper bound. 

We denote by sup A the greatest lower bound of A. 

Lower bound: A non-empty subset A is said to have a lower bound if there exists m ∈ S 
such that for all a ∈ A we have that m ≤ a. 

The greatest lower bound is a lower bound that is greater or equal to all other lower bounds. 

Sequences: 

√ 
2 can be thought of a limit of a sequence of decimal numbers as follows. 

1 < 1.4 < 1.41 < 1.414 · · · . 

A sequence of real numbers is a function f : N → R. 
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We usually use the notation an = f(n). 

√ 
Example 1: 2 is the limit of a1 = 1, a2 = 1.4, a3 = 1.41, a4 = 1.414 etc. 

Example 2: an = (−1)n . This sequence has NO limit. The an’s alternates between −1 and 
1. 

Example 3: The sequence an = 
n 
1 has zero as its limit. 

Limit: Let an be a sequence and a a real number. We say that an converges to a if for all 
� > 0, there exists an N ∈ N such that if n ≥ N , then 

|an − a| < � . 

If this is the case, then we also say that a is the limit of the sequence and we say that the 
sequence is convergenet. 

A sequence that is not covergent is said to be divergent. 

Example: 

0.999999999 · · · = 1 . 

What does the left hand side mean? 

Define a sequence an as follows: Set 

a1 = 0.9 , 

a2 = 0.99 , 

a3 = 0.999 , 

a4 = 0.9999 , 

etc. 

The left hand side above is then defined as the limit of the sequence an. 
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Claim: 

lim an = 1 . 
n→∞ 

Proof. We need to show that for all � > 0, there exists an N ∈ N such that for n ≥ N we 
have that 

|an − 1| < � . 

By the Archimedean property we can choose N such that 
N 
1 < �. We also have that 

|an − 1| = 10−n . 

Therefore, for n ≥ N we have that 

1 1 |an − 1| = 10−n < ≤ < � . 
n N 

This proves the claim. � 

Theorem If an is a convergent sequence, then the set {an} is a bounded subset of R. 

Proof. Since an is convergent to a we can find N such that for n ≥ N we have that 

|a − an| < 1 . 

Note also that the set {a1, · · · , aN−1} is bounded so there exists C ∈ R such that for 
n = 1, · · · , N − 1 we have that 

|an| ≤ C . 

To see that the larger set {an} is bounded we will use that for n ≥ N 

|an| ≤ |a| + |an − a| ≤ |a| + 1 . 

From this we have that for all n 

|an| ≤ max{C, |a| + 1} . 

� 

Basic algebraic properties of limits: 

Theorem Suppose that an and bn are convergenet sequences with lim an = a, lim bn = b 
and C ∈ R, then 

(1) cn = C an is convergenet and limn→∞ cn = C a. 
(2) cn = an + bn is convergent and limn→∞ cn = a + b. 
(3) cn = an bn is convergent with limn→∞ cn = a b. 
(4) If bn =6 0, b =6 0 and cn = a

bn
n , then cn is convergent and limn→∞ cn = a

b . 
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Proof. (of the first property.) If c = 0, then the claim is obviously true so we need only show 
the claim for C 6= 0. Given � > 0, there exists an N such that if n ≥ N , then 

� |a − an| < . 
|C| 

Multiplying both sides by |C| gives that 
|C a − C an| < � . 

for n ≥ N . This show the first property. 
(Of the second of these properties.) Observe that 

|cn − (a + b)| = |an + bn − (a + b)| = |(an − a) + (bn − b)| ≤ |an − a| + |bn − b| . 
Since an → a, given � > 0 we can find a Na such that if n ≥ Na, then 

� |an − a| < . 
2 

Likewise since bn → b we can find Nb such that if n ≥ Nb, then 
� |bn − b| < . 
2 

We now set N = max{Na, Nb} and observe that if n ≥ N , then 
� � |cn − (a + b)| ≤ |an − a| + |bn − b| < + = � . 
2 2 

This proves the second property. 
(Outline of how to show the third property.) To prove the third property we will use that 

|a b − an bn| ≤ |a b − an b| + |an b − an bn| = |b| |a − an| + |an| |b − bn| . 
We then combine it with the theorem above that show that the set 

{|an| | n ∈ N} 
is bounded. This is the main idea of the proof of the third property. There are the details 
to fill in to make it a proof. 

(Outline of how to show the fourth property.) To prove the fourth property we will assume 
that an = 1. The general case indeed will follow from this together with the third property. 
We will use that 

1 1 |b − bn|− = ,
bn b |b| |bn|

together with that 
|bn| ≤ |b| + |bn − b| . 

and therefore 
|bn| ≥ |b| − |bn − b| . 

We then want to use this to bound the denominator (when n is sufficiently large) from below 
in 

|b − bn| 
. 

|b| |bn|
Like for the third property there are details to fill in but these are the main ideas. � 
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Subsequence: 

Example 1: Suppose that an = (−1)n . 
This is a sequence of 1’s and −1’s that is alternating between −1 and 1. 
The sequence bn = 1 for all n is a subsequence. 
Another subsequence is where cn = −1. 
Also the sequence cn = (−1)n+1 is a subsequence of an. 
Another example of a subsequence is 

1, 1, −1, −1, 1, 1, −1, −1, · · · . 

Example 2: Suppose an = n. So an is: 

1, 2, 3, 4, 5, 6, · · · . 

The sequence of increasing odd numbers 

1, 3, 5, 7, 9, · · · . 

is a subsequence. 
The sequence of increasing even numbers 

2, 4, 6, 8, 10, · · · . 

is another subsequence. 
The sequence 

1, 1, 2, 2, 3, 3, 4, 4, 5, 5 · · · , 
is NOT s subsequence. 

Formel definition: Recall that a sequence an is a function f : N → R where we set 
an = f(n). A subsequence bn of an is a composition of functions f ◦ g where g : N → N is a 
strictly increasing function. So bn = f(g(n)). Sometimes a subsequence of the sequence an 

also denoted by ank . 

Theorem: A sequence an is convergent with limit a if and only if all subsequences of an are 
also convergent with limit a. 

Proof. We need to show two implications. 
First we need to show that is all subsequences of an are convergent with limit a, then 

the sequence an is convergent with limit a. However, this is trivially so since an itself is a 
(trivial) subsequence of an. 
Next we need to show that any subsequence of a convergent sequence is convergent with 

the same limit. Suppose therefore that � > 0 is given and choose N so large so that for 
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n ≥ N 
|an − a| < � . 

For k ≥ N we have that nk ≥ k ≥ N and therefore 

|ank − a| < � . 

This proves the second implication. � 
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