SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 6

Last time:

Basic algebraic properties of limits.

Monotone convergence theorem.

Cauchy sequence.

Cauchy sequence: A sequence a_n is said to be a Cauchy sequence if for all $\epsilon > 0$, there exists an N such that if $m, n \geq N$, then

$$|a_n - a_m| < \epsilon$$
.

(Tail of the sequence bunch together.)

Theorem (Cauchy convergence theorem): A sequence is convergent if and only if it is a Cauchy sequence.

Application: Existence of fixed points for a maps.

If $T: \mathbf{R} \to \mathbf{R}$ is a map, then $x_0 \in \mathbf{R}$ is a fixed point if

$$T(x_0) = x_0$$
.

Definition A contracting map is a map $T: \mathbf{R} \to \mathbf{R}$ such that there exists c < 1 so for all $x, y \in \mathbf{R}$ we have that

$$|T(x) - T(y)| \le c |x - y|.$$

(Points are squeezed together under the map.)

Contracting mapping theorem: Any contracting map has a fixed point.

For a contracting map the fix point is unique.

Suppose that x and y are two fixed point we want to show that x = y. We have

$$|x - y| = |T(x) - T(y)| \le c |x - y|$$
.

Since c < 1 this implies that |x - y| = 0 and so x = y.

On Pset 3 you will be asked to show that for a contracting map T and any $a_1 \in \mathbf{R}$ the sequence $a_{n+1} = T(a_n)$ is a Cauchy sequence. By the Cauchy theorem we then have that a_n is convergent.

Let a denote the limit. We claim that T(a) = a. Observe that $T(a_n) = a_{n+1} \to a$. If we can show that if $x_n \to x$, then $T(x_n) \to T(x)$, then

$$T(a_n) \to T(a)$$

but we already have that $T(a_n) = a_{n+1} \to a$ so we would have that T(a) = a and thus a is a fixed point.

We need therefore show that if $x_n \to x$, then $T(x_n) \to T(x)$. To do that observe that

$$|T(x_n) - T(x)| \le c |x_n - x|.$$

Since $x_n \to x$ we have that $|x_n - x| \to 0$ and so $|T(x_n) - T(x)| \to 0$. It follows that $T(x_n) \to T(x)$. Applying this to the sequence a_n shows that a is a fixed point for T.

Applications of contracting mapping theorem:

Existence of solutions to ODEs. We will return to this later as this needs a version of the contracting mapping theorem where T is defined on a more general space than the real numbers.

Newton's method: Finding a zeroth of a function $f: \mathbf{R} \to \mathbf{R}$. (So find a solution x to f(x) = 0.)

Suppose that x_1 is a "good" initial guess, so $f(x_1)$ is sufficiently small. Assume also that $f' \neq 0$. Define a map

$$T(x) = x - \frac{f(x)}{f'(x)}.$$

We have

$$T'(x) = 1 - \frac{f'}{f'} + \frac{f f''}{(f')^2} = f \frac{f''}{(f')^2}.$$

So as long as x stay close to the initial guess and for the initial guess f(x) is small compared with $\frac{f''}{(f')^2}$, then T is a contracting map. By the contracting mapping theorem the sequence $x_{n+1} = T(x_n)$ is a Cauchy sequence that converges to a fixed point of T.

For a fixed point for T we have T(x) = x so $x - \frac{f(x)}{f'(x)} = x$ and therefore f(x) = 0.

Back to Cauchy sequences.

Bolzano -Weirstrass theorem: Any bounded sequence has a convergent subsequence.

Once we have the Bolzano-Weirstrass theorem we can prove the Cauchy theorem.

Proof. (of the Cauchy theorem.) So suppose that a_n is a Cauchy sequence. We will first show that a_n is bounded. From the definition of a Cauchy sequence we have that there exists N such that for $m, n \geq N$, then

$$|a_n-a_m|<1$$
.

It follows, in particular, that for all $n \geq N$, we have that

$$|a_n - a_N| < 1,$$

and so

$$|a_n| = |(a_n - a_N) + a_N| \le 1 + |a_N|.$$

Therefore,

$$|a_n| \le \max\{|a_N|+1, |a_1|, \cdots, |a_{N-1}|\}.$$

So the sequence is bounded.

From the Bolzano-Weirstrass theorem it follows that a_n has a convergent subsequence a_{n_k} with limit a. We want to show that a_n is convergent with limit a. Given $\epsilon > 0$, there exists an N_1 such that if $m, n \geq N_1$, then

$$|a_n - a_m| < \frac{\epsilon}{2} \,.$$

Moreover, there exist an N_2 such that if $k \geq N_2$, then $|a_{n_k} - a| < \frac{\epsilon}{2}$. Set $N = \max\{N_1, N_2\}$. It follows that if $n \geq N$ and $k \geq N$, then

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2}.$$

This show that $a_n \to a$ as claimed.

Another application of the Bolzano-Weirstrass theorem is the Extreme value theorem.

Before stating this we need another key notion:

A function $f: \mathbf{R} \to \mathbf{R}$ is said to be continuous at a point $x_0 \in \mathbf{R}$, if for all $\epsilon > 0$, there exists a $\delta > 0$ such that if

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$
.

A function is said to be continuous if it is continuous at all points in the domain.

Theorem: If $f : \mathbf{R} \to \mathbf{R}$ is continuous and x_n is a sequence with $x_n \to x_0$, then $f(x_n) \to f(x_0)$.

Proof. Given $\epsilon > 0$, since f is continuous, there exists a $\delta > 0$, such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$. Since $x_n \to x_0$, there exists N such that if $n \ge N$, then $|x_n - x_0| < \delta$ and therefore $|f(x_n) - f(x_0)| < \epsilon$. This show that $f(x_n) \to f(x_0)$ as claimed.

Extreme value theorem: Let f be a continues function on an interval [a, b]. The extreme value theorem says that the sup and inf are achieved. That is, there exist $x \in [a, b]$ such that $f(x) = \sup f$. Likewise for $\inf f$.

Proof. We will show that the supremum is achieved. The proof that the infimum is the same with obvious modification. Let $x_n \in [a, b]$ be a sequence where $f(x_n) \to \sup f$. Since the sequence is contained in [a, b] it is bounded and therefore by the Bolzano - Weirstrass theorem has a convergent subsequence $x_{n_k} \to x$. Note that $x \in [a, b]$. By the theorem above $f(x_{n_k}) \to f(x)$ and since we also have that $f(x_{n_k}) \to \sup f$ it follows that $\sup f = f(x)$. This proves that the supremum is achieved.

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

https://classical real analysis.info/com/documents/TBB-All Chapters-Portrait.pdf (print-optimized)

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.