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TOBIAS HOLCK COLDING 

Lecture 6 

Last time: 

Basic algebraic properties of limits. 

Monotone convergence theorem. 

Cauchy sequence. 

Cauchy sequence: A sequence an is said to be a Cauchy sequence if for all � > 0, there 
exists an N such that if m, n ≥ N , then 

|an − am| < � . 

(Tail of the sequence bunch together.) 

Theorem (Cauchy convergence theorem): A sequence is convergent if and only if it is 
a Cauchy sequence. 

Application: Existence of fixed points for a maps. 
If T : R → R is a map, then x0 ∈ R is a fixed point if 

T (x0) = x0 . 

Definition A contracting map is a map T : R → R such that there exists c < 1 so for all 
x, y ∈ R we have that 

|T (x) − T (y)| ≤ c |x − y| . 

(Points are squeezed together under the map.) 

Contracting mapping theorem: Any contracting map has a fixed point. 
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For a contracting map the fix point is unique. 

Suppose that x and y are two fixed point we want to show that x = y. We have 

|x − y| = |T (x) − T (y)| ≤ c |x − y| . 

Since c < 1 this implies that |x − y| = 0 and so x = y. 

On Pset 3 you will be asked to show that for a contracting map T and any a1 ∈ R the 
sequence an+1 = T (an) is a Cauchy sequence. By the Cauchy theorem we then have that an 

is convergent. 

Let a denote the limit. We claim that T (a) = a. Observe that T (an) = an+1 → a. If we can 
show that if xn → x, then T (xn) → T (x), then 

T (an) → T (a) 

but we already have that T (an) = an+1 → a so we would have that T (a) = a and thus a is 
a fixed point. 

We need therefore show that if xn → x, then T (xn) → T (x). To do that observe that 

|T (xn) − T (x)| ≤ c |xn − x| . 

Since xn → x we have that |xn − x| → 0 and so |T (xn) − T (x)| → 0. It follows that 
T (xn) → T (x). Applying this to the sequence an shows that a is a fixed point for T . 

Applications of contracting mapping theorem: 

Existence of solutions to ODEs. We will return to this later as this needs a version of the 
contracting mapping theorem where T is defined on a more general space than the real 
numbers. 

Newton’s method: Finding a zeroth of a function f : R → R. (So find a solution x to 
f(x) = 0.) 

Suppose that x1 is a ”good” initial guess, so f(x1) is sufficiently small. Assume also that 
f 0 6= 0. Define a map 

f(x)
T (x) = x − . 

f 0(x) 

We have 
f 0 f 00f f 00 

T 0(x) = 1 − + = f . 
f 0 (f 0)2 (f 0)2 
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So as long as x stay close to the initial guess and for the initial guess f(x) is small compared 
f 00 

with 
(f 0)2 , then T is a contracting map. By the contracting mapping theorem the sequence 

xn+1 = T (xn) is a Cauchy sequence that converges to a fixed point of T . 

For a fixed point for T we have T (x) = x so x − f (x) = x and therefore f(x) = 0.
f 0(x) 

Back to Cauchy sequences. 

Bolzano -Weirstrass theorem: Any bounded sequence has a convergent subsequence. 

Once we have the Bolzano-Weirstrass theorem we can prove the Cauchy theorem. 

Proof. (of the Cauchy theorem.) So suppose that an is a Cauchy sequence. We will first 
show that an is bounded. From the definition of a Cauchy sequence we have that there exists 
N such that for m, n ≥ N , then 

|an − am| < 1 . 

It follows, in particular, that for all n ≥ N , we have that 

|an − aN | < 1 , 

and so 

|an| = |(an − aN ) + aN | ≤ 1 + |aN | . 
Therefore, 

|an| ≤ max {|aN | + 1, |a1|, · · · , |aN−1|} . 
So the sequence is bounded. 

From the Bolzano-Weirstrass theorem it follows that an has a convergent subsequence ank 

with limit a. We want to show that an is convergent with limit a. Given � > 0, there exists 
an N1 such that if m, n ≥ N1, then 

� |an − am| < . 
2 

Moreover, there exist an N2 such that if k ≥ N2, then |ank − a| < � . Set N = max {N1, N2}.2 
It follows that if n ≥ N and k ≥ N , then 

� � |an − a| ≤ |an − ank | + |ank − a| < + . 
2 2 

This show that an → a as claimed. � 

Another application of the Bolzano-Weirstrass theorem is the Extreme value theorem. 
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Before stating this we need another key notion: 

A function f : R → R is said to be continuous at a point x0 ∈ R, if for all � > 0, there 
exists a δ > 0 such that if 

|x − x0| < δ =⇒ |f(x) − f(x0)| < � . 

A function is said to be continuous if it is continuous at all points in the domain. 

Theorem: If f : R → R is continuous and xn is a sequence with xn → x0, then f(xn) → 
f(x0). 

Proof. Given � > 0, since f is continuous, there exists a δ > 0, such that if |x − x0| < δ, then 
|f(x) − f(x0)| < �. Since xn → x0, there exists N such that if n ≥ N , then |xn − x0| < δ 
and therefore |f(xn) − f(x0)| < �. This show that f(xn) → f(x0) as claimed. � 

Extreme value theorem: Let f be a continues function on an interval [a, b]. The extreme 
value theorem says that the sup and inf are achieved. That is, there exist x ∈ [a, b] such 
that f(x) = sup f . Likewise for inf f . 

Proof. We will show that the supremum is achieved. The proof that the infimum is the 
same with obvious modification. Let xn ∈ [a, b] be a sequence where f(xn) → sup f . Since 
the sequence is contained in [a, b] it is bounded and therefore by the Bolzano - Weirstrass 
theorem has a convergent subsequence xnk → x. Note that x ∈ [a, b]. By the theorem above 
f(xnk ) → f(x) and since we also have that f(xnk ) → sup f it follows that sup f = f(x). 
This proves that the supremum is achieved. � 
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