SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 7

Last time:

Cauchy convergence theorem: Every Cauchy sequence is convergent.

Bolzano-Weirstrass theorem.

Last time we showed that the Bolzano-Weirstrass implies the Cauchy theorem.

Bolzano-Weirstrass theorem: Any bounded sequence has a convergent subsequence.

Proof. (of the Bolzano-Weirstrass theorem.) Suppose that a_n is a bounded sequence. For simplicity assume that $a_n \in [0, 1]$.

Defining the subsequence a_{n_k} . Either there are infinite many n such that $a_n \in [0, \frac{1}{2}]$ or there are infinite many such a_n in $[\frac{1}{2}, 1]$ (or both). Assume that there are infinitely many in $[0, \frac{1}{2}]$. Set $a_{n_1} = a_1$. Let a_{n_2} be the next a_n such that $a_n \in [0, \frac{1}{2}]$. We have

$$n_2 > n_1 = 1$$
,
 $a_{n_1} \in [0, 1]$,
 $a_{n_2} \in \left[0, \frac{1}{2}\right]$.

Next either infinitely many a_n lies in $[0, \frac{1}{4}]$ or infinitely many a_n lies in $[\frac{1}{4}, \frac{1}{2}]$. Assume that infinitely many lies in $[\frac{1}{2}, \frac{1}{4}]$. Pick an $n > n_2$ such that $a_n \in [\frac{1}{4}, \frac{1}{2}]$ and set $a_{n_3} = a_n$. We continue this way.

Convergence of a_{n_k} . Note that for $k_1, k_2 \geq k$ we have that

$$|a_{n_{k_1}} - a_{n_{k_2}}| \le 2^{1-k} \,.$$

Since $2^{-k} \to 0$ as $k \to \infty$ this shows that the subsequence a_{n_k} is a Cauchy sequence. However, more is true. Squeezed between two other sequences $b_k \le a_{n_k} \le c_k$. We will define sequences b_k and c_k as follows. The sequence b_k will be the left endpoint of the interval of length 2^{1-k} that all the element a_{n_i} will lie in when $i \ge k$ and c_k will be the right end point of the same interval. We have now that the sequence b_k is increasing and the sequence c_k is decreasing and the a_{n_k} are squeezed between the two. It follows that b_k is convergent (as it is also bounded) and likewise for c_k . Since $c_k - b_k = 2^{1-k}$ it follows that b_k and c_k converges to the

same number and since the later a_{n_k} are all squeezed between the two they also converges to that same number.

From Wikipedia: Karl Theodor Wilhelm Weierstrass (1815 – 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. Among many other contributions, Weierstrass formalized the definition of the continuity of a function and complex analysis, proved the intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to study the properties of continuous functions on closed bounded intervals.

Series: Suppose that a_n is a sequence, we can form a new sequence s_n as follows. We let

$$s_1 = a_1$$
,
 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$,

and in general set

$$s_n = a_1 + \dots + a_n = \sum_{i=1}^n a_i$$
.

A series $\sum_{i=1}^{\infty} a_i$ converges if the sequence s_n converges and if it do we also write $\sum_{i=1}^{\infty} a_i$ for the limit.

Geometric series: Suppose now that $a_n = c^n$ so the series is

$$s_n = \sum_{i=0}^n c^i.$$

This is the geometric series. It is convergent precisely when |c| < 1. Moreover, when |c| < 1, then the limit (infinite sum) is

$$\sum_{i=0}^{\infty} c^i = \frac{1}{1-c} \,.$$

To see this observe that

$$(1-c)\sum_{i=0}^{n} c^{i} = 1 - c^{n+1}.$$

It follows from this that if $c \neq 1$, then

$$s_n = \sum_{i=0}^n c^i = \frac{1 - c^{n+1}}{1 - c}$$
.

Therefore, s_n converges with limit $\frac{1}{1-c}$ if |c| < 1 and diverges if |c| > 1 or c = -1. One easily checks, separately, that it also diverges for c = 1.

Harmonic series: For the harmonic series $a_n = \frac{1}{n}$ so the series is $\sum_{i=1}^{\infty} \frac{1}{2}$. This series is divergent. To see this we will show that

$$s_{2^n-1} \ge \frac{n}{2} \,.$$

This is true for n = 1 as $s_1 = 1 \ge \frac{1}{2}$.

Assume that it is true for n we will show that it is also true for n + 1. Namely,

$$s_{2^{n+1}-1} \ge s_{2^{n}-1} + \sum_{i=2^n}^{2^{n+1}-1} \frac{1}{i} \ge \frac{n}{2} + 2^n \frac{1}{2^{n+1}-1} \ge \frac{n}{2} + \frac{1}{2} = \frac{n+1}{2}.$$

So the formula also holds for n + 1 and therefore for all n.

Since $\frac{n}{2} \to \infty$ it follows that the subsequence s_{2^n-1} is divergent and therefore so is the original series.

Absolutely convergent; We say that a series

$$\sum_{n=0}^{\infty} a_n$$

is absolutely convergent if the series

$$\sum_{n=0}^{\infty} |a_n|$$

is convergent. Absolutely convergent implies convergent but not the other way around.

Example: We will see later that the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

is convergent but if we take the absolute values of the a_n 's, then we get the harmonic series which is divergent.

Proof. (of why absolutely convergent implies convergent.) By the Cauchy convergence theorem we only need to show that the sequence

$$\sum_{i=0}^{\infty} a_i$$

is Cauchy sequence if the series

$$\sum_{n=0}^{\infty} |a_n|$$

is convergent. Set

$$s_n = \sum_{i=0}^n a_i \,,$$

$$\mathbf{s}_n = \sum_{i=0}^n |a_i| \,.$$

For m < n we have

$$|s_n - s_m| = |a_n + \dots + a_{m+1}| \le |a_n| + \dots + |a_{m+1}| = |\mathbf{s}_n - \mathbf{s}_m|.$$

Since the sequence \mathbf{s}_n is a Cauchy sequence it now follows that s_n is.

Theorem: A series of non-negative numbers

$$\sum_{i=0}^{\infty} a_i,$$

where $a_n \geq 0$, is convergent if and only if the sequence s_n is bounded from above.

Proof. The sequence s_n is monotone nondecreasing since

$$s_{n+1} = s_n + a_n \ge s_n .$$

The claim now follows from the monotone convergence theorem.

Example: The series

$$\sum_{i=1}^{\infty} \frac{1}{i^2}$$

is convergent. This is a sequence of non-negative numbers so we only need to show that there exist M such that for all n

$$s_n = \sum_{i=1}^n \frac{1}{i^2} \le M .$$

Claim:

$$s_{2^{n}-1} \leq \sum_{i=0}^{n-1} \left(\frac{1}{2}\right)^{i}$$
.

This would be enough because the last is a convergent geometric series so in particular bounded.

We will show this by induction. For n = 1 we have that

$$s_1 = 1 = \left(\frac{1}{2}\right)^0.$$

So it is correct for n = 1. Assume next that it is true for n; we will show that it also holds for n + 1.

$$s_{2^{n+1}-1} = s_{2^{n}-1} + \sum_{i=2^{n}}^{2^{n+1}-1} \frac{1}{i^{2}} \le \sum_{i=0}^{n-1} \left(\frac{1}{2}\right)^{i} + 2^{n} \frac{1}{(2^{n})^{2}}$$
$$\le \sum_{i=0}^{n-1} \left(\frac{1}{2}\right)^{i} + \frac{1}{2^{n}} = \sum_{i=0}^{n} \left(\frac{1}{2}\right)^{i}.$$

This show the induction step and completes the proof.

To help determine whether or not a series converges there are a number of tests:

- Comparison test.
- Ratio test.
- Root test.

Comparison test; version 1: Suppose that a_n and b_n are two sequences with

 $0 \le a_n \le b_n.$

If

 $\sum_{n=1}^{\infty} b_n$

is convergent, then so is

$$\sum_{n=1}^{\infty} a_n.$$

Example: The series

$$\sum_{n=1}^{\infty} \frac{2^{-n}}{n}$$

is convergent. Namely, if we set

$$a_n = \frac{2^{-n}}{n}$$

and

$$b_n = 2^{-n}$$
,

then $0 \le a_n \le b_n$ and since the series $\sum_{n=1}^{\infty} b_n$ is convergent, then by the comparison test so is the series $\sum_{n=1}^{\infty} a_n$.

Comparison test; version 2: Suppose that a_n and b_n are two sequences with $b_n \neq 0$ and

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L\neq 0\,,$$

The series

 $\sum_{n=1}^{\infty} a_n$

is convergent if and only if

$$\sum_{n=1}^{\infty} b_n$$

is.

Example: The series

 $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$

is convergent since

$$\frac{n^2}{n^2 - 1} \to 1 \,,$$

and the series

$$\sum_{n=2}^{\infty} \frac{1}{n^2}$$

is convergent.

Ratio test: Let $a_n \geq 0$ and assume that

$$\frac{a_{n+1}}{a_n} \to a$$

If

- a < 1, then the series $\sum a_n$ is convergent. a > 1, then the series $\sum a_n$ is divergent.
- a = 1, it is inconclusive.

Example 1:

$$a_n = \frac{1}{n} \,.$$

In this case

$$\frac{a_{n+1}}{a_n} \to 1$$

so the test is inconclusive, but the series is divergent.

Example 2:

$$a_n = \frac{1}{n^2} \,.$$

In this case

$$\frac{a_{n+1}}{a_n} \to 1$$

so the test is inconclusive, but the series is convergent.

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf (print-optimized)

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.