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TOBIAS HOLCK COLDING 

Lecture 8 

Series: Suppose that an is a sequence, we can form a new sequence sn as follows. We let 

s1 = a1 , 

s2 = a1 + a2 

s3 = a1 + a2 + a3 , 

and in general set 
nX 

sn = a1 + · · · + an = ai . 
i=1 

P∞ P∞A series ai converges if the sequence sn converges and if it do we also write ai fori=1 i=1 
the limit. 

Geometric series: 
∞X 

i c n . 
i=0 

Convergent precisely when |c| < 1. 

Harmonic series: 
∞X 1 

. 
n 

i=1 

This series is divergent. 

Absolutely convergent; We say that a series 
∞X 

an 

n=0 
1 
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is absolutely convergent if the series 
∞X 
|an|

n=0 

is convergent. Absolutely convergent implies convergent but not the other way around. 

Theorem: A series of non-negative numbers an ≥ 0 
∞X 

ai , 
i=0 

is convergent if and only if the sequence sn is bounded from above. 

To help determine whether or not a series converges there are a number of tests: 
• Comparison test. 
• Ratio test. 
• Root test. 
• Other tests that we will discuss later. 

Comparison test; version 1: Suppose that an and bn are two sequences with 

0 ≤ an ≤ bn . 

If 
∞X 

bn 

n=1 

is convergent, then so is 
∞X 

an . 
n=1 

Example: The series 
∞X 2−n 

n 
n=1 

is convergent. Namely, if we set 
2−n 

an = 
n 

and 
= 2−nbn , P∞then 0 ≤ an ≤ bn and since the series n=1 bn is convergent, then by the comparison test soP∞is the series n=1 an. 
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Comparison test; version 2: Suppose that an and bn are two sequences with bn =6 0 and 
an

lim = L =6 0 , 
n→∞ bn 

The series 
∞X 

an 

n=1 

is convergent if and only if 
∞X 

bn 

n=1 

is. 

Example: The series 

is convergent since 

and the series 

is convergent. 

Ratio test: Let an 

. 

If 

∞X 1 
n2 − 1 

n=2 

2n → 1 , 
n2 − 1 

∞X 1 
2n 

n=2 

≥ 0 and assume that 
an+1 → a 
an 

P 
• a < 1, then the series an is convergent. P 
• a > 1, then the series an is divergent. 
• a = 1, it is inconclusive. 

Example 1: 
1 

an = . 
n 

In this case 
an+1 → 1 
an 

so the test is inconclusive, but the series is divergent. 
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Example 2: 
1 

an = . 
2n 

In this case 
an+1 → 1 
an 

so the test is inconclusive, but the series is convergent. 

nRoot test: Let an ≥ 0 be a sequence of non-negative numbers. Suppose limn→∞(an) 
1 
= r. 

If P∞• r < 1, then the series n=0 an is convergent. P∞• r > 1, then the series n=0 an is divergent. 
• r = 1, then it is inconclusive. 

Proof. (of root test.) Suppose that r < 1. It follows that for r < r0 < 1, there exists N such 
that if n ≥ N , then 

1 
(an)n ≤ r0 . 

Therefore, 
0 ≤ an ≤ r0 

n . P∞ nHowever, the series r is a geometric series that is convergent since r0 < 1. We now n=0 0 P∞have by the first version of the comparison test that also the series n=0 an is convergent. 
Suppose that r > 1. In that case we have that for 1 < r0 < r, there exists N such that if 

n ≥ N , then 
1 

(an)n ≥ r0 . 

Hence, for n ≥ N 
an ≥ r0 

n ,P∞ nwhere, the series r is a divergent geometric series. Therefore, by the comparison test n=0 0 
the original series is divergent. � 

Power series: 

• 
∞X 

n 1 
x = . 

1 − x 
n=0 

• 
∞ nX x 

= exp x . 
n! 

n=0 
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• 
∞X 2 nx 

(−1)n = cos x . 
(2 n)!

n=0 

• 
∞X 2 n+1x 

(−1)n = sin x . 
(2 n + 1)! 

n=0 

P∞Formel definition: Let cn be a sequence, then n=0 cn x
n is a power series. 

When does a power series converge? 

Why does it give familiar functions? 

We will answer the second question next time for the exponential function. 

The answer to the first question comes from the root test or the ratio test. 

Example: Consider the power series: 

∞ nX x 
. 

n! 
n=0 

By the ratio test with an = x
n 

n 

! we have 

n+1n! x xan+1 
= = → 0 . 

an (n + 1)! xn n + 1 

It follows that the power series is convergent for all x. 

Example: 
∞X 

n x . 
n=0 

This series is convergent for |x| < 1 and divergent otherwise. 
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To talk about convergence of a general power series we need the notion of lim sup of a 
sequence. This is defined as follows. 

Let an be a sequence. If it is not bounded from above, then we set lim sup an to be ∞. 
Otherwise we will define a new sequence bn from an as follows. 

bn = sup {an, an+1, an+2, · · · } . 

Note that since we are assuming that the an’s are bounded from above the bn’s are real 
numbers and the sequence bn is decreasing. – It is decreasing since 

bn = sup {an, an+1, an+2, · · · } ≥ sup {an+1, an+2, · · · } = bn+1 . 

(For bn+1 supremum is taken over a smaller set.) 

Since the sequence bn is decreasing it is converging with limit b that possibly could be −∞ 
if the sequence bn is not bounded from below. 

Definition (of lim sup): 
lim sup an = lim bn = b . 

n→∞n→∞ 

Back to power series. Suppose that 
∞X 

an x n 

n=0 

is a power series. Set 
1 

R = . 
lim supn→∞ |an| 

1 
n 

R is said to be the radius of convergence. 

nConvention: If lim supn→∞ |an| 
1 
= 0, then the radius of convergence is said to be ∞. If 

nlim supn→∞ |an| 
1 
= ∞, then we set R = 0. 

From the root test one can now show the following: 

The power series in convergent if |x| < R and divergent if |x| > R. 
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The case of where |x| = R has to be examined on a case by case basis. 
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