SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 9

Power series: Suppose that a_n is a sequence, for each x we can form a series

$$\sum_{n=0}^{\infty} a_n x^n.$$

Exponential map as a power series: Define E(x) as the power series

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} .$$

Step 0: The power series converges for all x. Namely, since

$$\frac{|a_{n+1} x^{n+1}|}{|a_n x^n|} = \frac{|n! x^{n+1}|}{|(n+1)! x^n|} = \frac{x}{n+1} \to 0,$$

the claim follows from the ratio test.

Step 1: Define e = E(1) and $e^2 = e e$, $e^3 = e e e$ etc. This way e^k is defined for all $k \in \mathbb{N}$.

We also define $e^{-k} = \frac{1}{e^k}$. (The idea is that we would like to have $e^{x+y} = e^x e^y$.)

We set $e^0 = 1$.

If $q = \frac{m}{n} \in \mathbf{Q}$, where $m \in \mathbf{Z}$ and $n \in \mathbf{N}$, then we let e^q be the positive number α so that $\alpha^n = e^m$. (Again the idea is that we would like to have that $e^{x+y} = e^x e^y$.)

This way e^q is defined for all rational numbers.

What about the irrational numbers like $\sqrt{2}$?

Step 2: Next time we will show that

$$E(x+y) = E(x) E(y).$$

Here we claim that E(x) > 0 for all x. If $x \ge 0$, then this is clear since

$$E(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \ge 1$$
.

If x < 0, then using the formula we will show next time we have that

$$1 = E(0) = E(x) E(-x)$$
.

Therefore,

$$E(x) = \frac{1}{E(-x)} > 0$$
.

Using that E(x+y) = E(x) E(y) we now claim that $E(q) = e^q$ for all rational numbers q.

For integers m this is how we defined e^m . For m = -k, where $k \in \mathbb{N}$ we defined

$$e^{-k} = \frac{1}{e^k} = \frac{1}{E(k)} = E(-k)$$
.

For a general rational number $q = \frac{m}{n}$, where $m \in \mathbb{N}$ and $n \in \mathbb{Z}$, we have

$$\left(E\left(\frac{m}{n}\right)\right)^n = E\left(\frac{m}{n}\right)\cdots E\left(\frac{m}{n}\right) = E(m),$$

and

$$E\left(\frac{m}{n}\right) > 0$$
.

This gives us that $E(q) = e^q$ for all rational numbers q.

Step 3: We now have E(x) is defined for all x whereas e^x is defined for all rational numbers.

What other properties would we want of the exponential function?

We would want it to be continuous!

Reminder: A function $f: A \to \mathbf{R}$ on some set $A \subset \mathbf{R}$ is said to be continuous if for all $x_0 \in A$ we have:

For all $\epsilon > 0$, there exists a $\delta = \delta(x_0) > 0$ such that if $|x - x_0| < \delta$ $(x \in A)$, then $|f(x) - f(x_0)| < \epsilon$.

On Pset 5 you will be asked to show that E(x) is continuous at all points.

Step 4: We will next show that E(x) is the unique continuous function where $E(q) = e^q$ for all rational numbers q.

Theorem: Let f and g be two continuous function on \mathbf{R} that agrees on all rational numbers, then f = g.

We will show this theorem next time. For now here are some more about what it means for a function to be continuous.

Example 1: Suppose f(x) = c, where c is a constant. We will show that f is continuous. Given $x_0 \in \mathbf{R}$ and $\epsilon > 0$, set $\delta = 1$. We then have that if $|x - x_0| < \delta = 1$, then $|f(x) - f(x_0)| = 0 < \epsilon$. This show that f is continuous.

Example 2: Suppose f(x) = x, we will show that f is continuous. Given $x_0 \in \mathbf{R}$ and $\epsilon > 0$, set $\delta = \epsilon$. We then have that if $|x - x_0| < \delta = \epsilon$, then $|f(x) - f(x_0)| = |x - x_0| < \epsilon$. This show that f is continuous.

Algebraic properties of continuous functions:

- If f and g are continuous functions, then so is f + g.
- If f is continuous and c is a constant, then cf is continuous.
- If f and g are continuous, then f g is also continuous.
- If f is continuous and $f \neq 0$, then $\frac{1}{f}$ is continuous.
- If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (the proof is very similar to the one we gave for the algebraic properties of limits.) \square

Theorem: All polynomials are continuous.

Example 3: If $f(x) = x^2 + 1$, then f is continuos. We have already proven that g(x) = x is continuous so by the algebraic properties we have that $x^2 = g g$ is continuous. We have also already shown that the constant functions are continuous so h(x) = 1 is continuous and therefore by the algebraic properties we have that $f = g^2 + h$ is continuous.

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

https://classical real analysis. in fo/com/documents/TBB-All Chapters-Portrait.pdf (print-optimized)

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.