SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 10

Power series: Suppose that a_n is a sequence. For each x we can form a series

$$\sum_{n=0}^{\infty} a_n \, x^n \, .$$

Exponential function as a power series: Define E(x) by the power series

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \,.$$

Step 0: The power series converges for all x.

Step 1: Define e^q for all rational numbers q.

Step 2: Need to show that

$$E(x+y) = E(x) E(y).$$

Step 3: E(x) is defined for all x, whereas e^x is defined for all rational numbers, and $E(q) = e^q$ for all rational numbers.

Step 4: E is continuous on all of \mathbf{R} . (Pset 5.)

Step 5: If f and g are continuous functions on **R** that agrees on **Q**, then f = g everywhere.

Suppose that we have two convergent series

$$\sum_{n=0}^{\infty} a_n \text{ and } \sum_{n=0}^{\infty} b_n$$

of non-negative numbers $a_n, b_n \ge 0$.

Form the "product series"

$$\sum_{n=0}^{\infty} c_n \,,$$

where

$$c_n = \sum_{i=0}^n a_i \, b_{n-i} \, .$$

Note that each $c_n \geq 0$ so by the monotone convergence theorem the series

$$\sum_{n=0}^{\infty} c_n$$

is convergent if it is bounded.

Theorem 1: If $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are as above, then the series

$$\sum_{n=0}^{\infty} c_n$$

is convergent with limit

$$\sum_{n=0}^{\infty} a_n \sum_{n=0}^{\infty} b_n.$$

Proof. Denote

$$s_n^a = \sum_{i=0}^n a_i \text{ and } s_n^b = \sum_{i=0}^n b_i \text{ and } s_n^c = \sum_{i=0}^n c_i.$$

The idea here is that

$$(*) \qquad \left(\sum_{\ell=0}^n a_\ell\right) \, \left(\sum_{\ell=0}^n b_\ell\right) = \sum_{k=0}^n \sum_{i+j=k} a_i \, b_j + \sum_{i+j>n \text{ and } i,j \leq n} a_i \, b_j \leq \sum_{k=0}^{2n} \sum_{i+j=k} a_i \, b_j \, .$$

In other words

$$(**) s_n^c \le s_n^a s_n^b \le s_{2n}^c.$$

This is because (*) is

$$s_n^a s_n^b = s_n^c + \sum_{i+j>n \text{ and } i,j \le n} a_i b_j \le s_{2n}^c$$
,

and

$$0 \le \sum_{i+j > n \text{ and } i, j \le n} a_i \, b_j \,.$$

Note that the first inequality in (**) implies that the sequence s_n^c is bounded and therefore since $a_n, b_n, c_n \geq 0$ we have that

$$s_n^a \uparrow s^a$$
, $s_n^b \uparrow s^b$, $s_n^c \uparrow s^c$

by the monotone convergence theorem for sequences. Since the product $s_n^a s_n^b$ is squeezed between s_n^c and s_{2n}^c by (**) we have that

$$s^c \le s^a s^b \le s^c$$
.

From this the claim follows.

Applying Theorem 1 to the power series E(x) we can now prove the following:

Theorem 2:

$$E(x+y) = E(x) E(y).$$

Proof. We will show this assuming that $x, y \ge 0$. Once we have shown the theorem for $x, y \ge 0$ the general case is not too difficult but we will not prove that here. The idea is that E(x+y) will play the role of

$$\sum_{n=0}^{\infty} c_n$$

above. So set

$$c_n = \frac{(x+y)^n}{n!} \,,$$

By the "binomial" formula

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}.$$

So

$$c_n = \frac{1}{n!} \sum_{i=0}^{n} \binom{n}{i} x^i y^{n-i}.$$

Since

$$\binom{n}{i} = \frac{n!}{i! (n-i)!},$$

we have that

$$c_n = \sum_{i=0}^n \frac{x^i}{i!} \frac{y^{n-i}}{(n-i)!}$$
.

This shows that

$$c_n = \sum_{i=0}^n a_i \, b_{n-i} \,,$$

where

$$a_i = \frac{x^i}{i!}$$

and

$$b_i = \frac{y^i}{i!} \, .$$

The claim now follows from Theorem 1.

Coming back to the functions E and e. We have that they agree on all rational numbers and that E is defined for all real numbers.

We would want the exponential function to be continuous!

Reminder: A function $f: A \to \mathbf{R}$ on some set $A \subset \mathbf{R}$ is said to be continuous if for all $x_0 \in A$ we have:

For all $\epsilon > 0$, there exists a $\delta = \delta(x_0) > 0$ such that if $|x - x_0| < \delta$ $(x \in A)$, then $|f(x) - f(x_0)| < \epsilon$.

On Pset 5 you will be asked to show that E(x) is continuous at all points.

Step 5: We will show that E(x) is the unique continuous function where $E(q) = e^q$ for all rational numbers q.

Theorem 3: (On Pset 5.) Let f and g be two continuous function on \mathbf{R} that agrees on all rational numbers, then f = g.

We will next see that there are functions on R that are not continuous at any point!

Before defining such a function recall that we already proved that $\sqrt{2}$ is a irrational number and thus for all $\delta > 0$, there exists an N such that if $n \geq N$, then

$$0 < \frac{\sqrt{2}}{n} < \delta.$$

So arbitrarily close to zero there are irrational numbers. Likewise by the Archimedean property we have that arbitrarily close to any irrational number there is a rational number.

On \mathbf{R} define a function f as follows

$$f(x) = \begin{cases} 1 & x \in \mathbf{Q} \\ 0 & \text{otherwise} \end{cases}$$

We claim that f is nowhere continuous. Suppose first that x_0 is rational and let $0 < \epsilon < 1$. We have that $f(x_0) = 1$ and for any $\delta > 0$, there exists a irrational number x with $|x - x_0| < \delta$ but we also have that

$$\epsilon < 1 = |f(x) - f(x_0)|.$$

This show that f is discontinuous at x_0 .

Likewise suppose x_0 is an irrational number. We have that $f(x_0) = 0$. Given $0 < \epsilon < 1$ for any $\delta > 0$, there exists a rational number x with $|x - x_0| < \delta$. On the other hand

$$\epsilon < 1 = |f(x) - f(x_0)|.$$

This show that f is discontinuous at x_0 .

This gives an example of a function that is discontinuous at all points. On the other hand recall from last time how to generate continuous functions from known continuous functions:

Algebraic properties of continuous functions:

- If f and g are continuous functions, then so is f + g.
- If f is continuous and c is a constant, then c f is continuous.
- If f and g are continuous, then f g is also continuous.
- If f is continuous and $f \neq 0$, then $\frac{1}{f}$ is continuous.
- If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (The proof is very similar to the one we gave for the algebraic properties of limits of sequences.) \Box

Theorem: All polynomials are continuous.

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Landscape.pdf (screen-optimized)

 $\label{lem:https://classicalreal} $$ $$ https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf (print-optimized) $$$

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.