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TOBIAS HOLCK COLDING

Lecture 10

Power series: Suppose that a, is a sequence. For each z we can form a series

o
E anx" .
n=0

Exponential function as a power series: Define F(z) by the power series

e} n

E@):Z%.

n=0

Step 0: The power series converges for all z.
Step 1: Define e? for all rational numbers q.

Step 2: Need to show that
E(z+y) = E(z) E(y) .

Step 3: E(z) is defined for all z, whereas e” is defined for all rational numbers, and E(q) = e?
for all rational numbers.

Step 4: E is continuous on all of R. (Pset 5.)

Step 5: If f and g are continuous functions on R that agrees on Q, then f = g everywhere.
1
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Suppose that we have two convergent series

i a, and i b,
n=0 n=0

of non-negative numbers a,,, b, > 0.

Form the "product series”
o
E Cn
n=0
where
n
Cp = E a; bn—i .
i=0

Note that each ¢, > 0 so by the monotone convergence theorem the series
[e.e]
D cn
n=0

is convergent if it is bounded.

Theorem 1: If Y ° ja, and Y~ b, are as above, then the series

is convergent with limit

n=0 n=0
Proof. Denote
n n n
a b c
sn:E azandsnzi biandsn—g ci
1=0 1=0 =0

The idea here is that

n 2n
(%) Zae be | = a; by + Z a; b; SZ Z a; bj .
=0

£=0 k=0 i+j=Fk i+j>n and i,j<n k=0 i+j=k

3
3

In other words

This is because (x) is
a b __ _c c
nSn = S, E : aibjSSZTH

i+j>n and i,5<n
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OS Z aibj.

i+j>n and i,5<n

and

Note that the first inequality in (x*) implies that the sequence s¢ is bounded and therefore
since a,, b,, ¢, > 0 we have that
b op b
sy 1 s”, s, 18", sy T s¢
by the monotone convergence theorem for sequences. Since the product s? s’ is squeezed
between s¢ and s5, by (#*) we have that
§¢ < s%sb < s¢.

From this the claim follows. O

Applying Theorem 1 to the power series E(x) we can now prove the following:

Theorem 2:
E(z+y) = E(z) E(y) .

Proof. We will show this assuming that z, y > 0. Once we have shown the theorem for x,
y > 0 the general case is not too difficult but we will not prove that here. The idea is that
E(z + y) will play the role of

n=0
above. So set
_(z+y)
n - n! 9
By the "binomial” formula
n . n T n—1
(z+y)" = (Z)w y
=0
So
1 . (n) (A n—
Cp = — )2ty
nl 4 )
=0
Since

we have that

This shows that
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where 4
xl
a; = H
and A
b= L
7!
The claim now follows from Theorem 1. O

Coming back to the functions F and e. We have that they agree on all rational numbers
and that F is defined for all real numbers.

We would want the exponential function to be continuous!

A function f : A — R on some set A C R is said to be continuous if for all
o € A we have:

For all € > 0, there exists a § = d(zg) > 0 such that if |z — 29| < § (x € A), then
[f (@) = f(zo)| <€

On Pset 5 you will be asked to show that E(x) is continuous at all points.

Step 5: We will show that F(z) is the unique continuous function where E(q) = e for all
rational numbers gq.

Theorem 3: (On Pset 5.) Let f and g be two continuous function on R that agrees on all
rational numbers, then f = g.

We will next see that there are functions on R that are not continuous at any point!

Before defining such a function recall that we already proved that v/2 is a irrational number
and thus for all § > 0, there exists an N such that if n > N, then

V2

0< — <9.
n

So arbitrarily close to zero there are irrational numbers. Likewise by the Archimedean
property we have that arbitrarily close to any irrational number there is a rational number.
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On R define a function f as follows

f($)={1 r € Q

0 otherwise

We claim that f is nowhere continuous. Suppose first that xq is rational and let 0 < e < 1.
We have that f(x¢) = 1 and for any § > 0, there exists a irrational number x with |z —zq| < §
but we also have that

e <1=|f(z) = f(xo)l.

This show that f is discontinuous at xg.

Likewise suppose zg is an irrational number. We have that f(x¢) = 0. Given 0 < € < 1 for
any ¢ > 0, there exists a rational number z with | — x¢| < d. On the other hand

e<1=[f(z)— f(zo)|.

This show that f is discontinuous at xg.

This gives an example of a function that is discontinuous at all points. On the other hand
recall from last time how to generate continuous functions from known continuous functions:

Algebraic properties of continuous functions:

e If f and g are continuous functions, then so is f + g.

e If f is continuous and c is a constant, then ¢ f is continuous.
e If f and ¢ are continuous, then f ¢ is also continuous.

e If f is continuous and f # 0, then % is continuous.

e If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (The proof is very similar to the one we gave for the algebraic properties of limits of
sequences.) O

Theorem: All polynomials are continuous.

REFERENCES

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, Elementary Real Analysis, 2nd edition
TBB can be downloaded at:
https://classicalrealanalysis.info/com/documents/ TBB-AllChapters-Landscape.pdf
(screen-optimized)
https://classicalrealanalysis.info/com/documents/ TBB-AllChapters-Portrait.pdf
(print-optimized)

MIT, DEPT. OF MATH., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307.


https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf
https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Landscape.pdf

MIT OpenCourseWare
https://ocw.mit.edu

18.100B Real Analysis
Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover18_100B.pdf
	Blank Page




