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TOBIAS HOLCK COLDING 

Lecture 10 

Power series: Suppose that an is a sequence. For each x we can form a series 

Exponential function as a power series: Define E(x) by the power series 

Step 0: The power series converges for all x. 

Step 1: Define eq for all rational numbers q. 

Step 2: Need to show that 

E(x + y) = E(x) E(y) . 

Step 3: E(x) is defined for all x, whereas ex is defined for all rational numbers, and E(q) = eq 

for all rational numbers. 

Step 4: E is continuous on all of R. (Pset 5.) 

Step 5: If f and g are continuous functions on R that agrees on Q, then f = g everywhere. 
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∑∞
n=0

an x
n .

E(x) =
∑∞
n=0

xn

n!
.



  

2 TOBIAS HOLCK COLDING

Suppose that we have two convergent series∑∞
n=0

an and
∑∞
n=0

bn

of non-negative numbers an, bn ≥ 0.

Form the ”product series” ∑∞
n=0

cn ,

where

cn =
∑n
i=0

ai bn−i .

Note that each cn ≥ 0 so by the monotone convergence theorem the series∑∞
n=0

cn

is convergent if it is bounded.

Theorem 1: If
∑∞

n=0 an and
∑∞

n=0 bn are as above, then the series∑∞
n=0

cn

is convergent with limit ∑∞
n=0

an
∑∞
n=0

bn .

Proof. Denote

san =
∑n
i=0

ai and sbn =
∑n
i=0

bi and scn =
∑n
i=0

ci .

The idea here is that

(∗)

(∑n
`=0

a`

) (∑n
`=0

b`

)
=
∑n
k=0

∑
i+j=k

ai bj +
∑

i+j>n and i,j≤n

ai bj ≤
2∑n

k=0

∑
i+j=k

ai bj .

In other words

(∗∗) scn ≤ san s
b
n ≤ sc2n .

This is because (∗) is

san s
b
n = scn +

∑
i+j>n and i,j≤n

ai bj ≤ sc2n ,
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and

0 ≤
∑

ai bj .
i+j>n and i,j≤n

Note that the first inequality in (∗∗) implies that the sequence scn is bounded and therefore
since an, bn, cn ≥ 0 we have that

san ↑ sa , sbn ↑ sb , scn ↑ sc

by the monotone convergence theorem for sequences. Since the product san s
b
n is squeezed

between scn and sc2n by (∗∗) we have that

sc ≤ sa sb ≤ sc .

From this the claim follows. �

Applying Theorem 1 to the power series E(x) we can now prove the following:

Theorem 2:

E(x+ y) = E(x)E(y) .

Proof. We will show this assuming that x, y ≥ 0. Once we have shown the theorem for x,
y ≥ 0 the general case is not too difficult but we will not prove that here. The idea is that
E(x+ y) will play the role of ∑∞

n=0

cn

above. So set

cn =
(x+ y)n

n!
,

By the ”binomial” formula

(x+ y)n =
∑n
i=0

(
n

i

)
xi yn−i .

So

cn =
1

n!

∑n
i=0

(
n

i

)
xi yn−i .

Since (
n

i

)
=

n!

i! (n− i)!
,

we have that

cn =
∑n
i=0

xi

i!

yn−i

(n− i)!
.

This shows that

cn =
∑n
i=0

ai bn−i ,
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where 
ix

ai = 
i! 

and 
iy

bi = . 
i! 

The claim now follows from Theorem 1. �

Coming back to the functions E and e. We have that they agree on all rational numbers 
and that E is defined for all real numbers. 

We would want the exponential function to be continuous! 

Reminder: A function f : A → R on some set A ⊂ R is said to be continuous if for all 
x0 ∈ A we have: 

For all � > 0, there exists a δ = δ(x0) > 0 such that if |x − x0| < δ (x ∈ A), then
|f(x) − f(x0)| < �. 

On Pset 5 you will be asked to show that E(x) is continuous at all points. 

Step 5: We will show that E(x) is the unique continuous function where E(q) = eq for all 
rational numbers q. 

Theorem 3: (On Pset 5.) Let f and g be two continuous function on R that agrees on all 
rational numbers, then f = g. 

We will next see that there are functions on R that are not continuous at any point! 

√ 
Before defining such a function recall that we already proved that 2 is a irrational number 
and thus for all δ > 0, there exists an N such that if n ≥ N , then 

√ 
2 

0 < < δ . 
n 

So arbitrarily close to zero there are irrational numbers. Likewise by the Archimedean 
property we have that arbitrarily close to any irrational number there is a rational number. 



          

This gives an example of a function that is discontinuous at all points. On the other hand 
recall from last time how to generate continuous functions from known continuous functions: 

Algebraic properties of continuous functions: 
• If f and g are continuous functions, then so is f + g.
• If f is continuous and c is a constant, then c f is continuous.
• If f and g are continuous, then f g is also continuous.
• If f is continuous and f 6= 0, then 

f 
1 is continuous.

• If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (The proof is very similar to the one we gave for the algebraic properties of limits of 
sequences.) �

Theorem: All polynomials are continuous. 
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On R define a function f as follows

f(x) =

{
1 x ∈ Q

0 otherwise

We claim that f is nowhere continuous. Suppose first that x0 is rational and let 0 < ε < 1.
We have that f(x0) = 1 and for any δ > 0, there exists a irrational number x with |x−x0| < δ
but we also have that

ε < 1 = |f(x)− f(x0)| .
This show that f is discontinuous at x0.

Likewise suppose x0 is an irrational number. We have that f(x0) = 0. Given 0 < ε < 1 for
any δ > 0, there exists a rational number x with |x− x0| < δ. On the other hand

ε < 1 = |f(x)− f(x0)| .
This show that f is discontinuous at x0.

https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf
https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Landscape.pdf
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