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TOBIAS HOLCK COLDING

Lecture 11

A function f : A — R on some set A C R is said to be continuous if for all
zo € A we have:

For all € > 0, there exists a § = d(zg) > 0 such that if |z — 29| < 0 (z € A), then
[f(x) = f(zo)] <&

Two theorems about continuous functions:

Extreme Value Theorem: Suppose that f : [a,b] — R is a continuous function, then
there exist xp; € [a,b] such that f(zp) > f(x) for all © € [a,b]. Similarly, there exists
T € [a,b] such that f(x,,) < f(z) for all z € [a,b)].

Intermediate Value Theorem: Suppose that f : [a,b] — R is a continuous function, then
for all y between f(a) and f(b), there exists = € [a, b] such that f(z) =y.

We will show these theorems using a lemma that connects sequences and continuous func-
tions. This is the following:

Lemma: Suppose that f : [a,b] — R is a continuous function and z, — 7. a sequence,
then f(x,) — f(2x). We can also write this as

lim f(xz,)=f ( lim xn> .

n—oo n—oo

Proof. To show that f(z,) — f(zs) let € > 0 be given. Since f is continuous at z,, there
exists 0 > 0 such that if |z — x| < §, then |f(z) — f(2)| < €. Since z,, — T, there exists
N such that if n > N, then |z, — 2| < 0 and therefore |f(z,) — f(zx)| < €. This shows

the lemma. O
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Using this lemma we can now prove the extreme value theorem:

Proof. (of EVT.) Let E = f([a,b]) and set M = sup £. We will show that M < oo and
that M = f(x) for some x € [a,b]. We show first that M is finite. Otherwise for each n
there exists an x,, € [a, b] such that f(x,) > n. Since the sequence {z,} is bounded by the
Bolzano-Weirstrass theorem it has a convergent subsequence. Let us denote that by z,, .
We have z,, — T« € [a,b]. By the lemma above f(z,,) — f(zw) but we assumed that the
sequence f(x,,) is unbounded which is the desired contradiction.

For each integer n we can now choose z, € [a,b] such that f(z,) > M — % Again since
this sequence is bounded by the Bolzano-Weirstrass theorem it has a convergent subsequence
T, — Too € [a,b]. By the lemma above f(x,,) — f(zs) > M. Since M = sup f([a,b]) we
have that f(x) = M. This show the EVT. O

Proof. (of IVT.) We will assume that f(a) < 0 < f(b) and show that there exists = € [a, b]
such that f(x) = 0. The general case is similar. Let A = {y| for all x <y we have that f(z) <
0}. Note that a € A so the set is non-empty. Set M = sup A and let z,, be a sequence with
x, < M and z, — M. It follows that f(z,) < 0 and so by the lemma above we must have
that f(M) < 0. We are done if f(M) = 0 so assume that f(M) < 0. We have that M < b
and by continuity there exist a whole interval around M where f < 0. This contradict that
M was the supremum of the set A. Showing the IVT. U
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Abstract metric space.

Definition: Metric space A metric space is a set X with a function d : X x X — R with
the following three properties:

(1) d(z,y) > 0 for all z, y € X and d(z,y) = 0 if and only if z = y. (Distances > 0.)
(2) d(z,y) = d(y,z). (Symmetric.)
(3) d(z,2) < d(z,y) +d(y, z). (Triangle inequality.)

Examples:
(1) X =R and
d(z,y) = v —yl.
(2) X = R? and for = (x1,22) and y = (y1,92)
d(z,y) = V]z1 — il + |22 — v
(3) X = R3 and for & = (21,22, 73) and y = (y1, y2, y3)

d(z,y) =]z — 1> + z2 — v + |zs — ys).

Example: Continuous function on an interval [a,b]. Let X = C([a,b]) where C([a, b]) is the
set of continuous functions on [a,b]. The distance between two continuous functions f and
g is then

d(f,g) = max |f(z —g(z)].

Since f — g is also a continuous function the EVT theorem guarantees that the max is
achieved for some z € [a, b].

Metric spaces plays the role of generalised real numbers. A lot of the discussion that we
have had in the class holds also for metric spaces and this is useful in many circumstances.
For instance, we will see in a later class that we can use it to solve ODEs.

Sequences in a metric space: A sequence in a metric space (X,d) is a map f: N — X.
We typically denote the image f(n) by x,. Similarly we define a subsequence as the
composition of a strictly increasing map ¢ : N — N with f and z,,, = f(g(k)).

It is not all results that we know from R that generalises to general metric spaces. For
instance, in general there are no algebraic properties, no squeeze theorem, no monotone
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convergence theorem. On the other hand the statement of both the Cauchy convergence
theorem and the Bolzano-Weirstrass theorems makes sense in a general metric space.

Example (Box distance): The space is X = R* and if z = (21, %) and y = (y1,¥2), then

d(z,y) = |v1 — y1| + |22 — 1] .

Example (Strange metric on integers): The space is X = N and if m, n are integers,
then

1 1
d = —— —
(mm)= =~
Here is a wild example of a metric space:
Example (French railway metric): The space is X = R? and if z = (z1,79) and

Yy= (yla 92)7 then

d(z,y) =

lz — y| if x=cyory=cx for some ce R
o]+ |y| otherwise '

Here

lz—yl= V(@ — 1) + (22— 12)?,

and likewise for |z| and [y|.

Definition: Convergent sequence in a metric space If (X, d) is a metric space and z,,
is a sequence in X, then we say that z,, converges to x and write x,, — x or z = lim,, , x,
if for all € > 0, there exists an N such that if n > N, then

d(xz,z,) < €.

This is equivalent to that the sequence d(z,, ) — 0.

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and z,, is a
sequence in X, then we say that z,, is a Cauchy sequence if for all € > 0, there exists an NV,
such that if m, n > N, then

d(zpm, x,) < €.
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Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence.

Proof. So suppose that =, € X is a sequence and z,, — x. Given € > 0, convergence means
that there exists IV such that if n > N, then d(z,z,) < §. If both m, n > N, then we have
by the triangle inequality that

d(xmaxn> < d(l‘m,l’) + d((L’,ZL’n) < % + g — €.

This show the theorem. O

The converse is not always the case: If X = (0,1) € R with d(z,y) = |z — y|, then the
sequence T, = % is a Cauchy sequence but since 0 is not in X, it is not convergent. We

sometimes express this by saying that in this case X is not Cauchy complete.

Definition: Continuous function on a metric space (X, d) Suppose that F': X — R
is a function. We say that f is continuous at xq € X, if for all ¢ > 0, there exists a 6 > 0,
such that if € X with d(z,z() < §, then

|F(z) — F(xo)| < €.

Example: Let again X = C([0,1]) be the set of continuous functions on [0, 1]. Equip X
with the distance described above. So the distance between to continuous functions f and g
is then

d(f,g) = max |f(z—g(x)].

Define F' on X to be the function F(f) = f(0) where f € C([0,1]). F is easily seen to be a
continuous function on the metric space X.

We can now extend one of the earlier lemmas to general metric spaces.

Lemma: Let (X, d) be a general metric space. Suppose that f : X — R is a continuous
function and x,, is a sequence in X with x,, — z, then f(z,) = f(2s)-

Proof. To show that f(z,) — f(zs) let € > 0 be given. Since f is continuous at z,, there
exists § > 0 such that if d(z,x+) < 9, then |f(z) — f(2)| < €. Since z,, — x there exists

N such that if n > N, then d(z,,2+) < ¢ and therefore |f(x,) — f(xx)| < €. This shows
the lemma. O
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