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Lecture 11 

Reminder: A function f : A → R on some set A ⊂ R is said to be continuous if for all 
x0 ∈ A we have: 

For all � > 0, there exists a δ = δ(x0) > 0 such that if |x − x0| < δ (x ∈ A), then 
|f(x) − f(x0)| < �. 

Two theorems about continuous functions: 

Extreme Value Theorem: Suppose that f : [a, b] → R is a continuous function, then 
there exist xM ∈ [a, b] such that f(xM ) ≥ f(x) for all x ∈ [a, b]. Similarly, there exists 
xm ∈ [a, b] such that f(xm) ≤ f(x) for all x ∈ [a, b]. 

Intermediate Value Theorem: Suppose that f : [a, b] → R is a continuous function, then 
for all y between f(a) and f(b), there exists x ∈ [a, b] such that f(x) = y. 

We will show these theorems using a lemma that connects sequences and continuous func-
tions. This is the following: 

Lemma: Suppose that f : [a, b] → R is a continuous function and xn → x∞ a sequence, 
then f(xn) → f(x∞). We can also write this as 

� � 
lim f(xn) = f lim xn . 
n→∞ n→∞ 

Proof. To show that f(xn) → f(x∞) let � > 0 be given. Since f is continuous at x∞, there 
exists δ > 0 such that if |x − x∞| < δ, then |f(x) − f(x∞)| < �. Since xn → x∞ there exists 
N such that if n ≥ N , then |xn − x∞| < δ and therefore |f(xn) − f(x∞)| < �. This shows 
the lemma. � 
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Using this lemma we can now prove the extreme value theorem: 

Proof. (of EVT.) Let E = f([a, b]) and set M = sup E. We will show that M < ∞ and 
that M = f(x) for some x ∈ [a, b]. We show first that M is finite. Otherwise for each n 
there exists an xn ∈ [a, b] such that f(xn) > n. Since the sequence {xn} is bounded by the 
Bolzano-Weirstrass theorem it has a convergent subsequence. Let us denote that by xnk . 
We have xnk → x∞ ∈ [a, b]. By the lemma above f(xnk ) → f(x∞) but we assumed that the 
sequence f(xnk ) is unbounded which is the desired contradiction. 
For each integer n we can now choose xn ∈ [a, b] such that f(xn) > M − 

n 
1 . Again since 

this sequence is bounded by the Bolzano-Weirstrass theorem it has a convergent subsequence 
xnk → x∞ ∈ [a, b]. By the lemma above f(xnk ) → f(x∞) ≥ M . Since M = sup f([a, b]) we 
have that f(x∞) = M . This show the EVT. � 

Proof. (of IVT.) We will assume that f(a) < 0 < f(b) and show that there exists x ∈ [a, b] 
such that f(x) = 0. The general case is similar. Let A = {y | for all x ≤ y we have that f(x) ≤ 
0}. Note that a ∈ A so the set is non-empty. Set M = sup A and let xn be a sequence with 
xn < M and xn → M . It follows that f(xn) < 0 and so by the lemma above we must have 
that f(M) ≤ 0. We are done if f(M) = 0 so assume that f(M) < 0. We have that M < b 
and by continuity there exist a whole interval around M where f < 0. This contradict that 
M was the supremum of the set A. Showing the IVT. � 
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Abstract metric space. 

Definition: Metric space A metric space is a set X with a function d : X × X → R with 
the following three properties: 

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y. (Distances ≥ 0.) 
(2) d(x, y) = d(y, x). (Symmetric.) 
(3) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality.) 

Examples: 

(1) X = R and 
d(x, y) = |x − y| . 

(2) X = R2 and for x = (x1, x2) and y = (y1, y2) 

d(x, y) = 
p
|x1 − y1|2 + |x2 − y2|2 . 

(3) X = R3 and for x = (x1, x2, x3) and y = (y1, y2, y3) 

d(x, y) = 
p
|x1 − y1|2 + |x2 − y2|2 + |x3 − y3|2 . 

Example: Continuous function on an interval [a, b]. Let X = C([a, b]) where C([a, b]) is the 
set of continuous functions on [a, b]. The distance between two continuous functions f and 
g is then 

d(f, g) = max |f(x − g(x)| . 
x∈[a,b] 

Since f − g is also a continuous function the EVT theorem guarantees that the max is 
achieved for some x ∈ [a, b]. 

Metric spaces plays the role of generalised real numbers. A lot of the discussion that we 
have had in the class holds also for metric spaces and this is useful in many circumstances. 
For instance, we will see in a later class that we can use it to solve ODEs. 

Sequences in a metric space: A sequence in a metric space (X, d) is a map f : N → X. 
We typically denote the image f(n) by xn. Similarly we define a subsequence as the 
composition of a strictly increasing map g : N → N with f and xnk = f(g(k)). 

It is not all results that we know from R that generalises to general metric spaces. For 
instance, in general there are no algebraic properties, no squeeze theorem, no monotone 
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convergence theorem. On the other hand the statement of both the Cauchy convergence 
theorem and the Bolzano-Weirstrass theorems makes sense in a general metric space. 

Example (Box distance): The space is X = R2 and if x = (x1, x2) and y = (y1, y2), then 

d(x, y) = |x1 − y1| + |x2 − y2| . 

Example (Strange metric on integers): The space is X = N and if m, n are integers, 
then 

1 1 
d(m, n) = − . 

n m 

Here is a wild example of a metric space: 

Example (French railway metric): The space is X = R2 and if x = (x1, x2) and 
y = (y1, y2), then ( 

|x − y| if x = c y or y = c x for some c ∈ R 
d(x, y) = . 

|x| + |y| otherwise 

Here 

|x − y| = 
p

(x1 − y1)2 + (x2 − y2)2 , 

and likewise for |x| and |y|. 

Definition: Convergent sequence in a metric space If (X, d) is a metric space and xn 

is a sequence in X, then we say that xn converges to x and write xn → x or x = limn→∞ xn 

if for all � > 0, there exists an N such that if n ≥ N , then 

d(x, xn) < � . 

This is equivalent to that the sequence d(xn, x∞) → 0. 

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and xn is a 
sequence in X, then we say that xn is a Cauchy sequence if for all � > 0, there exists an N , 
such that if m, n ≥ N , then 

d(xm, xn) < � . 
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Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence. 

Proof. So suppose that xn ∈ X is a sequence and xn → x. Given � > 0, convergence means 
that there exists N such that if n ≥ N , then d(x, xn) < 

2 
� . If both m, n ≥ N , then we have 

by the triangle inequality that 

� � 
d(xm, xn) ≤ d(xm, x) + d(x, xn) < + = � . 

2 2 

This show the theorem. � 

The converse is not always the case: If X = (0, 1) ⊂ R with d(x, y) = |x − y|, then the 
sequence xn = 

n 
1 is a Cauchy sequence but since 0 is not in X, it is not convergent. We 

sometimes express this by saying that in this case X is not Cauchy complete. 

Definition: Continuous function on a metric space (X, d) Suppose that F : X → R 
is a function. We say that f is continuous at x0 ∈ X, if for all � > 0, there exists a δ > 0, 
such that if x ∈ X with d(x, x0) < δ, then 

|F (x) − F (x0)| < � . 

Example: Let again X = C([0, 1]) be the set of continuous functions on [0, 1]. Equip X 
with the distance described above. So the distance between to continuous functions f and g 
is then 

d(f, g) = max |f(x − g(x)| . 
x∈[a,b] 

Define F on X to be the function F (f) = f(0) where f ∈ C([0, 1]). F is easily seen to be a 
continuous function on the metric space X. 

We can now extend one of the earlier lemmas to general metric spaces. 

Lemma: Let (X, d) be a general metric space. Suppose that f : X → R is a continuous 
function and xn is a sequence in X with xn → x∞, then f(xn) → f(x∞). 

Proof. To show that f(xn) → f(x∞) let � > 0 be given. Since f is continuous at x∞, there 
exists δ > 0 such that if d(x, x∞) < δ, then |f(x) − f(x∞)| < �. Since xn → x∞ there exists 
N such that if n ≥ N , then d(xn, x∞) < δ and therefore |f(xn) − f(x∞)| < �. This shows 
the lemma. � 
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