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TOBIAS HOLCK COLDING 

Lecture 13 

Definition (Closed subsets): Let (X, d) be a metric space. We say that C is a closed subset 
of X if the complement X \ C is open. 

Note that ∅ (the empty set) and X are both closed. 

Examples: 
• (0, 1) is not a closed subset of R. 
• {0} is a closed subset of R. 
• [0, 1] is a closed subset of R. 
• [0, 1] × [0, 1] is a closed subset of R2 . 

Lemma: Let (X, d) be a metric space and r > 0, then 

Ar = {y | d(x, y) > r}
¯is open. Equivalently, Br(x) = {y | d(x, y) ≤ r} is closed. 

Proof. Suppose that y ∈ Ar, then d(y, x) > r and if we set s = d(y, x) − r, then s > 0. 
Moreover, if z ∈ Bs(y), then by the triangle inequality 

d(x, y) ≤ d(y, z) + d(z, x) . 

So 
r < r + s − d(y, z) ≤ d(x, y) − d(y, z) ≤ d(z, x) . 

This show that Bs(z) ⊂ Ar and so Ar is open. � 

There is an equivalent way of defining closed subsets and that comes from the next theorem. 

Theorem: A subset C of a metric space (X, d) is closed if and only if for all convergent 
sequences xn with all xn in C also the limit is in C. 
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Proof. Suppose first that A is closed and let xn be a convergent sequence is A with limit x 
we need to show that x ∈ A. Since A is closed the complement is open and if x ∈ X \ A, 
then there exists some r > 0 so Br(x) ⊂ X \ A and therefore for all y ∈ A we would have 
that d(y, x) ≥ r. This contradict that xn → x and xn ∈ A. 
We also need to show the converse. So suppose that A is a subset with the property that 

for all sequences in A that are convergent in X the limit is in A. We will show that A is 
closed or equivalent that the complement is open. If the complement is not open, then there 
exists an x ∈ X \ A such that no ball around x is entirely contained in the complement. 
Therefore for each n there exists an xn ∈ A. This sequence converges to x which was assumed 
not to be in A contradicting that A contained all limits of sequences in A and therefore the 
complement must be open and A itself closed. � 

For union and intersection of closed subsets we have the following: 

Theorem: 

• Union: If Cα is a family of closed subsets, then ∩α Cα is also closed. 
• Intersection: If C1, · · · , Cn are closed subsets, then C1 ∪ · · · ∪ Cn is also closed. 

Proof. There are several ways of proving this. The easiest is probably straight from the defi-
nition using the operations on sets. For the first claim we need to show that the complement 
of ∩α Cα is open. Using the operations of sets we have that 

X \ ∩α Cα = ∪α(X \ Cα) . 

Since each X \ Cα are open this is the union of open sets and therefore open. This shows 
the first claim. 

To see the second claim we argue similarly. We want to show that C1 ∪ · · · ∪ Cn is closed 
or, equivalently, X \ (C1 ∪ · · · ∪ Cn) is open. However, 

X \ (C1 ∪ · · · ∪ Cn) = (X \ C1) ∩ · · · ∩ (X \ Cn) , 

where the last is the intersection of finitely many open sets and therefore open. This show 
the second claim. � 

Warning: Union of infinitely many closed sets may not be closed!!! 

Definition (Cover, open cover and finite sub-cover): If A is a subset of X, then a cover of 
A is a collection collection of subsets Uα of X so that 

A ⊂ ∪αUα . 

We say that a Uα1 , · · · , Uαn is a finite sub-cover if also {Uαi }i is a cover. 

If (X, d) is a metric space and all the Uα are open, then we say that {Uα}α is an open cover. 



SPRING 2025 - 18.100B/18.1002 3 

Example: If X = R × R, then An = (−n, n) × (−n, n) is an open cover of X. 

Example: Note that in the example where X = R × R and An = (−n, n) × (−n, n) is an 
open cover, then there is no finite sub-cover. On the other hand if A ⊂ R × R is bounded, 
then for n sufficiently large A ⊂ An so for A, there is a finite sub-cover of this cover. 

Definition (Compact subset): If (X, d) is a metric space and A is a subset, then we say 
that A is compact if each open cover has a finite sub-cover. 

Example: If (X, d) is R with the usual metric and A = (0, 1), then An = (
n 
1 , 1) is an open 

cover of A but there is no finite sub-cover of {An}n that covers A. 

Theorem: [a, b] ⊂ R is compact. 

Proof. We will show this next time. � 

Theorem: If (X, d) is a metric space and A a compact subset, then A is closed and bounded. 

Proof. Suppose first that A is not closed. We will show that this leads to a contradiction. If 
it is not closed, then there exists a convergent sequence xn ∈ A with limit x not in A. Set � � 

1 
On = y | d(x, y) > 

n 

. By the earlier lemma these are open sets. Since ∪nAn = X \ {x} and x is assumed not 
to be in A we indeed have that An is an open cover of A. Since An ⊂ An+1 any finite cover 
of An’s would be contained in AN for some large N but this would imply that for all y ∈ A 
we would have that d(x, y) > 

N 
1 contradicting that xn ∈ A and xn → x. This show that the 

limit x is in A. 
Since A is compact, 

X = ∪yBr(y) 

and each B1(x) is open, then finitely many of these covers A. Say A ⊂ B1(y1) ∪ · · ·∪ B1(yn). 
Set r = 1 +maxi{d(y1, yi)}. It follows by the triangle inequality that A ⊂ Br(y1). Hence, A 
is bounded. � 

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces 
that are not compact. 
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If (X, d) = (0, 1) with the usual metric, then X is closed and bounded but it is not compact. 

Here is a more illuminating example: 

Example: Let X = C([0, 1]) be the set of continuous functions on the unit interval [0, 1]. 
We equip X with the metric where 

d(f, g) = max |f(x) − g(x)| . 
x 

Let fn(x) be the sequence of continuous functions on [0, 1] given by that ⎧ ⎪1 if 0 ≤ x ≤ 
n+1⎨ 
1 � � 

fn(x) = 1 − n (n + 1) x − 1 if 1 ≤ x ≤ 1 
n+1 n+1 n⎪⎩0 otherwise 

We have the fn is a bounded sequence. After all they all lies in the metric ball B2(0) 
where 0 is the zero function. That is, the function on [0, 1] that is identically equal to zero. 
However, the sequence fn does not have a convergent subsequence (and does not even have 
a subsequence that is a Cauchy sequence). Indeed, for any m 6= m we have that 

d(fm, fn) = 1 . 

¯Note also that the (closed) ball A = B1(0) is closed and bounded but not compact. It is not 
compact because for the balls ∪f B 1 

2
(f) finitely many does not cover A. If finitely many did 

cover A, then for one such ball say B 1 
2
(f) infinitely many fn’s would lie in it but any two 

elements in such a ball would have distance < 1 showing that there could at most be one fn 

in such a ball. 

Theorem: If (X, d) is a metric space and A a compact subset, then any closed subset C 
contained in A is also compact. 

Proof. Let Oα be a open cover of C. Since C is closed X \ C is open and so {Oα} together 
with X \ C is an open cover of A and hence finitely many of those say O1, · · · , On, X \ C 
covers A. Since X \ C contains no elements in C it follows that C ⊂ O1 ∪ · · · ∪ On and thus 
C is compact. � 

Bolzano-Weirstrass theorem for metric spaces. 

Theorem: If (X, d) is a metric space and A a compact subset, then any sequence in A has 
a convergent subsequence. 
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Proof. We will show this next time. � 
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