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TOBIAS HOLCK COLDING

Lecture 14

Definition (Compact subset): If (X,d) is a metric space and A is a subset, then we say
that A is compact if each open cover has a finite sub-cover.

Theorem 0: If (X,d) is a metric space and A a compact subset, then A is closed and
bounded.

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces
that are not compact.

Example: If (X,d) = (0,1) with the usual metric, then X is closed and bounded but it is
not compact.

Here is a more illuminating example:

Example: Let X = C([0,1]) be the set of continuous functions on the unit interval [0, 1].
We equip X with the metric where

d(f,g9) = max|f(z) — g(x)].

Let f,(z) be the sequence of continuous functions on [0, 1] given by that

1 if0 <2< 45
fo(z) = l—n(n—l—l)(x—%ﬂ) ifﬁﬂgxg%
0 otherwise

We have the f, is a bounded sequence. After all they all lies in the metric ball By(0)
where 0 is the zero function. That is, the function on [0, 1] that is identically equal to zero.

However, the sequence f, does not have a convergent subsequence (and does not even have
1
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a subsequence that is a Cauchy sequence). Indeed, for any m # m we have that

Note also that the (closed) ball A = B;(0) is closed and bounded but not compact. It is not
compact because for the balls Uy B 1 (f) finitely many does not cover A. If finitely many did

cover A, then for one such ball say B 1 (f) infinitely many f,,’s would lie in it but any two

elements in such a ball would have distance < 1 showing that there could at most be one f,
in such a ball.

Using what we have shown in earlier lectures one can show the following:

Theorem 1: In R", a subset is compact if and only if it is closed and bounded.

In a general metric space this is not the case as the above examples shows.

We won’t show this theorem here but instead we will show a version of the Bolzano-Weirstrass
theorem for metric spaces. This is the next theorem.

Theorem 2: If (X, d) is a metric space and A a compact subset, then any sequence in A
has a convergent subsequence.

Before proving Theorem 2 we will need some results:

Lemma: Let (X, d) be a compact metric space if C,, is a family of closed (decreasing) nested
subsets. That is, closed subsets so that C,,1 C C,,. If all C,, are non-empty, then

MnCr # 0.
Proof. Set O, = X \ Cy, then each O, is open. If N,C, # (0, then
U,Op = X .

Therefore, finitely many of the O,’s cover X by compactness. Denote these by O; for
1=1,---,k. Since

O1U-- U0, =X
it follows that

Cin---NCy=0.
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However, by the nested property one of these k closed subsets is the smallest, say C) and
therefore Cy N --- N Cy = C%. Contradicting that the intersection is empty. 0J

Before stating the next results recall that in a metric space (X, d) the set B.(x) = {y €
X |d(z,y) < r} is closed and is referred to as the closed ball. The above lemma gives the
following useful corollary:

Corollary: Let (X,d) be a compact metric space and suppose that B,, (x,) is a family of
balls with centres z,, and radii r,, > 0, where r, = 0 and B,, ,(2n41) C B,, (z,). Then

By, (z,) = {2} .
That is, the intersection is non-empty and consists of a single point.

Proof. Set
A=n,B,, (x,).

Observe first that for each n we have that x, € B, (x,) so from the lemma above we have
that A is non-empty. We claim that A consists of just one element. Suppose that z, y € A,
for any integer n we have that

z,y € By, (),
and so by the triangle inequality

d(z,y) < d(z,z,) + d(xn,y) <1+ 10 =27,

Since this holds for all n we see that d(z,y) = 0 and so there is at most one such point. [

Proof. (of Theorem 2.) Suppose that x, is a sequence in a compact subset A of a metric
space. Fix r > 0 and write

A CCEEA BT($) .

Since A is compact finitely many of these cover A. This means that in one of these balls,
say B, (y1), there are infinitely many x,,’s. From here on and out we will focus on this ball.
Since AN B,(y) is a closed subset of a compact set we can now cover B,.(y) by balls of radius
. By compactness finitely many of these sub-balls cover the ball B,(y). In one of those
sub-balls there are also infinitely many x,,’s. Fix such a sub-ball and call it Bﬁ (y2). We have

that
Bz (y2) C Bar(y1)

and that infinitely many x,,’s belongs to B%(yg). If the original r = 1 gives after repeating
this process i times balls Byi-i(y;) so that

-+ C Bogi-i(yi) C -+~ Bay1(y2) C Ba(y1).
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where each of these balls contains infinitely many elements from the original sequence. Since
the radii of this sequence converges to zero this sequence satisfies the assumptions of the
corollary we have from the corollary that

ﬂB241—i(yl‘) = {ZE}
Moreover, we can pick a subsequence x,, of the original sequence such that
’Ink - BQ417k (yk) .
It follows that this subsequence converges to x. 0
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