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TOBIAS HOLCK COLDING

Lecture 16
Last time we defined what it means for a function to be differentiable. This is the following:

Definition: If f : R — R is a function, then we say that f is differentiable at z( if the limit
Lo T@) = f)
T—x0 Tr — IO

exists. (Note that in this fraction z is assumed to be # z.) When the limit exists, then we
say that the function f is differentiable at zy and that its derivative at z( is the limit. In
this case we denote the derivative at zq by f'(x).

One of the first things we showed about differentiable function was that they are continuous:
Lemma: If f is differentiable at xg, then f is continuous at xg.

We also established some very useful rules for computing the derivative of functions that are
constructed from other functions whose derivative we know:

Theorem: If f, g are functions on R that both are differentiable at z(, then

e (Sum rule.)
(f +9)'(x0) = f'(z0) + g'(x0) -
e (Leibniz’s rule.)
(f 9)(zo) = f'(z0) g(x0) + f(20) g'(20) -
e (Quotient rule.) If also g(zg) # 0, then

<f>/ (20) = f'(z0) 9(xo) — f(20) §'(0)

g 92(x0)
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Finally, for the composition of functions we have the chain rule:

Theorem: (Chain rule.) If f : [a,b] — [c,d] and g : [¢,d] — R are functions, where
f is differentiable at zy and ¢ differentiable at yo = f(z¢), then the composition g o f is
differentiable at xy and the derivative at zg is

(go f)(w0) = g'(vo) f'(w0) -

Now that we know how to compute the derivative of many functions we will be interested
in using the derivative to describe the growth or decay of a function. The first step towards
this is the next lemma.

Before stating it recall that a function f : R — R has a local maximum at z, if there exists
a 0 > 0 such that

i = max y
f< O) [:t076,x0+5] f

and similarly for a local minimum.

Lemma: Let f : [a,b] — R be a differentiable function and suppose that a < xy < b and
that f has a local maximum or minimum at xg, then

f/(l'o) = 0 .

Proof. Suppose that xg is a local maximum. The proof when z; is a local minimum is similar.
It follows from the assumption that for all x near x

f(x) = f(zo) <0.

Therefore, when x > xy we have that
fla) =~ flan) _

r — T
whereas when = < xy we have that for the difference quotient

) = flao)

T — X

>0.

Since the limit is the same whether = converges to xy from the the left (negative side) or
from the right (positive side) it follows that f’(z) = 0 as claimed. O

We can now use this lemma to establish the following very useful result:
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Theorem: (Rolle’s theorem.) Let f : [a,b] — R be a differentiable function with f(a) =
f(b), then there exists a xy between a and b such that

f(x9) =0.
Proof. There are three cases to consider:
(1) f is constant equal to f(a).
(2) For some = between a and b we have that f(x) > f(a).
(3) For some x between a and b we have that f(z) < f(a).
In the first case the function is constant and the derivate is zero everywhere. The second
and third cases are similar so we will just argue in the second case. In the second case by

the extreme value theorem there exists some zy such that f(xy) = max f > f(a). It now
follows from the previous lemma that f'(zq) = 0. O

Rolle’s theorem can then be used to show both the mean value theorem and the Cauchy
mean value theorem:

Theorem: (Mean value theorem.) Let f : [a,b] — R be a differentiable function, then there
exists a g between a and b such that

f(b) — f(a)
/ R—
f o) = b—a
Proof. Consider the function ¢ given by
f(b) — fla
o) = fa) - 0T ),

—a
Observe that for g we have g(a) = g(b) and so Rolle’s theorem applies and we have that
there exists some xy where ¢'(x¢) = 0. Since

f(b) = f(a)

/ . !/ .
g() = () - =1

the claim follows. 0

Theorem: (Cauchy mean value theorem.) Let f, g : [a,b] — R be differentiable functions,
then there exists a x¢ between a and b such that

f'(x0) [9(b) = g(a)] = g'(x0) [f (b) — f(a)].
In particular, if g(b) — g(a) # 0, then
f'(xo) _ f(b) — f(a)

g'(wo)  g(b) —gla)
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Proof. Consider the function

h(z) = f(2)[9(b) = g(a)] = g(x) [f(b) = f(a)].
Note that
h(a) = f(a)[g(b) = g(a)] = g(a) [f(b) = f(a)] = f(a) g(b) — g(a) f(b).
h(b) = f(0) [9(b) — g(a)] = g(b) [F(b) — f(a)] = f(a) g(b) — g(a) f(D).
Therefore, by Rolle’s theorem, there exists xy between a and b such that h'(z¢) = 0. Since
W(x) = f'(x)[9(b) — g(a)] = g'(x) [£(b) — f(a)]

this shows the claim. OJ

We observe that the Cauchy mean value theorem implies the earlier mean value theorem.
Namely, if we let the second function g be g(z) = x, then ¢’'(x) = 1 and ¢(b) — g(a) = b — a.
Therefore, the Cauchy mean value theorem becomes

f'(@o) (b—a) = f'(z0) (9(b) — g(a)) = ¢'(x0) (f(b) — f(a)) = f(b) — f(a),

which is the earlier mean value theorem.

The next two rules are useful to establishing the limit of a faction of function when the
denominator either tend to zero or infinity.

Theorem: (L’Hopital’s rule, version 1.) Let f, g : (a,b) — R be differentiable functions
with g(z) # 0 and ¢'(x) # 0 for all x, assume that

lim f(z) = lim g(z) = 0.
If /
@
z—a g'(x)
/
lim M = lim f,(x) :
Tr—a g({L‘) r—a g (I‘)
Proof. We will see that this is an easy consequence of the Cauchy mean value theorem. By
assumption given € > 0, there exists ¢ > 0 such that if a < x < 9, then

f'(x)

g'(z)
By the Cauchy mean value theorem we have for any y with a < y < x that there exist z
with y < z < x so that

exists, then

—L <e.
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We therefore have that

f) i),
9(x) —g(y)
By letting y — 0 we see that
@ — L <e.
g(z)
Since this holds for all € we get that
im £ _ p
z—a g(z)
as claimed. U

Theorem: (L’Hopital’s rule, version 2.) Let f, g : (a,b) — R be differentiable functions
with g(z) # 0 and ¢'(x) # 0 for all x, assume that

lim f(z) = lim g(z) = oo

If
lim f/ (z)
z—a ¢' (1)
exists, then
lim _f(x) = lim f(z)

r—a g(x) T—a g’(gj) '

Proof. Given € > 0, since % — L as as  — a we have that there exists a 6 > 0 such that
ifa<x<a+ 26, then

f'(z)
g'(x)
Set 1 = a + 0. For a given x € (a,x;), there exists x¢ € (x,z1) such that
[lay) _ J) - f()
g(xo)  g(z1) —gla)

—L <e.

It follows that

f(z) = f(=z) _ I <e.
g(z1) — g()
By dividing the nominator and denominator of the fraction in this expression by g(z) we get
flx) _ flz)
9(z) glz) L <e¢
1— g(z1) )
9(z)

This implies that
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Since this holds for all € (a,a + J) and g(z) — 0o as © — a we have that for x > a but
sufficiently close to a that

=2 [ <e
g(x) B
Since this holds for all € we see that
lim _f(x) =L
r—a g(m)
This proves the claim. 0

Finally, we have the following key fact that show that any differentiable function can be
approximated by a polynomial and give a way of estimate the difference between the function
and the approximating polynomial.

Theorem: (Taylor expansion.) Let f : [a,b] — R be a function and k a positive integer.

Assume that f, f/, f® ... f*= exists on [a, b] and are continuous and that f*) is defined
on (a,b), then there exists ¢ between a and b such that
(2) (k—1)
10 = @+ 1@ -0+ T om0 S 0
f®(c) k
h—
+ ) (b—a)
Proof. Define the Taylor polynomial by
(2 (k=1)
Ple) = f@) + @) (o =)+ T om0 TS o o
and define a number M by that
M
F(b) = P(B) + 7 (b~ )"
We want to show that there exists some ¢ between a and b such that
M= f®(c).

To do that we set
M
R(x) = f(z) = P(z) = 75 (x — )"

We have that R(a) = R(b) = 0 and so by Rolle’s theorem, there exists some ¢; between a and
b with R'(¢;) = 0. Next observe that R'(a) = R'(c;) = 0 and so again by Rolle’s theorem,
there exists ¢, between a and ¢; with R®(cy) = 0. Since RV (a) = 0 fori =0,--- k-1
we can continue this process k times and find some ¢ = ¢, such that R*)(c) = 0. However,
0= R®(c) = f¥(c) — M Therefore, M = f*)(c) as claimed. O
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