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TOBIAS HOLCK COLDING 

Lecture 16 

Last time we defined what it means for a function to be differentiable. This is the following: 

Definition: If f : R → R is a function, then we say that f is differentiable at x0 if the limit 

f(x) − f(x0)
lim 
x→x0 x − x0 

exists. (Note that in this fraction x is assumed to be 6= x0.) When the limit exists, then we 
say that the function f is differentiable at x0 and that its derivative at x0 is the limit. In 
this case we denote the derivative at x0 by f 0(x0). 

One of the first things we showed about differentiable function was that they are continuous: 

Lemma: If f is differentiable at x0, then f is continuous at x0. 

We also established some very useful rules for computing the derivative of functions that are 
constructed from other functions whose derivative we know: 

Theorem: If f , g are functions on R that both are differentiable at x0, then 

• (Sum rule.) 

(f + g)0(x0) = f 0(x0) + g 0(x0) . 

• (Leibniz’s rule.) 

(f g)(x0) = f 0(x0) g(x0) + f(x0) g 0(x0) . 

• (Quotient rule.) If also g(x0) 6= 0, then � �0
f f 0(x0) g(x0) − f(x0) g0(x0)

(x0) = . 
g g2(x0) 
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Finally, for the composition of functions we have the chain rule: 

Theorem: (Chain rule.) If f : [a, b] → [c, d] and g : [c, d] → R are functions, where 
f is differentiable at x0 and g differentiable at y0 = f(x0), then the composition g ◦ f is 
differentiable at x0 and the derivative at x0 is 

(g ◦ f)0(x0) = g 0(y0) f
0(x0) . 

Now that we know how to compute the derivative of many functions we will be interested 
in using the derivative to describe the growth or decay of a function. The first step towards 
this is the next lemma. 

Before stating it recall that a function f : R → R has a local maximum at x0 if there exists 
a δ > 0 such that 

f(x0) = max f , 
[x0−δ,x0+δ] 

and similarly for a local minimum. 

Lemma: Let f : [a, b] → R be a differentiable function and suppose that a < x0 < b and 
that f has a local maximum or minimum at x0, then 

f 0(x0) = 0 . 

Proof. Suppose that x0 is a local maximum. The proof when x0 is a local minimum is similar. 
It follows from the assumption that for all x near x0 

f(x) − f(x0) ≤ 0 . 

Therefore, when x > x0 we have that 

f(x) − f(x0) ≤ 0 , 
x − x0 

whereas when x < x0 we have that for the difference quotient 

f(x) − f(x0) ≥ 0 . 
x − x0 

Since the limit is the same whether x converges to x0 from the the left (negative side) or 
from the right (positive side) it follows that f 0(x0) = 0 as claimed. � 

We can now use this lemma to establish the following very useful result: 
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Theorem: (Rolle’s theorem.) Let f : [a, b] → R be a differentiable function with f(a) = 
f(b), then there exists a x0 between a and b such that 

f 0(x0) = 0 . 

Proof. There are three cases to consider: 

(1) f is constant equal to f(a). 
(2) For some x between a and b we have that f(x) > f(a). 
(3) For some x between a and b we have that f(x) < f(a). 

In the first case the function is constant and the derivate is zero everywhere. The second 
and third cases are similar so we will just argue in the second case. In the second case by 
the extreme value theorem there exists some x0 such that f(x0) = max f > f(a). It now 
follows from the previous lemma that f 0(x0) = 0. � 

Rolle’s theorem can then be used to show both the mean value theorem and the Cauchy 
mean value theorem: 

Theorem: (Mean value theorem.) Let f : [a, b] → R be a differentiable function, then there 
exists a x0 between a and b such that 

f(b) − f(a)
f 0(x0) = . 

b − a 
. 

Proof. Consider the function g given by 

f(b) − f(a) 
g(x) = f(x) − (x − a) . 

b − a 

Observe that for g we have g(a) = g(b) and so Rolle’s theorem applies and we have that 
there exists some x0 where g0(x0) = 0. Since 

f(b) − f(a) 
g 0(x) = f 0(x) − ,

b − a 
the claim follows. � 

Theorem: (Cauchy mean value theorem.) Let f , g : [a, b] → R be differentiable functions, 
then there exists a x0 between a and b such that 

f 0(x0) [g(b) − g(a)] = g 0(x0) [f(b) − f(a)] . 

In particular, if g(b) − g(a) 6= 0, then 

f 0(x0) f(b) − f(a) 
= . 

g0(x0) g(b) − g(a) 
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Proof. Consider the function 

h(x) = f(x) [g(b) − g(a)] − g(x) [f(b) − f(a)] . 

Note that 

h(a) = f(a) [g(b) − g(a)] − g(a) [f(b) − f(a)] = f(a) g(b) − g(a) f(b) . 

h(b) = f(b) [g(b) − g(a)] − g(b) [f(b) − f(a)] = f(a) g(b) − g(a) f(b) . 

Therefore, by Rolle’s theorem, there exists x0 between a and b such that h0(x0) = 0. Since 

h0(x) = f 0(x) [g(b) − g(a)] − g 0(x) [f(b) − f(a)] 

this shows the claim. � 

We observe that the Cauchy mean value theorem implies the earlier mean value theorem. 
Namely, if we let the second function g be g(x) = x, then g0(x) = 1 and g(b) − g(a) = b − a. 
Therefore, the Cauchy mean value theorem becomes 

f 0(x0) (b − a) = f 0(x0) (g(b) − g(a)) = g 0(x0) (f(b) − f(a)) = f(b) − f(a) , 

which is the earlier mean value theorem. 

The next two rules are useful to establishing the limit of a faction of function when the 
denominator either tend to zero or infinity. 

Theorem: (L’Hopital’s rule, version 1.) Let f , g : (a, b) → R be differentiable functions 
with g(x) =6 0 and g0(x) 6= 0 for all x, assume that 

lim f(x) = lim g(x) = 0 . 
x→a x→a 

If 
f 0(x)

lim 
x→a g0(x) 

exists, then 
f(x) f 0(x)

lim = lim . 
x→a g(x) x→a g0(x) 

Proof. We will see that this is an easy consequence of the Cauchy mean value theorem. By 
assumption given � > 0, there exists δ > 0 such that if a < x < δ, then 

f 0(x) − L < � . 
g0(x) 

By the Cauchy mean value theorem we have for any y with a < y < x that there exist z 
with y < z < x so that 

f(x) − f(y) f 0(z) 
= . 

g(x) − g(y) g0(z) 
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We therefore have that 
f(x) − f(y) − L < � . 
g(x) − g(y) 

By letting y → 0 we see that 
f(x) − L ≤ � . 
g(x) 

Since this holds for all � we get that 

f(x)
lim = L 
x→a g(x) 

as claimed. � 

Theorem: (L’Hopital’s rule, version 2.) Let f , g : (a, b) → R be differentiable functions 
with g(x) =6 0 and g0(x) =6 0 for all x, assume that 

lim f(x) = lim g(x) = ∞ . 
x→a x→a 

If 
f 0(x)

lim 
x→a g0(x) 

exists, then 
f(x) f 0(x)

lim = lim . 
x→a g(x) x→a g0(x) 

Proof. Given � > 0, since f
0(x) → L as as x → a we have that there exists a δ > 0 such that 

g0(x) 

if a < x < a + 2 δ, then 
f 0(x) − L < � . 
g0(x) 

Set x1 = a + δ. For a given x ∈ (a, x1), there exists x0 ∈ (x, x1) such that 

f 0(x0) f(x1) − f(x) 
= . 

g0(x0) g(x1) − g(x) 

It follows that 
f(x1) − f(x) − L < � . 
g(x1) − g(x) 

By dividing the nominator and denominator of the fraction in this expression by g(x) we get 
f(x) − f (x1) 
g(x) g(x) − L < � . 
1 − g(x1) 

g(x) 

This implies that � � � � 
f(x) f(x1) g(x1) g(x1)− − L 1 − < � 1 − . 
g(x) g(x1) g(x) g(x) 
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Since this holds for all x ∈ (a, a + δ) and g(x) → ∞ as x → a we have that for x > a but 
sufficiently close to a that 

f(x) − L ≤ � . 
g(x) 

Since this holds for all � we see that 

f(x)
lim = L 
x→a g(x) 

This proves the claim. � 

Finally, we have the following key fact that show that any differentiable function can be 
approximated by a polynomial and give a way of estimate the difference between the function 
and the approximating polynomial. 

Theorem: (Taylor expansion.) Let f : [a, b] → R be a function and k a positive integer. 
Assume that f , f 0, f (2), · · · , f (k−1) exists on [a, b] and are continuous and that f (k) is defined 
on (a, b), then there exists c between a and b such that 

f (2)(a) f (k−1)(a)
f(b) = f(a) + f 0(a) (b − a) + (b − a)2 + · · · + (b − a)k−1 

2 (k − 1)! 

f (k)(c)
+ (b − a)k . 

(k)! 

Proof. Define the Taylor polynomial by 

f (2)(a) f (k−1)(a)
P (x) = f(a) + f 0(a) (x − a) + (x − a)2 + · · · + (x − a)k−1 

2 (k − 1)! 

and define a number M by that 

f(b) = P (b) + 
M 

(b − a)k . 
k! 

We want to show that there exists some c between a and b such that 

M = f (k)(c) . 

To do that we set 

R(x) = f(x) − P (x) − 
M 

(x − a)k . 
k! 

We have that R(a) = R(b) = 0 and so by Rolle’s theorem, there exists some c1 between a and 
b with R0(c1) = 0. Next observe that R0(a) = R0(c1) = 0 and so again by Rolle’s theorem, 
there exists c2 between a and c1 with R(2)(c2) = 0. Since R(i)(a) = 0 for i = 0, · · · , k − 1 
we can continue this process k times and find some c = ck such that R(k)(c) = 0. However, 
0 = R(k)(c) = fk(c) − M Therefore, M = f (k)(c) as claimed. � 
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