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TOBIAS HOLCK COLDING

Lecture 17
Recall that last time we showed the Taylor expansion theorem:

Theorem: (Taylor expansion.) Let f : [a,b] — R be a function and k a positive integer.
Assume that f, f/, f® ... f*=D exists on [a, b] and are continuous and that f*) is defined
on (a,b), then there exists ¢ between a and b such that

f*(a)

f®(a)
o

F(b) = f(a) + f'(a) (b—a) + === (b—a)* + -+

5 _ a)kfl

Question: One naturally wonders how well does this polynomial approximate f when x is
near a?

Answer: This depend on the value of the remainder

f® (¢
= k‘( ) (xz —a)*.
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Example 1: Suppose that f(z) = e® so f®)(z) = f(z) for all k. This means that the Taylor
expansion near a = 0 becomes

k=1
x
Pk,l(:c) = i:EO J .
By the Taylor expansion theorem we have that
f®e)

f(x) = Pe_y(x) + "

k!
Since f®¥)(z) = f(z) for all k, it follows from the Taylor expansion theorem that we have

||

£(@) = Pa(@)] < -

We conclude that for & large the polynomial Py_; gives a pretty good approximation to f.
For instance, if |z| < 1, then we have that

|f(z) — Po_y(z)] < %

Example 2: On R define a function f by

f(gj):{o if 2 <0

_ 1 )
e 2 otherwise

It is easy to see that f is infinitely differentiable and that f*)(0) = 0 for all k. It follows
that for all k£ the Taylor polynomial at 0 is P,_; = 0. Thus in this case f(x) = Rg(x).

Riemann integrals

Partition: Let [a,b] be an interval. A partition P of the interval [a,b] is a number of
sub-divisions z; such that

Aa=Tg< T <A< --<x,=>.

The partition is then the sub-intervals [z;_1, z;]. We will set Az; = 2; — 2.

Upper and lower sums: Suppose now that f : [a,b] — R is a bounded function and that
P = {x;} is a partition of the interval [a,b]. We define upper and lower sums as follows. Set

Mi = Ssup f>
[25—1,24]
m; = inf f,

[ —1,24]
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and upper U(f,P) and lower sums L(f, P) by

U(f,P) :ZMi Az,
i=1

L(f,P):imiAxi.

Example 3: Suppose that the function is f(z) = 22 + 1 on the interval [—2, 2] and that the
partition is P is {—2,—1,0, 1,2}. We have

my=2and M; =5,
me =1 and My = 2,
m3=1and M3 =2,
my=2and My, =5.
For the lower and upper sums we have
L(f,P)=2+14+14+2=6,
U(f,P)=5+2+2+5=14.

The following lemma is immediate (from that M; > m;):

Lemma 1: We always have that

U(f,P) =z L(f,P).

Sub-partition: Let [a,b] be an interval and P; and P, two partitions of the interval [a, b].
We say that P, is a sub-partition (or refinement) of Py if all the dividing points in P; are
also in P; (and then presumable some additional dividing points).

Example 4: Suppose that the interval is [—2,2] and the given partition P; is
{-2,-1,0,1,2}.
Then the partition

1 1
=<{-2,-1-,-1,0,-,1,2
PZ { ) 27 ) a277 }

is a refinement (or sub-division) of P;. Indeed, P, has the same dividing points as P; in
addition to some more.
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We now have the following:

Lemma 2: Suppose now that f : [a,b] — R is a bounded function and that P, is a partition
of the interval [a, b] and P; is a refinement of Py, then

L(f,P1) S L(f,Pa) SU(f,P2) SU(f,Pr).

Proof. The middle inequality is the previous lemma. The inequality to the right follows from
that if P, is a subdivision of P;. Namely, suppose that a = 2o < 21 < --- < x,, = b are the
dividing points for P; and that between say z;_; and x; there is an extra dividing point in
Py say y so x;—1 <y < x;, then we have

sup f < M;
["Ei—l’y}

and
sup f < M;
[y’ri]

SO

[ sup f](y —w—1) + [sup f] (zi —y) < M; Aw;.

[zi—1,y] [y,z]

From this it follows easily that
U(.fa PQ) S U(fv 731) :
Similarly, for the inequality to the left. 0

Upper and lower integrals: Suppose now that f : [a,b] — R is a bounded function.
Define the upper Riemann integral of f by

b
/afdx:i%fU(f,P).

Here the infimum is taken over all partitions of [a, b]. Likewise, we define the lower Riemann
integral by

b
/fd:z::supL(f,P).
L P

Riemann integral: Suppose that f : [a,b] — R is a bounded function, then we say that f

is Riemann integrable if
b b
/ fdx = / fdx.
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If the function is Riemann integrable, then the Riemann integral is

/abfdx:ffdx:/abfdx.

The Riemann integrable functions is denoted by R ([a, b]).

From Wikipedia: Georg Friedrich Bernhard Riemann (1826 — 1866) was a German math-
ematician who made profound contributions to analysis, number theory, and differential
geometry. Riemann held his first lectures in 1854, which founded the field of Riemannian
geometry and thereby set the stage for Albert Einstein’s general theory of relativity. In the
field of real analysis, he is mostly known for the first rigorous formulation of the integral,
the Riemann integral, and his work on Fourier series. His contributions to complex anal-
ysis include most notably the introduction of Riemann surfaces, breaking new ground in
a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting
function, containing the original statement of the Riemann hypothesis, is regarded as a foun-
dational paper of analytic number theory. He is considered by many to be one of the greatest
mathematicians of all time.

Example 5: Let f :[0,1] — R be given by

fz) =

1 otherwise

{0 if 2 €0,1]NQ

For this function and all partitions P we have that
L(f,P)=0and U(f,P) = 1.

Thus, f is not Riemann integrable.
We will be interested in the questions: ”What kind of functions are Riemann integrable?”
. and "How do we compute the integral?”

The answer to the second question will be the fundamental theorem of calculus. This will
be the topic of a later lecture.
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Lemma 3: Suppose now that f : [a,b] — R is a bounded function, then f € R ([a,b]) if
and only if for all € > 0, there exists a partition P such that

U(f,P)—L(f,P) <e.
Proof. Suppose that f € R ([a,b]), then

b )
s%pL(f,P):/ifdx:/afdx:i%fU(f,P).

This means that given € > 0, there exists partitions P; and P, such that

b €
[ rdo=5 <Py
and

b
qu%yg/“fmw%g.

Let P be the partition that has all the dividing points of both P; and P,. So P is a refinement
of both P; and P,. It follows that

€

b b
[ tae-5 <14 P) LGP SUGP) UG P < [ fdne s

2

This proves the claim.
To see the converse, suppose that for some € > 0, there exists a partition P such that

U(f,P)— L(f,P) <e.

Since ,
L(.P) < [ fao
and _ o
b
/fMSU@P)
we have that L '
b b
/fdac—/fdeU(f,P)—L(f,P)<€.

Since this holds for all € > 0 we get the claim. O

We now get to a key theorem that gives a simple criterium for a function to be Riemann
integrable:

Theorem: Any continuous function on [a,b] is in R ([a, b]).

Proof. We will show this next time once we have shown that a continuous function on a
closed and bounded interval is, in fact, uniformly continuous. O
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The proof of this theorem needs the following key concept.

Definition: Uniformly continuous. Suppose that f : I — R is a function, where I is an
interval. We say that f is uniformly continuous if for all € > 0, there exists a 6 > 0 such that

|f(x) = fy)l < eif |z —y| <0.
Note that being uniformly continuous is stronger than being continuous. It means that for
a given € > 0, the same ¢ can be used for all x.
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