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TOBIAS HOLCK COLDING 

Lecture 17 

Recall that last time we showed the Taylor expansion theorem: 

Theorem: (Taylor expansion.) Let f : [a, b] → R be a function and k a positive integer. 
Assume that f , f 0, f (2), · · · , f (k−1) exists on [a, b] and are continuous and that f (k) is defined 
on (a, b), then there exists c between a and b such that 

f (2)(a) f (k−1)(a)
f(b) = f(a) + f 0(a) (b − a) + (b − a)2 + · · · + (b − a)k−1 

2 (k − 1)! 

f (k)(c)
+ (b − a)k . 
(k)! 

For and infinitely differentiable function f on R we define the (k − 1) Taylor polynomial at 
a by 

f (2)(a) f (k−1)(a)
Pk−1(x) = f(a) + f 0(a) (x − a) + (x − a)2 + · · · + (x − a)k−1 . 

2 (k − 1)! 

Question: One naturally wonders how well does this polynomial approximate f when x is 
near a? 

Answer: This depend on the value of the remainder 

f (k)(c)
Rk(x) = (x − a)k . 

k! 
1 
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xExample 1: Suppose that f(x) = e so f (k)(x) = f(x) for all k. This means that the Taylor 
expansion near a = 0 becomes 

k−1X ix 
Pk−1(x) = . 

i! 
i=0 

By the Taylor expansion theorem we have that 

f (k)(c)
f(x) = Pk−1(x) + x k . 

k! 

Since f (k)(x) = f(x) for all k, it follows from the Taylor expansion theorem that we have 

e|x||f(x) − Pk−1(x)| ≤ . 
k! 

We conclude that for k large the polynomial Pk−1 gives a pretty good approximation to f . 
For instance, if |x| ≤ 1, then we have that 

e |f(x) − Pk−1(x)| ≤ . 
k! 

Example 2: On R define a function f by( 
0 if x ≤ 0 

f(x) = − 1 

e 2 otherwisex 

It is easy to see that f is infinitely differentiable and that f (k)(0) = 0 for all k. It follows 
that for all k the Taylor polynomial at 0 is Pk−1 ≡ 0. Thus in this case f(x) = Rk(x). 

Riemann integrals 

Partition: Let [a, b] be an interval. A partition P of the interval [a, b] is a number of 
sub-divisions xi such that 

a = x0 < x1 < x2 < · · · < xn = b . 

The partition is then the sub-intervals [xi−1, xi]. We will set Δ xi = xi − xi−1. 

Upper and lower sums: Suppose now that f : [a, b] → R is a bounded function and that 
P = {xi} is a partition of the interval [a, b]. We define upper and lower sums as follows. Set 

Mi = sup f , 
[xi−1,xi] 

mi = inf f , 
[xi−1,xi] 
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and upper U(f, P) and lower sums L(f, P) by 
nX 

U(f, P) = Mi Δ xi , 
i=1 

nX 
L(f, P) = mi Δ xi . 

i=1 

Example 3: Suppose that the function is f(x) = x2 + 1 on the interval [−2, 2] and that the 
partition is P is {−2, −1, 0, 1, 2}. We have 

m1 = 2 and M1 = 5 , 

m2 = 1 and M2 = 2 , 

m3 = 1 and M3 = 2 , 

m4 = 2 and M4 = 5 . 

For the lower and upper sums we have 

L(f, P) = 2 + 1 + 1 + 2 = 6 , 
U(f, P) = 5 + 2 + 2 + 5 = 14 . 

The following lemma is immediate (from that Mi ≥ mi): 

Lemma 1: We always have that 

U(f, P) ≥ L(f, P) . 

Sub-partition: Let [a, b] be an interval and P1 and P2 two partitions of the interval [a, b]. 
We say that P2 is a sub-partition (or refinement) of P1 if all the dividing points in P1 are 
also in P1 (and then presumable some additional dividing points). 

Example 4: Suppose that the interval is [−2, 2] and the given partition P1 is 

{−2, −1, 0, 1, 2} . 
Then the partition � � 

1 1 P2 = −2, −1 , −1, 0, , 1, 2 
2 2 

is a refinement (or sub-division) of P1. Indeed, P2 has the same dividing points as P1 in 
addition to some more. 
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We now have the following: 

Lemma 2: Suppose now that f : [a, b] → R is a bounded function and that P1 is a partition 
of the interval [a, b] and P2 is a refinement of P1, then 

L(f, P1) ≤ L(f, P2) ≤ U(f, P2) ≤ U(f, P1) . 

Proof. The middle inequality is the previous lemma. The inequality to the right follows from 
that if P2 is a subdivision of P1. Namely, suppose that a = x0 < x1 < · · · < xn = b are the 
dividing points for P1 and that between say xi−1 and xi there is an extra dividing point in 
P2 say y so xi−1 < y < xi, then we have 

sup f ≤ Mi 
[xi−1,y] 

and 

sup f ≤ Mi 
[y,xi] 

so 

[ sup f ] (y − xi−1) + [sup f ] (xi − y) ≤ Mi Δ xi . 
[xi−1,y] [y,xi] 

From this it follows easily that 

U(f, P2) ≤ U(f, P1) . 

Similarly, for the inequality to the left. � 

Upper and lower integrals: Suppose now that f : [a, b] → R is a bounded function. 
Define the upper Riemann integral of f by Z b 

f dx = inf U(f, P) . 
P a 

Here the infimum is taken over all partitions of [a, b]. Likewise, we define the lower Riemann 
integral by Z b 

f dx = sup L(f, P) . 
a P 

Riemann integral: Suppose that f : [a, b] → R is a bounded function, then we say that f 
is Riemann integrable if Z b Z b 

f dx = f dx . 
a a 
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If the function is Riemann integrable, then the Riemann integral is 

Z b Z b Z b 

f dx = f dx = f dx . 
a a a 

The Riemann integrable functions is denoted by R ([a, b]). 

From Wikipedia: Georg Friedrich Bernhard Riemann (1826 – 1866) was a German math-
ematician who made profound contributions to analysis, number theory, and differential 
geometry. Riemann held his first lectures in 1854, which founded the field of Riemannian 
geometry and thereby set the stage for Albert Einstein’s general theory of relativity. In the 
field of real analysis, he is mostly known for the first rigorous formulation of the integral, 
the Riemann integral, and his work on Fourier series. His contributions to complex anal-
ysis include most notably the introduction of Riemann surfaces, breaking new ground in 
a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting 
function, containing the original statement of the Riemann hypothesis, is regarded as a foun-
dational paper of analytic number theory. He is considered by many to be one of the greatest 
mathematicians of all time. 

Example 5: Let f : [0, 1] → R be given by ( 
0 if x ∈ [0, 1] ∩ Q

f(x) = 
1 otherwise 

For this function and all partitions P we have that 

L(f, P) = 0 and U(f, P) = 1 . 

Thus, f is not Riemann integrable. 

We will be interested in the questions: ”What kind of functions are Riemann integrable?” 

.... and ”How do we compute the integral?” 

The answer to the second question will be the fundamental theorem of calculus. This will 
be the topic of a later lecture. 
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Lemma 3: Suppose now that f : [a, b] → R is a bounded function, then f ∈ R ([a, b]) if 
and only if for all � > 0, there exists a partition P such that 

U(f, P) − L(f, P) < � . 

Proof. Suppose that f ∈ R ([a, b]), then ZZ b b 

sup L(f, P) = f dx = f dx = inf U(f, P) . 
PP a a 

This means that given � > 0, there exists partitions P1 and P2 such that Z b � 
f dx − < L(f, P1) 

a 2 

and Z b � 
U(f, P2) ≤ f dx + . 

a 2 
Let P be the partition that has all the dividing points of both P1 and P2. So P is a refinement 
of both P1 and P2. It follows that Z b Z b� � 

a 
f dx − < L(f, P1) ≤ L(f, P) ≤ U(f, P) ≤ U(f, P2) ≤ 

2 a 
f dx + . 

2 

This proves the claim. 
To see the converse, suppose that for some � > 0, there exists a partition P such that 

U(f, P) − L(f, P) < � . 

Since Z b 

L(f, P) ≤ f dx 
a 

and Z b 

f dx ≤ U(f, P) 
a 

we have that Z b Z b 

f dx − f dx ≤ U(f, P) − L(f, P) < � . 
a a 

Since this holds for all � > 0 we get the claim. � 

We now get to a key theorem that gives a simple criterium for a function to be Riemann 
integrable: 

Theorem: Any continuous function on [a, b] is in R ([a, b]). 

Proof. We will show this next time once we have shown that a continuous function on a 
closed and bounded interval is, in fact, uniformly continuous. � 
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The proof of this theorem needs the following key concept. 

Definition: Uniformly continuous. Suppose that f : I → R is a function, where I is an 
interval. We say that f is uniformly continuous if for all � > 0, there exists a δ > 0 such that 

|f(x) − f(y)| < � if |x − y| < δ . 

Note that being uniformly continuous is stronger than being continuous. It means that for 
a given � > 0, the same δ can be used for all x. 
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