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TOBIAS HOLCK COLDING

Lecture 18

Definition: Uniformly continuous. Suppose that f : I — R is a function, where I is an
interval. We say that f is uniformly continuous if for all € > 0, there exists a 6 > 0 such that

If(z) — fly)] <eif [x—y| <0.

Note that being uniformly continuous is stronger than being continuous. It means that for
a given € > 0, the same 0 can be used for all x.

Example 1: Suppose that

f(z) =2
on R, then f is NOT uniformly continuous. To see this, let € > 0 be given if f was uniformly
continuous, then there would exists § > 0 such that

flx+0) = f(z) <e,
for all . This would mean that
20 < (z+0)*—2* <e

for all x, which is clearly not the case.

Example 2: Suppose that

on (0,1], then f is NOT uniformly continuous. To see this, consider x,, = % and y, =

then

1
2n?

[f(@n) = fyn)| = n

and
1
|xn - yn| <-—.
n

From this it easily follows that f is not uniformly continuous.

Theorem 1: Any continuous function on [a, b] is uniformly continuous.
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Proof. Suppose not; then there exists € > 0 such that for all n > 0, there are z,, and y,, with

1
|Tn — Yn| < —
n

and so that
|f(xn) = f(yn)| = €.

Since the interval [a, b] is compact we can choose a subsequence of z,, say z,, so that
T, — T .

Since
’x _ynk‘ < |‘T _'rnk‘ + ‘xnk - ynkl

we have that vy, — z as well. Since f is continuous we have that f(z,, ) — f(z) and
f(Yn,) — f(x). However, this contradict that

|f(xnk - f(ynk)| > €,

We now get to a key theorem that gives a simple criterium for a function to be Riemann
integrable:

Theorem 2: Any continuous function on [a, b] is in R ([a, b]).

Proof. Given € > 0, since f is uniformly continuous by Theorem 1 it follows that there exists
d > 0 such that if |z — y| < 4, then

F@) = f) < 5

Let P be a partition so that for all z we have A xz; < 9, then on each interval of the partition
of the form [z;_1, x;] we have that

€

_a‘

€
It follows that

= [MZ—mZ]AxZ< ¢ AIEZ'ZE.
, b—a <

Since this holds for all € > 0 we have that f is integrable. 0

Basic properties of integrals.
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Theorem 3: We have the following basic formulas for integrals:
(1) If f € R(]a,b]) and ¢ € R, then ¢ f € R ([a,b]) and

flpsa=ef ras

(2) If f, g € R([a,b]), then f + g € R ([a,b]) and

b b
/(f—l—g)d:z:: fda:—l—/ gdx.
(3) If f, g € R([a,b]) and f < g, then

b b
/fdxg/gdx.

(4) If f € R(Ja,b]) and ¢ € (a,b), then f € R ([a,c]) and f € R([c,b]) and

/acfdaer/cbfdx:/abfd:v.

Proof. The first claim follow from that if P is a partition, then
L(c f,P) = cL(f,P)

and
Ulcf,P)=cU(f,P).
To prove the second claim. Given € > 0, let P; and P, be partitions so that

U(f.Py) = L(f.Py) < 5

and

Ulg.P) ~ L{g. P2) < 5.

Let P be the partition that has the combined dividing points of P; and P,. It follows that

and .
U(g,P) - L(g,P) <3
Therefore,
Ulf+9.P) = L(f +9.P) < 5+5 =¢

From this the second claim follows.
To see the third claim let P be any partition of [a, b]. It follows that

Ulg,P) <U(f,P).
Since

b
/ gdr = i%fU(g,P)

and likewise for f the claim now follows.
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Finally, to see the fourth claim. Let P be any partition of [a, b] and let Py be the refinement
of P that in addition to the dividing points of P also have ¢ as a dividing point. It follows
that

U(f> 7)0 N [CL, C]) + U(f7 7DO N [07 b]) = U<f7 7)0) :

Likewise,
L(f,PoNla,c]) + L(f,Po N [c,b]) = L(f,Po) -
Therefore,
U<f7 PO N [CL, C]) - L(fa 730 N [CL, C]) + U<f7 730 N [67 b]) - L(fa 730 N [67 b])
=U(f,Po) = L(f, Po) -
From this the fourth claim easily follows. ([l

Corollary: Suppose that f, |f| € R ([a,b]), then

/fdx </ If] dz .

Proof. This follows from the lemma since f < |f| and —f < |f|. Namely, from the first of
these inequalities together with the lemma we get that

/abfdxé/ab|f|dw,

whereas from the second we get that

—/abfdx:/ab(—f)dxé/ab|f|d$-

Together these gives the claim. O

Fundamental theorem of calculus, version 1: Let f be a continuous function on |a, b|
and define F' on [a, b] by
- [ ss)as

The function F' is differentiable with derivative f.
Proof. Fix g € [a,b] and assume first that x > z,. We then have that

/f ds-/f ds~|—/f )ds = F(xg) /f
Fm—ﬂmzéy@w

(x —xp) min f < F(z) — F(x) < (z — xp) max f

[zo,x] [z0,x]

It follows that

Therefore,
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and hence
< —F(x) — F(zo) < max f.

min f <
[zo,x] T — X [zo,x]

Since f is continuous at xg as * — xy both the left and right hand side of this string of
inequalities converges to f(zg). This proves the claim when x > z5. When = < xy we can
write F(z) as

Fz) + / " F(s)ds = Fla).
Therefore,
F(x)—F(mO):—/ f(s)ds.

Arguing as above gives the claim also in this case. 0

Fundamental theorem of calculus, version 2: Suppose that F : [a,b] — R is differen-
tiable and that I’ = f € R ([a,b]), then

F(b)—F(a):/ f(s)ds.

Proof. Since f is integrable, then for all € > 0, there exists a partition P of [a, b] such that
U(f773) - L(f,P) <E€.

For a given partition P with dividing points x; we have

L(fa P) = Zmi (ZEz - in—l) )

U(f,P) = M;(z; —xi1),
Moreover, by the mean value inequality Z
F(x;) = Flxio1) = f(yi) (@ — @) -
We now have that
m; (2, — xi21) < Fa;) — Fwioq) < M (2 — 1) .
It follows that

L(f,P) <) [F(zi) = Flain)] U(f,P).
i=1
Finally, the claim follows from the above by observing that

F(b) = Fla) =) _[F(x;) = F(ai)]-

=1
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1
/xzdx,
0

we use the second version of the fundamental theorem of calculus. Namely, observe that the
derivative of the function

Example 3: To compute

is 22 and therefore, by the second version of the fundamental theorem of calculus we have
that

/Oxzdm:F(l)—F(O):g—0=§.
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