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Lecture 18 

continuous, then there would exists δ > 0 such that 

f(x + δ) − f(x) < � , 

for all x. This would mean that 
22 δ x < (x + δ)2 − x < � 

for all x, which is clearly not the case. 

Example 2: Suppose that 
1 

f(x) = 
x 

on (0, 1], then f is NOT uniformly continuous. To see this, consider xn = 1 
n and yn = 1 ,

2 n 
then 

and 

|f(xn) − f(yn)| = n 

1 |xn − yn| < 
n 
. 

From this it easily follows that f is not uniformly continuous. 

Definition: Uniformly continuous. Suppose that f : I → R is a function, where I is an 
interval. We say that f is uniformly continuous if for all � > 0, there exists a δ > 0 such that 

|f(x) − f(y)| < � if |x − y| < δ . 

Note that being uniformly continuous is stronger than being continuous. It means that for 
a given � > 0, the same δ can be used for all x. 

Example 1: Suppose that 
f(x) = x 2 

on R, then f is NOT uniformly continuous. To see this, let � > 0 be given if f was uniformly 

Theorem 1: Any continuous function on [a, b] is uniformly continuous. 
1 
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Proof. Suppose not; then there exists � > 0 such that for all n > 0, there are xn and yn with 

1 |xn − yn| < 
n 

and so that 
|f(xn) − f(yn)| ≥ � . 

Since the interval [a, b] is compact we can choose a subsequence of xn say xnk so that 

xnk → x . 

Since 
|x − ynk | ≤ |x − xnk | + |xnk − ynk | 

we have that ynk → x as well. Since f is continuous we have that f(xnk ) → f(x) and 
f(ynk ) → f(x). However, this contradict that 

|f(xnk − f(ynk )| ≥ � , 

. � 

We now get to a key theorem that gives a simple criterium for a function to be Riemann 
integrable: 

Theorem 2: Any continuous function on [a, b] is in R ([a, b]). 

Proof. Given � > 0, since f is uniformly continuous by Theorem 1 it follows that there exists 
δ > 0 such that if |x − y| < δ, then 

� |f(x) − f(y)| < . 
b − a 

Let P be a partition so that for all i we have Δ xi < δ, then on each interval of the partition 
of the form [xi−1, xi] we have that 

� 
Mi − mi < . 

b − a 

It follows that X X 
U(f, P) − L(f, P) = Mi Δ xi − mi Δ xi 

i i X X� 
= [Mi − mi] Δ xi < Δ xi = � . 

b − a 
i i 

Since this holds for all � > 0 we have that f is integrable. � 

Basic properties of integrals. 
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Theorem 3: We have the following basic formulas for integrals: 

(1) If f ∈ R ([a, b]) and c ∈ R, then c f ∈ R ([a, b]) and Z b Z b 

(c f) dx = c f dx . 
a a 

(2) If f , g ∈ R ([a, b]), then f + g ∈ R ([a, b]) and ZZ b Z b b 

(f + g) dx = f dx + g dx . 
a a a 

(3) If f , g ∈ R ([a, b]) and f ≤ g, then Z b Z b 

f dx ≤ g dx . 
a a 

(4) If f ∈ R ([a, b]) and c ∈ (a, b), then f ∈ R ([a, c]) and f ∈ R ([c, b]) and Z c Z b Z b 

f dx + f dx = f dx . 
a c a 

Proof. The first claim follow from that if P is a partition, then 

L(c f, P) = c L(f, P) 
and 

U(c f, P) = c U(f, P) . 
To prove the second claim. Given � > 0, let P1 and P2 be partitions so that 

� 
U(f, P1) − L(f, P1) < 

2 
and 

� 
U(g, P2) − L(g, P2) < . 

2 
Let P be the partition that has the combined dividing points of P1 and P2. It follows that 

� 
U(f, P) − L(f, P) < 

2 
and 

� 
U(g, P) − L(g, P) < . 

2 
Therefore, 

� � 
U(f + g, P) − L(f + g, P) < + = � . 

2 2 
From this the second claim follows. 
To see the third claim let P be any partition of [a, b]. It follows that 

U(g, P) ≤ U(f, P) . 
Since Z b 

g dx = inf U(g, P)
P a 

and likewise for f the claim now follows. 
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Finally, to see the fourth claim. Let P be any partition of [a, b] and let P0 be the refinement 
of P that in addition to the dividing points of P also have c as a dividing point. It follows 
that 

U(f, P0 ∩ [a, c]) + U(f, P0 ∩ [c, b]) = U(f, P0) . 
Likewise, 

L(f, P0 ∩ [a, c]) + L(f, P0 ∩ [c, b]) = L(f, P0) . 
Therefore, 

U(f, P0 ∩ [a, c]) − L(f, P0 ∩ [a, c]) + U(f, P0 ∩ [c, b]) − L(f, P0 ∩ [c, b]) 

= U(f, P0) − L(f, P0) . 
From this the fourth claim easily follows. � 

Corollary: Suppose that f , |f | ∈ R ([a, b]), then ZZ b b 

f dx ≤ |f | dx . 
x a 

Proof. This follows from the lemma since f ≤ |f | and −f ≤ |f |. Namely, from the first of 
these inequalities together with the lemma we get that ZZ b b 

f dx ≤ |f | dx , 
a a 

whereas from the second we get that Z Zb Z b b 

− f dx = (−f) dx ≤ |f | dx . 
a a a 

Together these gives the claim. � 

Fundamental theorem of calculus, version 1: Let f be a continuous function on [a, b] 
and define F on [a, b] by Z x 

F (x) = f(s) ds . 
a 

The function F is differentiable with derivative f . 

Proof. Fix x0 ∈ [a, b] and assume first that x > x0. We then have that Z Z Z Z x x0 x x 

F (x) = f(s) ds = f(s) ds + f(s) ds = F (x0) + f(s) ds . 
a a x0 x0 

It follows that Z x 

F (x) − F (x0) = f(s) ds . 
x0 

Therefore, 
(x − x0) min f ≤ F (x) − F (x0) ≤ (x − x0) max f 

[x0,x] [x0,x] 
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and hence 
F (x) − F (x0)

min f ≤ ≤ max f . 
[x0,x] x − x0 [x0,x] 

Since f is continuous at x0 as x → x0 both the left and right hand side of this string of 
inequalities converges to f(x0). This proves the claim when x > x0. When x < x0 we can 
write F (x) as Z x0 

F (x) + f(s) ds = F (x0) . 
x 

Therefore, Z x0 

F (x) − F (x0) = − f(s) ds . 
x 

Arguing as above gives the claim also in this case. � 

Fundamental theorem of calculus, version 2: Suppose that F : [a, b] → R is differen-
tiable and that F 0 = f ∈ R ([a, b]), then Z b 

F (b) − F (a) = f(s) ds . 
a 

Proof. Since f is integrable, then for all � > 0, there exists a partition P of [a, b] such that 

U(f, P) − L(f, P) < � . 

For a given partition P with dividing points xi we have X 
L(f, P) = mi (xi − xi−1) , 

i X 
U(f, P) = Mi (xi − xi−1) , 

i 

Moreover, by the mean value inequality 

F (xi) − F (xi−1) = f(yi) (xi − xi−1) . 

We now have that 

mi (xi − xi−1) ≤ F (xi) − F (xi−1) ≤ Mi (xi − xi−1) . 

It follows that 
nX 

L(f, P) ≤ [F (xi) − F (xi−1)] ≤ U(f, P) . 
i=1 

Finally, the claim follows from the above by observing that 
nX 

F (b) − F (a) = [F (xi) − F (xi−1)] . 
i=1 

� 
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Example 3: To compute Z 1 

x 2 dx , 
0 

we use the second version of the fundamental theorem of calculus. Namely, observe that the 
derivative of the function 

3x 
F (x) = 

3 
is x2 and therefore, by the second version of the fundamental theorem of calculus we have 
that Z 1 

x 2 dx = F (1) − F (0) = 
1 − 0 =

1 
. 

3 30 
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