SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 18

Definition: Uniformly continuous. Suppose that $f: I \to \mathbf{R}$ is a function, where I is an interval. We say that f is uniformly continuous if for all $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon \text{ if } |x - y| < \delta.$$

Note that being uniformly continuous is stronger than being continuous. It means that for a given $\epsilon > 0$, the same δ can be used for all x.

Example 1: Suppose that

$$f(x) = x^2$$

on **R**, then f is NOT uniformly continuous. To see this, let $\epsilon > 0$ be given if f was uniformly continuous, then there would exists $\delta > 0$ such that

$$f(x+\delta) - f(x) < \epsilon,$$

for all x. This would mean that

$$2\,\delta\,x < (x+\delta)^2 - x^2 < \epsilon$$

for all x, which is clearly not the case.

Example 2: Suppose that

$$f(x) = \frac{1}{x}$$

on (0,1], then f is NOT uniformly continuous. To see this, consider $x_n = \frac{1}{n}$ and $y_n = \frac{1}{2n}$, then

$$|f(x_n) - f(y_n)| = n$$

and

$$|x_n - y_n| < \frac{1}{n}.$$

From this it easily follows that f is not uniformly continuous.

Theorem 1: Any continuous function on [a, b] is uniformly continuous.

Proof. Suppose not; then there exists $\epsilon > 0$ such that for all n > 0, there are x_n and y_n with

$$|x_n - y_n| < \frac{1}{n}$$

and so that

$$|f(x_n) - f(y_n)| \ge \epsilon$$
.

Since the interval [a, b] is compact we can choose a subsequence of x_n say x_{n_k} so that

$$x_{n_k} \to x$$
.

Since

$$|x - y_{n_k}| \le |x - x_{n_k}| + |x_{n_k} - y_{n_k}|$$

we have that $y_{n_k} \to x$ as well. Since f is continuous we have that $f(x_{n_k}) \to f(x)$ and $f(y_{n_k}) \to f(x)$. However, this contradict that

$$|f(x_{n_k} - f(y_{n_k})| \ge \epsilon,$$

. \square

We now get to a key theorem that gives a simple criterium for a function to be Riemann integrable:

Theorem 2: Any continuous function on [a, b] is in $\mathcal{R}([a, b])$.

Proof. Given $\epsilon > 0$, since f is uniformly continuous by Theorem 1 it follows that there exists $\delta > 0$ such that if $|x - y| < \delta$, then

$$|f(x) - f(y)| < \frac{\epsilon}{b-a}$$
.

Let \mathcal{P} be a partition so that for all i we have $\Delta x_i < \delta$, then on each interval of the partition of the form $[x_{i-1}, x_i]$ we have that

$$M_i - m_i < \frac{\epsilon}{b - a} \,.$$

It follows that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) = \sum_{i} M_{i} \Delta x_{i} - \sum_{i} m_{i} \Delta x_{i}$$

$$= \sum_{i} [M_i - m_i] \Delta x_i < \frac{\epsilon}{b-a} \sum_{i} \Delta x_i = \epsilon.$$

Since this holds for all $\epsilon > 0$ we have that f is integrable.

Basic properties of integrals.

Theorem 3: We have the following basic formulas for integrals:

(1) If $f \in \mathcal{R}([a,b])$ and $c \in \mathbf{R}$, then $c f \in \mathcal{R}([a,b])$ and

$$\int_a^b (c f) dx = c \int_a^b f dx.$$

(2) If $f, g \in \mathcal{R}([a, b])$, then $f + g \in \mathcal{R}([a, b])$ and

$$\int_{a}^{b} (f+g) \, dx = \int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx \, .$$

(3) If $f, g \in \mathcal{R}([a, b])$ and $f \leq g$, then

$$\int_{a}^{b} f \, dx \le \int_{a}^{b} g \, dx \, .$$

(4) If $f \in \mathcal{R}([a,b])$ and $c \in (a,b)$, then $f \in \mathcal{R}([a,c])$ and $f \in \mathcal{R}([c,b])$ and

$$\int_a^c f \, dx + \int_c^b f \, dx = \int_a^b f \, dx.$$

Proof. The first claim follow from that if \mathcal{P} is a partition, then

$$L(c f, \mathcal{P}) = c L(f, \mathcal{P})$$

and

$$U(c f, \mathcal{P}) = c U(f, \mathcal{P}).$$

To prove the second claim. Given $\epsilon > 0$, let \mathcal{P}_1 and \mathcal{P}_2 be partitions so that

$$U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1) < \frac{\epsilon}{2}$$

and

$$U(g, \mathcal{P}_2) - L(g, \mathcal{P}_2) < \frac{\epsilon}{2}$$
.

Let \mathcal{P} be the partition that has the combined dividing points of \mathcal{P}_1 and \mathcal{P}_2 . It follows that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \frac{\epsilon}{2}$$

and

$$U(g, \mathcal{P}) - L(g, \mathcal{P}) < \frac{\epsilon}{2}$$

Therefore,

$$U(f+g,\mathcal{P}) - L(f+g,\mathcal{P}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
.

From this the second claim follows.

To see the third claim let \mathcal{P} be any partition of [a, b]. It follows that

$$U(g, \mathcal{P}) \le U(f, \mathcal{P})$$
.

Since

$$\int_{a}^{b} g \, dx = \inf_{\mathcal{P}} U(g, \mathcal{P})$$

and likewise for f the claim now follows.

Finally, to see the fourth claim. Let \mathcal{P} be any partition of [a, b] and let \mathcal{P}_0 be the refinement of \mathcal{P} that in addition to the dividing points of \mathcal{P} also have c as a dividing point. It follows that

$$U(f, \mathcal{P}_0 \cap [a, c]) + U(f, \mathcal{P}_0 \cap [c, b]) = U(f, \mathcal{P}_0).$$

Likewise,

$$L(f, \mathcal{P}_0 \cap [a, c]) + L(f, \mathcal{P}_0 \cap [c, b]) = L(f, \mathcal{P}_0).$$

Therefore,

$$U(f, \mathcal{P}_0 \cap [a, c]) - L(f, \mathcal{P}_0 \cap [a, c]) + U(f, \mathcal{P}_0 \cap [c, b]) - L(f, \mathcal{P}_0 \cap [c, b])$$
$$= U(f, \mathcal{P}_0) - L(f, \mathcal{P}_0).$$

From this the fourth claim easily follows.

Corollary: Suppose that $f, |f| \in \mathcal{R}([a, b])$, then

$$\int_x^b f \, dx \le \int_a^b |f| \, dx \, .$$

Proof. This follows from the lemma since $f \leq |f|$ and $-f \leq |f|$. Namely, from the first of these inequalities together with the lemma we get that

$$\int_{a}^{b} f \, dx \le \int_{a}^{b} |f| \, dx \,,$$

whereas from the second we get that

$$-\int_{a}^{b} f \, dx = \int_{a}^{b} (-f) \, dx \le \int_{a}^{b} |f| \, dx \, .$$

Together these gives the claim.

Fundamental theorem of calculus, version 1: Let f be a continuous function on [a, b] and define F on [a, b] by

$$F(x) = \int_{a}^{x} f(s) \, ds \, .$$

The function F is differentiable with derivative f.

Proof. Fix $x_0 \in [a, b]$ and assume first that $x > x_0$. We then have that

$$F(x) = \int_{a}^{x} f(s) ds = \int_{a}^{x_0} f(s) ds + \int_{x_0}^{x} f(s) ds = F(x_0) + \int_{x_0}^{x} f(s) ds.$$

It follows that

$$F(x) - F(x_0) = \int_{x_0}^x f(s) ds$$
.

Therefore,

$$(x - x_0) \min_{[x_0, x]} f \le F(x) - F(x_0) \le (x - x_0) \max_{[x_0, x]} f$$

and hence

$$\min_{[x_0,x]} f \le \frac{F(x) - F(x_0)}{x - x_0} \le \max_{[x_0,x]} f.$$

Since f is continuous at x_0 as $x \to x_0$ both the left and right hand side of this string of inequalities converges to $f(x_0)$. This proves the claim when $x > x_0$. When $x < x_0$ we can write F(x) as

$$F(x) + \int_{x}^{x_0} f(s) ds = F(x_0).$$

Therefore,

$$F(x) - F(x_0) = -\int_x^{x_0} f(s) ds$$
.

Arguing as above gives the claim also in this case.

Fundamental theorem of calculus, version 2: Suppose that $F:[a,b] \to \mathbf{R}$ is differentiable and that $F'=f \in \mathcal{R}([a,b])$, then

$$F(b) - F(a) = \int_a^b f(s) \, ds.$$

Proof. Since f is integrable, then for all $\epsilon > 0$, there exists a partition \mathcal{P} of [a, b] such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon$$
.

For a given partition \mathcal{P} with dividing points x_i we have

$$L(f, \mathcal{P}) = \sum_{i} m_i (x_i - x_{i-1}),$$

$$U(f, \mathcal{P}) = \sum_{i} M_i (x_i - x_{i-1}),$$

Moreover, by the mean value inequality

$$F(x_i) - F(x_{i-1}) = f(y_i) (x_i - x_{i-1}).$$

We now have that

$$m_i(x_i - x_{i-1}) \le F(x_i) - F(x_{i-1}) \le M_i(x_i - x_{i-1}).$$

It follows that

$$L(f, \mathcal{P}) \le \sum_{i=1}^{n} [F(x_i) - F(x_{i-1})] \le U(f, \mathcal{P}).$$

Finally, the claim follows from the above by observing that

$$F(b) - F(a) = \sum_{i=1}^{n} [F(x_i) - F(x_{i-1})].$$

Example 3: To compute

$$\int_0^1 x^2 dx,$$

we use the second version of the fundamental theorem of calculus. Namely, observe that the derivative of the function

$$F(x) = \frac{x^3}{3}$$

is x^2 and therefore, by the second version of the fundamental theorem of calculus we have that

$$\int_0^1 x^2 dx = F(1) - F(0) = \frac{1}{3} - 0 = \frac{1}{3}.$$

REFERENCES

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf (print-optimized)

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.