SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 19

Question: What kind of functions are integrable?

Theorem: Any continuous function on [a, b] is in $\mathcal{R}([a, b])$.

Basic properties of integrals.

Theorem: We have the following basic formulas for integrals:

(1) If $f \in \mathcal{R}([a,b])$ and $c \in \mathbf{R}$, then $c f \in \mathcal{R}([a,b])$ and

$$\int_a^b (c f) dx = c \int_a^b f dx.$$

(2) If $f, g \in \mathcal{R}([a, b])$, then $f + g \in \mathcal{R}([a, b])$ and

$$\int_{a}^{b} (f+g) \, dx = \int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx \, .$$

(3) If $f, g \in \mathcal{R}([a, b])$ and $f \leq g$, then

$$\int_{a}^{b} f \, dx \le \int_{a}^{b} g \, dx \, .$$

(4) If $f \in \mathcal{R}([a,b])$ and $c \in (a,b)$, then $f \in \mathcal{R}([a,c])$ and $f \in \mathcal{R}([c,b])$ and

$$\int_a^c f \, dx + \int_c^b f \, dx = \int_a^b f \, dx.$$

Corollary: Suppose that $f, |f| \in \mathcal{R}([a, b])$, then

$$\int_{x}^{b} f \, dx \le \int_{a}^{b} |f| \, dx \, .$$

Fundamental theorem of calculus, version 1: Let f be a continuous function on [a, b] and define F on [a, b] by

$$F(x) = \int_{a}^{x} f(s) \, ds \, .$$

The function F is differentiable with derivative f.

Fundamental theorem of calculus, version 2: Suppose that $F:[a,b] \to \mathbf{R}$ is differentiable and that $F'=f \in \mathcal{R}([a,b])$, then

$$F(b) - F(a) = \int_a^b f(s) \, ds.$$

Application of integrals: arclength.

Suppose that f and $g:[a,b]\to \mathbf{R}$ are differentiable functions and their derivatives are continuous, then we define the arclength of the curve

$$s \to (f(s), g(s))$$

by

$$L = \int_{a}^{b} \sqrt{(f'(s))^{2} + (g'(s))^{2}} \, ds.$$

Example 1: Suppose that f(s) = s and $g(s) = s^2$, then f' = 1 and s' = 2s. Therefore, the arclength of the curve (s, s^2) , where $s \in [0, 1]$ is

$$L = \int_0^1 \sqrt{1 + (2s)^2} \, ds = \int_0^1 \sqrt{1 + 4s^2} \, ds \, .$$

Improper integrals.

Unbounded interval.

Suppose that $f \in \mathcal{R}([a,b])$ for all b > a. If

$$\lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

exists, then we say that the improper integral

$$\int_{a}^{\infty} f(x) \, dx$$

exists and that

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Example 2: On $[1, \infty)$, set

$$f(x) = \frac{1}{x^2} \,,$$

then

$$\int_{1}^{c} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{c}^{1} = -\frac{1}{c} + 1.$$

Since $-\frac{1}{c} + 1 \to 1$ as $c \to \infty$, the improper integral

$$\int_{1}^{\infty} \frac{1}{x^2} \, dx$$

exist and is equation to 1.

Example 3: On $[1, \infty)$, set

$$f(x) = \frac{1}{x},$$

then

$$\int_{1}^{c} \frac{1}{x} dx = [\log x]_{1}^{c} = \log c.$$

The improper integral

$$\int_{1}^{\infty} \frac{1}{x} dx$$

does not exist.

Unbounded function.

Suppose that $f \in \mathcal{R}([c,b])$ for all c > a. If

$$\lim_{c \to a} \int_{c}^{b} f(x) \, dx$$

exists, then we say that the improper integral

$$\int_a^b f(x) \, dx$$

exists and that

$$\int_{a}^{b} f(x) dx = \lim_{c \to a} \int_{c}^{b} f(x) dx$$

Example 4: On (0,1], set

$$f(x) = \frac{1}{\sqrt{x}},$$

then

$$\int_{c}^{1} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x} \right]_{c}^{1} = 2 - 2\sqrt{c}.$$

Since $2-2\sqrt{c}\to 2$ as $c\to 0$, the improper integral exists and is equal to

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx = 2 \, .$$

Example 5: On (0,1], set

$$f(x) = \frac{1}{x},$$

then

$$\int_{c}^{1} \frac{1}{x} dx = [\log x]_{c}^{1} = -\log c.$$

Note that $-\log c \to \infty$ as $c \to 0$ so the improper integral does not exist.

Question: How do we define angle?

Answer: We define it through arclength.

On the unit circle

$$\{(x,y) \,|\, x^2 + y^2 = 1\}$$

we define angle and the arclength. That is, suppose that (x,y) lies on the unit circle. The angle θ between (1,0) and (x,y) is the arclength of the part of the unit circle from (1,0) to (x,y). This part of the circle is parametrized by $(f(s),g(s))=(s,\sqrt{1-s^2})$ and where $x \leq s \leq 1$. Since f'(s)=1 and $g'(s)=-\frac{s}{\sqrt{1-s^2}}$ we get that

$$\theta = \int_{r}^{1} \sqrt{1 + \frac{s^2}{1 - s^2}} \, ds = \int_{r}^{1} \frac{1}{\sqrt{1 - s^2}} \, ds \, .$$

The function $\arcsin x$ is defined by

$$\arcsin x = \int_0^x \frac{1}{\sqrt{1-s^2}} \, ds \,.$$

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis, 2nd edition* TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

 $https://classical real analysis. in fo/com/documents/TBB-All Chapters-Portrait.pdf \ (print-optimized)$

MIT, DEPT. OF MATH., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.