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TOBIAS HOLCK COLDING 

Lecture 20 

Application of integrals: arclength. 

Suppose that f and g : [a, b] → R are differentiable functions and their derivatives are 
continuous, then we define the arclength of the curve 

s → (f(s), g(s)) 

by Z b p
L = (f 0(s))2 + (g0(s))2 ds . 

a 

Example 1: Suppose that f(s) = s and g(s) = s2 , then f 0 = 1 and s0 = 2 s. Therefore, the 
arclength of the curve (s, s2), where s ∈ [0, 1] is Z 1 Z 1p √ 

L = 1 + (2 s)2 ds = 1 + 4 s2 ds . 
0 0 

Question: How do we define angle? 

Answer: We define it through arclength. 

On the unit circle 
{(x, y) | x 2 + y 2 = 1} 

we define angle and the arclength. That is, suppose that (x, y) lies on the unit circle. The 
angle θ between (1, 0) and (x, y) is the arclength of the part of the unit circle from (1, 0)√ 
to (x, y). This part of the circle is parametrized by (f(s), g(s)) = (s, 1 − s2) and where 

s x ≤ s ≤ 1. Since f 0(s) = 1 and g0(s) = −√ 
2 we get that 1−s rZ 1 s2 

Z 1 1 
θ = 1 + ds = √ ds . 

2 2 
x 1 − s x 1 − s

1 
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The function arccos x is defined by Z 1 1 
arccos x = √ ds . 

x 1 − s2 

By the fundamental theorem of calculus we see that 

1 
arccos x = −√ . 

1 − x2 

Pointwise convergence: Suppose that fn is a sequence of functions on an interval I, then 
we say that fn convergences pointwise to a function f if for all x we have 

fn(x) → f(x) . 

Example 1: Suppose that fn(x) = xn on [0, 1], then fn converges pointwise to f where ( 
0 if 0 ≤ x < 1 

f(x) = 
1 if x = 1 . 

Suppose first that 0 ≤ x < 1, then fn(x) = xn → 0. If x = 1, then fn(x) = 1 for all n and 
so fn(x) → 1. This show the claim. 

P nExample 2: If En(x) = xk 
, then En(x) → exp x pointwise. We have already proven k=0 k! 

that the radius of convergence for the power series 
∞X kx 

k! 
k=0 

is infinity. From this the claim follows. 

Uniform convergence: Suppose that fn is a sequence of functions on an interval I, then 
we say that fn convergences uniformly to a function f if for all � > 0, there exists an N such 
that if n ≥ N , then for all x 

|f(x) − fn(x)| < � . 

Lemma 1: Suppose that I is an interval and fn is a sequence of functions on I that converges 
uniformly to a function f , then fn also converges pointwise to f . 
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Proof. This is immediate from the definition of uniform convergence. � 

Example 1A: Suppose again that fn(x) = xn on [0, 1], then fn converges pointwise but 
NOT uniformly to f where ( 

0 if 0 ≤ x < 1 
f(x) = 

1 if x = 1 . 

To see this observe that for each n,since fn is continuous by the intermediate value theorem 
there exists xn with 0 < xn < 1 such that fn(x) = 

2
1 . It now follows that 

1 
= |f(xn) − fn(xn)| ≤ sup |f(x) − fn| . 

2 x∈[0,1] 

Thus we see that the convergence is not uniform. We already saw in Example 1 that the 
convergence is pointwise. 

xExample 2A: If En(x) = 
P n k 

, then En(x) → exp x uniformly on any interval of thek=0 k! 
form [−L, L]. This will be a consequence of of Weirstrass M -test that we will discuss next. 

Lemma 2 [Weirstrass M -test]: Suppose that I is an interval and fn is a sequence of functions 
on I. Suppose also that Mn is a sequence of non-negative numbers with 

|fn(x)| ≤ Mn for all x ∈ I . 

If the series 
∞X 

Mn 

n=1 

converges, then the sequence of functions 
nX 

Sn(x) = fk(x) 
k=0 

converges uniformly. 

Proof. For each fixed x we have that that the sequence 
∞X 

fk(x) 
k=0 

converges. Moreover, we have that for all x and m < n we have 

|Sn(x) − Sm(x)| ≤ |fn(x)| + |fn−1(x)| + · · · + |fm+1(x)| ≤ Mn + · · · + Mm+1 . 
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For m fixed and since Sn(x) → S(x) it follows that 

∞X 
|S(x) − Sm(x)| ≤ Mk . 

k=m+1 P 
Since k=0 Mk is convergent it implies that given � > 0, there exists N such that if m ≥ N ,P∞then Mk < �. Therefore, for m ≥ N and all xk=m+1 

|S(x) − Sm(x)| < � . 

This proves the claim. � 

Example 2A: On the interval I = [−L, L] suppose 
nx 

fn = . 
n! 

Then 
Ln 

|fn| ≤ . 
n! 

Since X Ln 

n! 
n 

is convergent Weirstrass M -test gives that the series 
∞X 

fn 

n=0 

converges uniformly on I. 

Theorem: If 
∞X 

k ak x 
k=0 

is a power series and R is its radius of convergence. Then it converges uniformly on any 
(finite) interval of the form [−L, L] where L < R. 

Proof. Recall that if M = lim supn→∞ |an|n 
1 
, then the radius of convergence is R = 

M 
1 . It 

follows that if |x| ≤ L < R, then 

nlim sup |an x n|n 
1 
= |x| lim sup |an| 

1 
≤ LM < 1 . 

Choose 1 > α > LM . For n sufficiently large |an x
n| ≤ Mn = αn . Since the geometric seriesP 

n α
n is convergent, Weirstrass M -test gives the claim. � 
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Example 3: The geometric power series 
∞X 

k x 
k=0 

converges uniformly to 
1− 
1 
x on all intervals of the form [−L, L] where L < 1. Since the radius 

of convergence of the power series is one the claim therefore follows from the theorem above. 
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