## SPRING 2025 - 18.100B/18.1002

## TOBIAS HOLCK COLDING

## Lecture 20

Application of integrals: arclength.

Suppose that f and  $g:[a,b] \to \mathbf{R}$  are differentiable functions and their derivatives are continuous, then we define the arclength of the curve

$$s \to (f(s), g(s))$$

by

$$L = \int_{a}^{b} \sqrt{(f'(s))^{2} + (g'(s))^{2}} ds.$$

**Example 1**: Suppose that f(s) = s and  $g(s) = s^2$ , then f' = 1 and s' = 2s. Therefore, the arclength of the curve  $(s, s^2)$ , where  $s \in [0, 1]$  is

$$L = \int_0^1 \sqrt{1 + (2s)^2} \, ds = \int_0^1 \sqrt{1 + 4s^2} \, ds.$$

Question: How do we define angle?

Answer: We define it through arclength.

On the unit circle

$$\{(x,y) \,|\, x^2 + y^2 = 1\}$$

we define angle and the arclength. That is, suppose that (x,y) lies on the unit circle. The angle  $\theta$  between (1,0) and (x,y) is the arclength of the part of the unit circle from (1,0) to (x,y). This part of the circle is parametrized by  $(f(s),g(s))=(s,\sqrt{1-s^2})$  and where  $x \leq s \leq 1$ . Since f'(s)=1 and  $g'(s)=-\frac{s}{\sqrt{1-s^2}}$  we get that

$$\theta = \int_{x}^{1} \sqrt{1 + \frac{s^{2}}{1 - s^{2}}} \, ds = \int_{x}^{1} \frac{1}{\sqrt{1 - s^{2}}} \, ds \,.$$

The function  $\arccos x$  is defined by

$$\arccos x = \int_x^1 \frac{1}{\sqrt{1-s^2}} \, ds \,.$$

By the fundamental theorem of calculus we see that

$$\arccos x = -\frac{1}{\sqrt{1-x^2}}.$$

**Pointwise convergence**: Suppose that  $f_n$  is a sequence of functions on an interval I, then we say that  $f_n$  convergences pointwise to a function f if for all x we have

$$f_n(x) \to f(x)$$
.

**Example 1**: Suppose that  $f_n(x) = x^n$  on [0, 1], then  $f_n$  converges pointwise to f where

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

Suppose first that  $0 \le x < 1$ , then  $f_n(x) = x^n \to 0$ . If x = 1, then  $f_n(x) = 1$  for all n and so  $f_n(x) \to 1$ . This show the claim.

**Example 2**: If  $E_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ , then  $E_n(x) \to \exp x$  pointwise. We have already proven that the radius of convergence for the power series

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

is infinity. From this the claim follows.

**Uniform convergence**: Suppose that  $f_n$  is a sequence of functions on an interval I, then we say that  $f_n$  convergences uniformly to a function f if for all  $\epsilon > 0$ , there exists an N such that if  $n \geq N$ , then for all x

$$|f(x) - f_n(x)| < \epsilon.$$

**Lemma 1**: Suppose that I is an interval and  $f_n$  is a sequence of functions on I that converges uniformly to a function f, then  $f_n$  also converges pointwise to f.

*Proof.* This is immediate from the definition of uniform convergence.

**Example 1A:** Suppose again that  $f_n(x) = x^n$  on [0,1], then  $f_n$  converges pointwise but NOT uniformly to f where

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

To see this observe that for each n, since  $f_n$  is continuous by the intermediate value theorem there exists  $x_n$  with  $0 < x_n < 1$  such that  $f_n(x) = \frac{1}{2}$ . It now follows that

$$\frac{1}{2} = |f(x_n) - f_n(x_n)| \le \sup_{x \in [0,1]} |f(x) - f_n|.$$

Thus we see that the convergence is not uniform. We already saw in Example 1 that the convergence is pointwise.

**Example 2A**: If  $E_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ , then  $E_n(x) \to \exp x$  uniformly on any interval of the form [-L, L]. This will be a consequence of Weirstrass M-test that we will discuss next.

**Lemma 2** [Weirstrass M-test]: Suppose that I is an interval and  $f_n$  is a sequence of functions on I. Suppose also that  $M_n$  is a sequence of non-negative numbers with

$$|f_n(x)| \le M_n$$
 for all  $x \in I$ .

If the series

$$\sum_{n=1}^{\infty} M_n$$

converges, then the sequence of functions

$$S_n(x) = \sum_{k=0}^n f_k(x)$$

converges uniformly.

*Proof.* For each fixed x we have that the sequence

$$\sum_{k=0}^{\infty} f_k(x)$$

converges. Moreover, we have that for all x and m < n we have

$$|S_n(x) - S_m(x)| \le |f_n(x)| + |f_{n-1}(x)| + \dots + |f_{m+1}(x)| \le M_n + \dots + M_{m+1}$$
.

For m fixed and since  $S_n(x) \to S(x)$  it follows that

$$|S(x) - S_m(x)| \le \sum_{k=m+1}^{\infty} M_k.$$

Since  $\sum_{k=0}^{\infty} M_k$  is convergent it implies that given  $\epsilon > 0$ , there exists N such that if  $m \ge N$ , then  $\sum_{k=m+1}^{\infty} M_k < \epsilon$ . Therefore, for  $m \ge N$  and all x

$$|S(x) - S_m(x)| < \epsilon.$$

This proves the claim.

**Example 2A**: On the interval I = [-L, L] suppose

$$f_n = \frac{x^n}{n!} \, .$$

Then

$$|f_n| \le \frac{L^n}{n!} \, .$$

Since

$$\sum_{n} \frac{L^{n}}{n!}$$

is convergent Weirstrass M-test gives that the series

$$\sum_{n=0}^{\infty} f_n$$

converges uniformly on I.

Theorem: If

$$\sum_{k=0}^{\infty} a_k x^k$$

is a power series and R is its radius of convergence. Then it converges uniformly on any (finite) interval of the form [-L, L] where L < R.

*Proof.* Recall that if  $M = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$ , then the radius of convergence is  $R = \frac{1}{M}$ . It follows that if  $|x| \le L < R$ , then

$$\limsup |a_n x^n|^{\frac{1}{n}} = |x| \limsup |a_n|^{\frac{1}{n}} \le L M < 1.$$

Choose  $1 > \alpha > L M$ . For n sufficiently large  $|a_n x^n| \leq M_n = \alpha^n$ . Since the geometric series  $\sum_n \alpha^n$  is convergent, Weirstrass M-test gives the claim.

**Example 3**: The geometric power series

$$\sum_{k=0}^{\infty} x^k$$

converges uniformly to  $\frac{1}{1-x}$  on all intervals of the form [-L, L] where L < 1. Since the radius of convergence of the power series is one the claim therefore follows from the theorem above.

## References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

 $\label{lem:https://classicalreal} $$ $$ https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf (print-optimized) $$$ 

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.