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TOBIAS HOLCK COLDING 

Lecture 21 

Theorem 1: Suppose that I is an interval and fn is a sequence of continuous functions on 
I. If fn converges uniformly to f , then f is also continuous. 

Proof. Let x0 in I be arbitrary but fixed. We will show that f is continuous at x0. Given 
� > 0, since fn → f uniformly, there exists a N such that if n ≥ N , then for all x in I 

� |f(x) − fn(x)| < . 
3 

Since fN is continuous at x0, there exists δ > 0 such that if |x − x0| < δ, then 

� |fN (x) − fN (x0)| < . 
3 

Combining this gives that for |x − x0| < δ 

� � � |f(x) − f(x0)| ≤ |f(x) − fN (x)| + |fN (x) − fN (x0)| + |fN (x0) − f(x0)| < + + = � . 
3 3 3 

This gives the claim. � 

Example 1: Set 
nX kx 

En(x) = ,
k! 

k=0 

∞X kx 
E(x) = . 

k! 
k=0 

In the previous lecture we showed that Weirstrass M -test implies that En → E uniformly 
on [−L, L]. Since each En is continuous we have from Theorem 1 that E is continuous. 

Here is another useful way of thinking of uniform convergence. Recall that on the space of 
continuous functions C(I) on an interval I = [a, b] there is a natural metric given by that 

d(f, g) = max {|f(x) − g(x)| | x ∈ I} . 
x∈I 
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We have the following: 

Proposition: Let I be an interval [a, b] and fn, f ∈ C(I), then fn → f in the metric space 
if and only if fn converges to f uniformly. 

Proof. To see this note that 

|f(x) − fn(x)| ≤ � for all x ∈ I 

if and only if 
d(f,fn) ≤ � . 

To say that fn → f uniformly is therefore equivalent to that d(f, fn) → 0 giving the claim. 
� 

From this we get: 

Corollary: C([a, b]) is Cauchy complete. 

Proof. Suppose that fn is a Cauchy sequence in C([a, b]) we need to find a f ∈ C([a, b]) such 
that fn → f uniformly. For each x fixed, the sequence fn(x) is a Cauchy sequence in R. 
This follows since 

|fn(x) − fm(x)| ≤ d(fn, fm) . 

Therefore, since R is Cauchy complete, for each x there exists a f(x) such that fn(x) → f(x). 
This defines the function f and show that fn → f converges pointwise. We need to show 
that the convergence is uniform. To see that observe that given � > 0 since fn is a Cauchy 
sequence, there exists N such that if n and m ≥ N , then 

� |fn(x) − fm(x)| < for all x ∈ I . 
2 

Therefore, for f(x) = limm→∞ fm(x) we have 
� |fn(x) − f(x)| ≤ < � for all x ∈ I . 
2 

This show that the convergence is uniform. � 

Theorem 2: If fn ∈ R ([a, b]) and fn → f uniformly, then f ∈ R ([a, b]) and Z b Z b 

fn dx → f dx . 
a a 

Proof. We need to first show that f ∈ R ([a, b]) and so we need to show that given � > 0, 
there exists a partition P of the interval [a, b] such that 

U(f, P) − L(f, P) < � . 
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Since fn → f uniformly we have that there exists a N such that if n ≥ N , then 
� |f(x) − fn(x)| < . 

3 (b − a) 

We have therefore that for any partition P that 
� |m fn ≤ m f | ≤ ,i i 3 (b − a) 
� |M fn ≤ Mi

f | ≤ ,i 3 (b − a) 
It follows that for any partition when n ≥ N , then 

� |U(f, P) − U(fn, P)| < ,
3 
� |L(f, P) − L(fn, P)| < . 
3 

We can now use that since fN ∈ R ([a, b]) we have that there exists a partition P such that 
� 

U(fN , P) − L(fN , P) < . 
3 

Combining it all gives that 

U(f, P) − L(f, P) < U(f, P) − U(fN , P) + U(fN , P) − L(fN , P) + L(fN , P) − L(f, P) 
� � � 

< + + . 
3 3 3 

This show that f ∈ R ([a, b]). We also need to see that Z b Z b 

f dx = lim fn dx . 
n→∞ a a 

This, however, follows from that Z b 

L(f, P) ≤ f dx ≤ U(f, P) , Z 
a

b 

L(fn, P) ≤ fn dx ≤ U(fn, P) . 
a 

and that for n ≥ N 
� |U(f, P) − U(fn, P)| < ,
3 
� |L(f, P) − L(fn, P)| < . 
3 

Namely, we now have that also Z b� � 
L(f, P) − ≤ fn dx ≤ U(f, P) + 

3 a 3 

and therefore Z b Z b 

f dx − f dx < � . 
a a 

� 
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Example 1A: Set 
n kX x 

En(x) = ,
k! 

k=0 
∞X kx 

E(x) = . 
k! 

k=0 

Then we have from Example 1 that En → E uniformly on [−L, L]. We now have from 
Theorem 2 that 

n Z 1 Z 1X kx 
dx → E(x) dx . 

k!0 0k=0 

Theorem 3: Suppose that fn are differentiable functions on [a, b] and x0 ∈ [a, b]. If 
• fn(x0) → c, 
• fn 

0 → g uniformly, 
• fn 

0 are continuous on [a, b], 
then there exists a differentiable function f with 

• fn → f uniformly, 
• fn 

0 → f 0 uniformly. 

Proof. Define a function F on [a, b] by Z x 

f(x) = c + g dx , 
x0 

and note since fn 
0 are continuous and that fn 

0 → g uniformly, it follows from Theorem 1 that 
g is also continuous. Therefore, by the fundamental theorem of calculus f is differentiable 
and f 0 = g. Moreover, by the fundamental theorem of calculus we have thatZ x 

f 0(x0) + dx .fn(x) = fn n 
x0 

We are done provided we can show that fn → f . To see that note that Z Z x x 

|f(x) − fn(x)| = c + g dx − fn(x0) − f 0 dxn 
x0 x0Z x Z x 

≤ |c − fn(x0)| + (g − f 0 ) dx ≤ |c − fn(x0)| + |g − f 0 | dxn n 
x0 x0 

≤ |c − fn(x0)| + (b − a) d(g, f 0 ) .n 

The claim now follows since fn(x0) → c and d(g, fn 
0 ) → 0. � 

Example 1B: Set 
n kX x 

En(x) = ,
k! 

k=0 
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∞X kx 
E(x) = . 

k! 
k=0 

Then 
n n−1X k−1 X k−1x x 

E 0 n = k = = En−1 . 
k! (k − 1)!

k=1 k=0 

From Example 1 that En−1 → E uniformly on [−L, L] and each En are continuous. Moreover, 
for all n we have that 

En(0) = 1 = E(0) . 
It follows therefore from Theorem 3 that 

E 0 = En−1 → E 0 n 

uniformly and since En 
0 = En−1, then we have that E 0 = E. 
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