SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 21

Theorem 1: Suppose that I is an interval and f_n is a sequence of continuous functions on I. If f_n converges uniformly to f, then f is also continuous.

Proof. Let x_0 in I be arbitrary but fixed. We will show that f is continuous at x_0 . Given $\epsilon > 0$, since $f_n \to f$ uniformly, there exists a N such that if $n \geq N$, then for all x in I

$$|f(x) - f_n(x)| < \frac{\epsilon}{3}.$$

Since f_N is continuous at x_0 , there exists $\delta > 0$ such that if $|x - x_0| < \delta$, then

$$|f_N(x) - f_N(x_0)| < \frac{\epsilon}{3}.$$

Combining this gives that for $|x - x_0| < \delta$

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$
.

This gives the claim.

Example 1: Set

$$E_n(x) = \sum_{k=0}^n \frac{x^k}{k!} \,,$$

$$E(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \,.$$

In the previous lecture we showed that Weirstrass M-test implies that $E_n \to E$ uniformly on [-L, L]. Since each E_n is continuous we have from Theorem 1 that E is continuous.

Here is another useful way of thinking of uniform convergence. Recall that on the space of continuous functions C(I) on an interval I = [a, b] there is a natural metric given by that

$$d(f,g) = \max_{x \in I} \{ |f(x) - g(x)| \, | \, x \in I \}.$$

We have the following:

Proposition: Let I be an interval [a, b] and $f_n, f \in C(I)$, then $f_n \to f$ in the metric space if and only if f_n converges to f uniformly.

Proof. To see this note that

$$|f(x) - f_n(x)| \le \epsilon$$
 for all $x \in I$

if and only if

$$d(f,f_n) \leq \epsilon$$
.

To say that $f_n \to f$ uniformly is therefore equivalent to that $d(f, f_n) \to 0$ giving the claim.

From this we get:

Corollary: C([a,b]) is Cauchy complete.

Proof. Suppose that f_n is a Cauchy sequence in C([a,b]) we need to find a $f \in C([a,b])$ such that $f_n \to f$ uniformly. For each x fixed, the sequence $f_n(x)$ is a Cauchy sequence in \mathbf{R} . This follows since

$$|f_n(x) - f_m(x)| \le d(f_n, f_m).$$

Therefore, since **R** is Cauchy complete, for each x there exists a f(x) such that $f_n(x) \to f(x)$. This defines the function f and show that $f_n \to f$ converges pointwise. We need to show that the convergence is uniform. To see that observe that given $\epsilon > 0$ since f_n is a Cauchy sequence, there exists N such that if n and $m \geq N$, then

$$|f_n(x) - f_m(x)| < \frac{\epsilon}{2} \text{ for all } x \in I.$$

Therefore, for $f(x) = \lim_{m \to \infty} f_m(x)$ we have

$$|f_n(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon \text{ for all } x \in I.$$

This show that the convergence is uniform.

Theorem 2: If $f_n \in \mathcal{R}([a,b])$ and $f_n \to f$ uniformly, then $f \in \mathcal{R}([a,b])$ and

$$\int_a^b f_n \, dx \to \int_a^b f \, dx \, .$$

Proof. We need to first show that $f \in \mathcal{R}([a,b])$ and so we need to show that given $\epsilon > 0$, there exists a partition \mathcal{P} of the interval [a,b] such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon$$
.

Since $f_n \to f$ uniformly we have that there exists a N such that if $n \geq N$, then

$$|f(x) - f_n(x)| < \frac{\epsilon}{3(b-a)}.$$

We have therefore that for any partition \mathcal{P} that

$$|m_i^{f_n} \le m_i^f| \le \frac{\epsilon}{3(b-a)},$$

$$|M_i^{f_n} \le M_i^f| \le \frac{\epsilon}{3(b-a)},$$

It follows that for any partition when $n \geq N$, then

$$|U(f,\mathcal{P}) - U(f_n,\mathcal{P})| < \frac{\epsilon}{3},$$

$$|L(f,\mathcal{P}) - L(f_n,\mathcal{P})| < \frac{\epsilon}{3}.$$

We can now use that since $f_N \in \mathcal{R}([a,b])$ we have that there exists a partition \mathcal{P} such that

$$U(f_N, \mathcal{P}) - L(f_N, \mathcal{P}) < \frac{\epsilon}{3}$$
.

Combining it all gives that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < U(f,\mathcal{P}) - U(f_N,\mathcal{P}) + U(f_N,\mathcal{P}) - L(f_N,\mathcal{P}) + L(f_N,\mathcal{P}) - L(f,\mathcal{P})$$
$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}.$$

This show that $f \in \mathcal{R}([a,b])$. We also need to see that

$$\int_{a}^{b} f \, dx = \lim_{n \to \infty} \int_{a}^{b} f_n \, dx \, .$$

This, however, follows from that

$$L(f, \mathcal{P}) \le \int_a^b f \, dx \le U(f, \mathcal{P}),$$

$$L(f_n, \mathcal{P}) \leq \int_a^b f_n \, dx \leq U(f_n, \mathcal{P}) \, .$$

and that for $n \geq N$

$$|U(f,\mathcal{P}) - U(f_n,\mathcal{P})| < \frac{\epsilon}{3},$$

$$|L(f,\mathcal{P}) - L(f_n,\mathcal{P})| < \frac{\epsilon}{3}.$$

Namely, we now have that also

$$L(f, \mathcal{P}) - \frac{\epsilon}{3} \le \int_a^b f_n \, dx \le U(f, \mathcal{P}) + \frac{\epsilon}{3}$$

and therefore

$$\int_a^b f \, dx - \int_a^b f \, dx < \epsilon \, .$$

Example 1A: Set

$$E_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!},$$
$$E(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

Then we have from Example 1 that $E_n \to E$ uniformly on [-L, L]. We now have from Theorem 2 that

$$\sum_{k=0}^{n} \int_{0}^{1} \frac{x^{k}}{k!} dx \to \int_{0}^{1} E(x) dx.$$

Theorem 3: Suppose that f_n are differentiable functions on [a, b] and $x_0 \in [a, b]$. If

- \bullet $f_n(x_0) \to c$
- $f'_n \to g$ uniformly,
- f'_n are continuous on [a, b],

then there exists a differentiable function f with

- f_n → f uniformly,
 f'_n → f' uniformly.

Proof. Define a function F on [a,b] by

$$f(x) = c + \int_{x_0}^x g \, dx \,,$$

and note since f'_n are continuous and that $f'_n \to g$ uniformly, it follows from Theorem 1 that g is also continuous. Therefore, by the fundamental theorem of calculus f is differentiable and f'=g. Moreover, by the fundamental theorem of calculus we have that

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n dx$$
.

We are done provided we can show that $f_n \to f$. To see that note that

$$|f(x) - f_n(x)| = c + \int_{x_0}^x g \, dx - f_n(x_0) - \int_{x_0}^x f_n' \, dx$$

$$\leq |c - f_n(x_0)| + \int_{x_0}^x (g - f_n') \, dx \leq |c - f_n(x_0)| + \int_{x_0}^x |g - f_n'| \, dx$$

$$\leq |c - f_n(x_0)| + (b - a) \, d(g, f_n').$$

The claim now follows since $f_n(x_0) \to c$ and $d(g, f'_n) \to 0$.

Example 1B: Set

$$E_n(x) = \sum_{k=0}^n \frac{x^k}{k!} \,,$$

$$E(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \,.$$

Then

$$E'_n = \sum_{k=1}^n k \frac{x^{k-1}}{k!} = \sum_{k=0}^{n-1} \frac{x^{k-1}}{(k-1)!} = E_{n-1}.$$

From Example 1 that $E_{n-1} \to E$ uniformly on [-L, L] and each E_n are continuous. Moreover, for all n we have that

$$E_n(0) = 1 = E(0)$$
.

It follows therefore from Theorem 3 that

$$E_n' = E_{n-1} \to E'$$

uniformly and since $E'_n = E_{n-1}$, then we have that E' = E.

References

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

 $\label{lem:https://classicalreal} $$ $$ https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Landscape.pdf (screen-optimized) $$$

 $\label{lem:https://classicalreal} $$ $$ https://classicalrealanalysis.info/com/documents/TBB-AllChapters-Portrait.pdf (print-optimized) $$$

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.