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Lecture 23 

Ordinary differential equations: A differential equation is an equation that involves an 
unknown function and its derivative. 

Suppose that we have the following: 
• f be a continuously differentiable function on R. 
• g be a continuous function on R. 
• a is a real number. 

We will be intersted in existence and uniqueness of the ODE:( 
y0(x) = f(y(x)) + g(x) ,

(†) 
y(0) = a . 

We say that this is a first order equation since it only involves the function and its derivative 
and not higher derivatives. 

The following theorem gives a satisfying answer to the question of existence and uniqueness 
for this ODE: 

Picard-Lindelöf theorem: There exists δ > 0 such that there is a unique solution to (†) 
on (−δ, δ). 

Before we prove this theorem let us recall a result that we have proven earlier. Suppose that 
[a, b] is an interval and let C([a, b]) be the space of continuous functions on [a, b]. We equip 
this space with the metric d given by that if h1, h2 ∈ C([a, b]), then 

d(h1, h2) = max |h1(x) − h2(x)| . 
x∈[a,b] 

We proved earlier the following theorem: 
1 
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Theorem 1: The metric space (C([a, b]), d) is Cauchy complete. 

We will also need to recall what it means for a map from a metric space to itself is contracting. 
A map T is a contracting map on a metric space (X, d) if for some c < 1 and all x, y ∈ X 

d(T (x), T (y)) ≤ c d(x, y) . 

We shall also use that we have proven the following fact: 

Theorem 2: If (X, d) is a Cauchy complete metric space and T : X → X is a contracting 
map, then T has a unique fix point. 

Indeed this theorem was proven by showing that for any x ∈ X, the sequence x, T (x), T 2(x), 
T 3(x), · · · is a Cauchy sequence and the limit is the unique fix point of T . The proof of this 
used that 

d(T n+1(x), T n(x)) ≤ c n d(T (x), x) , 

and therefore by the triangle inequality 
kX 

d(T n+k(x), T n(x)) ≤ d(T i+n(x), T i−1+n(x)) ≤ c i−1+n d(T (x), x) . 
i=1 

Which is easily seen to imply that the sequence T n(x) is a Cauchy sequence. 

We will also use the following lemma: 

Lemma 1: Suppose that u1 and u2 are continuous functions on an interval I. Assume also 
that 

• u1(x0) = u2(x0). 
• If u1(x) = u2(x), then u1 = u2 in a neighborhood of x. 

then u1 = u2. 

Proof. Let 
J+ = {z ∈ I | z ≥ x0 and u1(x) = u2(x) for all x ∈ [x0, z]} . 

Then x0 ∈ J+ so J+ 6= ∅. Let z0 = sup J+, if z0 ∈ I, then u1(z0) = u2(z0) by continuity. 
Since also u1 and u2 agrees in a neighborhood of z0 it follows that z0 must be the right end 
point of I. Similarly one can show that u1 = u2 everywhere to the left of z0. This proves 
the lemma. � 



���� ����

SPRING 2025 - 18.100B/18.1002 3 

Finally, in the proof of the Picard-Lindelöf theorem we will also need the next lemma. In 
this lemma f is a function on R as above, so f differentiable and the derivative of f is 
continuous and g will be a continuous function on R. For δ > 0, on the space of continuous 
functions on [−δ, δ] we define a map T on functions y as follows Z x 

T (y)(x) = a + [f(z(s)) + g(s)] ds . 
0 

Note that when y is continuous, then so is T (y). 

Lemma 2: Let a be a constant and set R = |a| + 2. There exists a δ > 0 such that: 
• The map T maps the ball (in the metric space (C([−δ, δ]), d)) of radius R and with 
center the constant function zero into itself. We write BR(0) for this ball and so have 
that T : BR(0) → BR(0). 

• The map T is contracting on BR(0). 

Proof. Let 
L1 = max |f(z)| , 

|z|≤R 

L2 = max |g(x)| . 
|x|≤1 

We will first show that if that if we choose δ0 > 0 small enough, then T maps BR(0) into 
itself. That is, we will show that if |y| ≤ R on [−δ0, δ0], then 

|T (y)| ≤ R . 

To see this set � � 
1 1 

δ0 = min 1, , . 
L1 + 1 L2 + 1 

Now suppose that |y| ≤ R and |x| ≤ δ0, then Z x Z x 

|T (y)(x)| ≤ |a| + |f(y(s))| ds + |g(s)| ds 
0 0 

≤ |a| + δ0 L1 + δ0 L2 ≤ |a| + 2 = R . 
This show that T maps BR(0) into itself. 

Next set 
M = max |f 0(z)| , 

|z|≤R 

and � � 
1 

δ = min δ0, . 
2 M + 1 

Suppose that y1 and y2 are two continuous functions on [−δ, δ] in BR(0), then Z x 

|T (y1)(x) − T (y2)(x)| = [f(y1(s)) − f(y2(s))] ds . 
0 

By the mean value theorem applied to f for each s we have a zs between y1(s) and y2(s) 
such that 

f(y1(s)) − f(y2(s)) = f 0(zs) (y1(s) − y2(s)) . 



���� ����

          

4 TOBIAS HOLCK COLDING 

Since |yi| ≤ R we have that we have that for each s 

|f(y1(s)) − f(y2(s))| ≤ M |y1(s) − y2(s)| ≤ M max |y1 − y2| = M d(y1, y2) , 

and therefore Z x 1 |T (y1)(x) − T (y2)(x)| = [f(y1(s)) − f(y2(s))] ds ≤ M δ d(y1, y2) < d(y1, y2) . 
20 

� 

We are now ready to show the Picard-Lindelöf theorem: 

Proof. (of the Picard-Lindelöf theorem.) Let T be defined as above and R and δ > 0 be given 
by Lemma 2. A fixed point for T is a function y such that T (y) = y. By the fundamental 
theorem of calculus if y is a fix point of T , then we have that 

y 0(x) = (T (y))0(x) = f(y(x)) + g(x) . 

Moreover, y(0) = a. In other words any fix point of T is a solution to the ODE. 
We need to show that the solution is unique. Suppose that y ∗ is any other solution, then 

by the fundamental theorem of calculusZ x 

y ∗ (x) = a + (y ∗ )0(s) ds = T (y ∗ (s)) . 
0 

Note that this holds even if the interval I that y ∗ is defined on (containing 0) is different 
from [−δ, δ]. We have from this that any solution is a fix point of T . Since T is contracting 
on BR(0) it follows that for any fix point with |y| ≤ R, then y is unique. In general, suppose 
that y1 and y2 are two solutions defined on intervals I1 and I2 both containing 0. We have 
from the above that they agree in a neighborhood of 0. The argument in Lemma 2 that 
proved uniqueness in a small neigborhood of 0 works equally well in a neighborhood of any 
other point. It now follow from Lemma 1 that y1 and y2 agrees everywhere. � 
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