SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Lecture 23

Ordinary differential equations: A differential equation is an equation that involves an unknown function and its derivative.

Suppose that we have the following:

- f be a continuously differentiable function on \mathbf{R} .
- g be a continuous function on \mathbf{R} .
- \bullet a is a real number.

We will be intersted in existence and uniqueness of the ODE:

(†)
$$\begin{cases} y'(x) &= f(y(x)) + g(x), \\ y(0) &= a. \end{cases}$$

We say that this is a first order equation since it only involves the function and its derivative and not higher derivatives.

The following theorem gives a satisfying answer to the question of existence and uniqueness for this ODE:

Picard-Lindelöf theorem: There exists $\delta > 0$ such that there is a unique solution to (\dagger) on $(-\delta, \delta)$.

Before we prove this theorem let us recall a result that we have proven earlier. Suppose that [a, b] is an interval and let C([a, b]) be the space of continuous functions on [a, b]. We equip this space with the metric d given by that if $h_1, h_2 \in C([a, b])$, then

$$d(h_1, h_2) = \max_{x \in [a,b]} |h_1(x) - h_2(x)|.$$

We proved earlier the following theorem:

Theorem 1: The metric space (C([a,b]),d) is Cauchy complete.

We will also need to recall what it means for a map from a metric space to itself is contracting. A map T is a contracting map on a metric space (X, d) if for some c < 1 and all $x, y \in X$

$$d(T(x), T(y)) \le c d(x, y).$$

We shall also use that we have proven the following fact:

Theorem 2: If (X, d) is a Cauchy complete metric space and $T: X \to X$ is a contracting map, then T has a unique fix point.

Indeed this theorem was proven by showing that for any $x \in X$, the sequence $x, T(x), T^2(x), T^3(x), \cdots$ is a Cauchy sequence and the limit is the unique fix point of T. The proof of this used that

$$d(T^{n+1}(x), T^n(x)) \le c^n d(T(x), x),$$

and therefore by the triangle inequality

$$d(T^{n+k}(x), T^n(x)) \le \sum_{i=1}^k d(T^{i+n}(x), T^{i-1+n}(x)) \le c^{i-1+n} d(T(x), x).$$

Which is easily seen to imply that the sequence $T^n(x)$ is a Cauchy sequence.

We will also use the following lemma:

Lemma 1: Suppose that u_1 and u_2 are continuous functions on an interval I. Assume also that

- $u_1(x_0) = u_2(x_0)$.
- If $u_1(x) = u_2(x)$, then $u_1 = u_2$ in a neighborhood of x.

then $u_1 = u_2$.

Proof. Let

$$J_{+} = \{ z \in I \mid z \geq x_0 \text{ and } u_1(x) = u_2(x) \text{ for all } x \in [x_0, z] \}.$$

Then $x_0 \in J_+$ so $J_+ \neq \emptyset$. Let $z_0 = \sup J_+$, if $z_0 \in I$, then $u_1(z_0) = u_2(z_0)$ by continuity. Since also u_1 and u_2 agrees in a neighborhood of z_0 it follows that z_0 must be the right end point of I. Similarly one can show that $u_1 = u_2$ everywhere to the left of z_0 . This proves the lemma.

Finally, in the proof of the Picard-Lindelöf theorem we will also need the next lemma. In this lemma f is a function on \mathbf{R} as above, so f differentiable and the derivative of f is continuous and g will be a continuous function on \mathbf{R} . For $\delta > 0$, on the space of continuous functions on $[-\delta, \delta]$ we define a map T on functions g as follows

$$T(y)(x) = a + \int_0^x [f(z(s)) + g(s)] ds$$
.

Note that when y is continuous, then so is T(y).

Lemma 2: Let a be a constant and set R = |a| + 2. There exists a $\delta > 0$ such that:

- The map T maps the ball (in the metric space $(C([-\delta, \delta]), d)$) of radius R and with center the constant function zero into itself. We write $B_R(0)$ for this ball and so have that $T: B_R(0) \to B_R(0)$.
- The map T is contracting on $B_R(0)$.

Proof. Let

$$L_1 = \max_{|z| \le R} |f(z)|,$$

 $L_2 = \max_{|x| \le 1} |g(x)|.$

We will first show that if that if we choose $\delta_0 > 0$ small enough, then T maps $B_R(0)$ into itself. That is, we will show that if $|y| \leq R$ on $[-\delta_0, \delta_0]$, then

$$|T(y)| < R$$
.

To see this set

$$\delta_0 = \min\left\{1, \frac{1}{L_1+1}, \frac{1}{L_2+1}\right\}.$$

Now suppose that $|y| \leq R$ and $|x| \leq \delta_0$, then

$$|T(y)(x)| \le |a| + \int_0^x |f(y(s))| ds + \int_0^x |g(s)| ds$$

 $\le |a| + \delta_0 L_1 + \delta_0 L_2 \le |a| + 2 = R.$

This show that T maps $B_R(0)$ into itself.

Next set

$$M = \max_{|z| \le R} |f'(z)|,$$

and

$$\delta = \min \left\{ \delta_0, \frac{1}{2M+1} \right\} \, .$$

Suppose that y_1 and y_2 are two continuous functions on $[-\delta, \delta]$ in $B_R(0)$, then

$$|T(y_1)(x) - T(y_2)(x)| = \int_0^x [f(y_1(s)) - f(y_2(s))] ds$$
.

By the mean value theorem applied to f for each s we have a z_s between $y_1(s)$ and $y_2(s)$ such that

$$f(y_1(s)) - f(y_2(s)) = f'(z_s) (y_1(s) - y_2(s)).$$

Since $|y_i| \leq R$ we have that we have that for each s

$$|f(y_1(s)) - f(y_2(s))| \le M |y_1(s) - y_2(s)| \le M \max |y_1 - y_2| = M d(y_1, y_2),$$

and therefore

$$|T(y_1)(x) - T(y_2)(x)| = \int_0^x [f(y_1(s)) - f(y_2(s))] ds \le M \, \delta \, d(y_1, y_2) < \frac{1}{2} \, d(y_1, y_2).$$

We are now ready to show the Picard-Lindelöf theorem:

Proof. (of the Picard-Lindelöf theorem.) Let T be defined as above and R and $\delta > 0$ be given by Lemma 2. A fixed point for T is a function y such that T(y) = y. By the fundamental theorem of calculus if y is a fix point of T, then we have that

$$y'(x) = (T(y))'(x) = f(y(x)) + g(x)$$
.

Moreover, y(0) = a. In other words any fix point of T is a solution to the ODE.

We need to show that the solution is unique. Suppose that y^* is any other solution, then by the fundamental theorem of calculus

$$y^*(x) = a + \int_0^x (y^*)'(s) ds = T(y^*(s)).$$

Note that this holds even if the interval I that y^* is defined on (containing 0) is different from $[-\delta, \delta]$. We have from this that any solution is a fix point of T. Since T is contracting on $B_R(0)$ it follows that for any fix point with $|y| \leq R$, then y is unique. In general, suppose that y_1 and y_2 are two solutions defined on intervals I_1 and I_2 both containing 0. We have from the above that they agree in a neighborhood of 0. The argument in Lemma 2 that proved uniqueness in a small neighborhood of 0 works equally well in a neighborhood of any other point. It now follow from Lemma 1 that y_1 and y_2 agrees everywhere.

REFERENCES

[TBB] B.S. Thomson, J.B. Bruckner, and A.M. Bruckner, *Elementary Real Analysis*, 2nd edition TBB can be downloaded at:

https://classical real analysis.info/com/documents/TBB-All Chapters-Landscape.pdf (screen-optimized)

 $https://classical real analysis.info/com/documents/TBB-All Chapters-Portrait.pdf \ (print-optimized)$

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.