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TOBIAS HOLCK COLDING

Lecture 23

Ordinary differential equations: A differential equation is an equation that involves an
unknown function and its derivative.

Suppose that we have the following:

e f be a continuously differentiable function on R.
e g be a continuous function on R.
e ¢ is a real number.

We will be intersted in existence and uniqueness of the ODE:
y'(@) = fy(x) +9(x),
(t) _

y(0) =a.

We say that this is a first order equation since it only involves the function and its derivative
and not higher derivatives.

The following theorem gives a satisfying answer to the question of existence and uniqueness
for this ODE:

Picard-Lindel6f theorem: There exists 6 > 0 such that there is a unique solution to ()
on (—6,0).

Before we prove this theorem let us recall a result that we have proven earlier. Suppose that
[a,b] is an interval and let C([a,b]) be the space of continuous functions on [a, b]. We equip
this space with the metric d given by that if hy, hy € C([a,b]), then

d(hl, hg) = xfél[a)é} |h1(£€) — hg(l')’ .

)

We proved earlier the following theorem:
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Theorem 1: The metric space (C([a,b]),d) is Cauchy complete.

We will also need to recall what it means for a map from a metric space to itself is contracting.
A map T is a contracting map on a metric space (X, d) if for some ¢ < 1 and all z, y € X

d(T(z),T(y)) < cd(z,y).

We shall also use that we have proven the following fact:

Theorem 2: If (X, d) is a Cauchy complete metric space and T : X — X is a contracting
map, then 7" has a unique fix point.

Indeed this theorem was proven by showing that for any x € X, the sequence z, T'(z), T?%(z),
T3(x),- -+ is a Cauchy sequence and the limit is the unique fix point of 7. The proof of this
used that

d(T"*(2), T"(2)) < " d(T(x), ),

and therefore by the triangle inequality
k
AT (), T () < 3 AT (2), T 47 () < 47 d(T(x), )
i=1

Which is easily seen to imply that the sequence 7" (z) is a Cauchy sequence.
We will also use the following lemma:

Lemma 1: Suppose that u; and uy are continuous functions on an interval I. Assume also
that

) ul(ﬁo) = UQ(LU()).
o If uj(x) = us(x), then w3 = uy in a neighborhood of z.
then ©; = us.
Proof. Let
Ji={z€1l|z>xyand uy(r) = us(x) for all x € [xg, 2]}.
Then zg € Jy so Jy # 0. Let zo = sup J,, if 29 € I, then u;(29) = u2(z2p) by continuity.
Since also u; and uy agrees in a neighborhood of zj it follows that zy must be the right end

point of I. Similarly one can show that u; = us everywhere to the left of z5. This proves
the lemma. U
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Finally, in the proof of the Picard-Lindel6f theorem we will also need the next lemma. In
this lemma f is a function on R as above, so f differentiable and the derivative of f is
continuous and ¢ will be a continuous function on R. For § > 0, on the space of continuous
functions on [—¢, 0] we define a map T" on functions y as follows

T@xw=ar+£muuwn+gwnw.

Note that when y is continuous, then so is 7'(y).

Lemma 2: Let a be a constant and set R = |a| + 2. There exists a ¢ > 0 such that:

e The map 7 maps the ball (in the metric space (C([—9,d]),d)) of radius R and with
center the constant function zero into itself. We write Bg(0) for this ball and so have
e The map T is contracting on Bg(0).

Proof. Let
Ly = max (2],
L, = .
> ﬁglg(xﬂ

We will first show that if that if we choose dy > 0 small enough, then 7" maps Bg(0) into
itself. That is, we will show that if |y| < R on [—dy, dg], then

T(y)| < R.

1 1
§o = min { 1 .
0 mm{ ’L1+1’L2+1}
Now suppose that |y| < R and |z| < g, then
)@ < ol + [ IfsDlds+ [ lolds

S ‘CL| +50L1+50L2 S ‘CL| +2= R.
This show that 7" maps Bg(0) into itself.
Next set

To see this set

M = 4
fﬁ%ﬁ'f (2)],

and

) 1
0 = min {50,m} .

Suppose that y; and ys are two continuous functions on [—d, §] in Bg(0), then

T(y1)(x) = T(y2)(2)| = /Ox [f(y1(s)) = fya2(s))] ds .

By the mean value theorem applied to f for each s we have a z; between y;(s) and yo(s)
such that

Fi(s)) = Fly2(s)) = F'(20) (12(s) = wa(s)) -
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Since |y;| < R we have that we have that for each s

|f(y1(s)) = F(y2(s))] < M |ya(s) — ya(s)| < M max |y — yo| = M d(y1,2)
and therefore

T (y1)(x) = T(y2)(x)| = /Om [f(v1(s)) = fy2(s)] ds < M dd(y1,y2) < %d(yhyz)-
O

We are now ready to show the Picard-Lindelof theorem:

Proof. (of the Picard-Lindel6f theorem.) Let T be defined as above and R and > 0 be given
by Lemma 2. A fixed point for 7" is a function y such that T'(y) = y. By the fundamental
theorem of calculus if y is a fix point of T', then we have that

Y ()= (T) (=) = fy(x)) + g().
Moreover, y(0) = a. In other words any fix point of 7" is a solution to the ODE.

We need to show that the solution is unique. Suppose that y* is any other solution, then
by the fundamental theorem of calculus

y'(2) = at / () () ds = Ty (s).

Note that this holds even if the interval I that y* is defined on (containing 0) is different
from [—6,0]. We have from this that any solution is a fix point of T". Since T is contracting
on Bg(0) it follows that for any fix point with |y| < R, then y is unique. In general, suppose
that y; and ys are two solutions defined on intervals I; and Iy both containing 0. We have
from the above that they agree in a neighborhood of 0. The argument in Lemma 2 that
proved uniqueness in a small neighorhood of 0 works equally well in a neighborhood of any
other point. It now follow from Lemma 1 that y; and y, agrees everywhere. 0
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