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TOBIAS HOLCK COLDING

Lecture 1

Two key topics for this class:

e How to write a mathematical proof.
e How to prove theorems.

Here is an example:

Intermediate value theorem:

e Suppose that f : [a,b] — R is a continuous functions.
e Assume that f(a) < 0 and f(b) > 0.

The intermediate value theorem says that there exists a ¢ between a and b where f(c) = 0.

e How do we prove this?
e If we draw a picture, then it seems obvious, but how to we actually prove this?

That a function is continuous basically means that when you draw the graph of the function
the pencil is not allowed to leave the paper.

e How do we make this into a proper proof?

e What properties of the real values are needed for a proof?
This leads to several questions:

e Q1: What is a real number?

e Q2: Why is V2 a real number?

e Q3: What is v/2?
The answer to these questions: R is a complete ordered field that contains the rational
numbers Q.
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Here is some notation:
(1) N is the natural numbers. This means that N = {1,2,3,---}.

(2) Z is the integers. This means that Z = {0, £1,+2,£3,--- }.
(3) Q is the rational numbers. So all numbers of the form ™, where m € Z and n € N.

Properties:

Rational numbers:
Rational numbers Q are numbers of the form *, where m € Z and n € N.
(1) When are two numbers the same?
mq mo
— = — < M1N2 = MaoNy.
ny U

(2) How do we add two numbers?

@—i—@ My ng +mgny
ny (%) ni o ’
(3) How do we multiply two numbers?

my ma mymao

ny ng ning
(4) When is one number less than another?
mq mo
<

— — = ming < Manj.
ni ng

For this to make sense we need (for instance) to show that multiplication is well-defined:

This means that if we have two representations of the same rational number

mq . mo
o ne
and likewise
pL_ P
q1 - q2 ’

then
M1 py_ M2 Py
ny q1 N2 QZ‘

Proof. We have that mq ny = mony and p; g2 = p2 ¢;. Therefore,

mipin2gas =mMiNaP1ge = MaN1P24qs .
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This illustrate how detailed a proof should be.

A Field:

Definition:
A Field F is a set with two operations that we are denoting suggestively by ”+4” and ” -
Those two operations satisfies the following axioms:

2

Additive properties:

(1) z,y € F, then x +y € F.

Jr+y=y+uz.

J(x+y) +z=x+ (y+2).

) There exists an element 0 € F such that 0 + x = x for all z € F.

) For all x € F there exists an element, suggestively, denoted by (—z) such that
z+ (—z) =0.

(2

(3
(4
(5

Multiplicative properties:
(1) z, y € F, then zy € F.
) Ty =y
) (zy)z==(yz)
) There exists an element, suggestively, denoted by 1 such that 1z = x for all x € F.
) For all z € F\ {0} there exists an element, suggestively, denoted by < such that
:17 - =1.

(2

(3
(4
(5

The final axion that we need is an axiom that chains addition and multiplication together:
[ J

(x+y)z=x2z+y=z.

Theorem: For any field 'zero’ is unique.
Proof. Suppose there are two. Let us denote them by 0; and 0;. Then
01 + 02 = 0

since 07 is a ’zero’ and
01 + 02 = 01

since 0g is a 'zero’ so 0; = 0,. ]
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Examples: Q is a Field, whereas N and Z are not Fields.

Ordered set: An ordered set S is a set with a relation < with the following properties:

(1) For an z, y € S, one of the following holds: x <y or y < z or = = y.
(2) If z, y, z € S with x <y and y < z, then x < z.

Ordered Field:
An ordered Field is an ordered set that is also Field and has the following two additional
properties that chains the operations in the Field together with the ordering:

(1) Ifz <y, then x4+ z < y + 2.
(2) If z >0 and y > 0, then zy > 0.

Example: Q is an ordered Field.

Theorem: If x < y and z > 0, then x z < y 2.

Proof. We need to show that 2z < yz or equivalently yz — xz > 0. The latter can be
rewritten as y z—x z = (y—x) z. Since y > x we have that y —x > 0 and the claim therefore
follows since z > 0. U
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Lecture 2

The real numbers R is a ordered Field that contains Q.

Question: What is the difference between R and Q?
One difference is that R, contains v/2 and Q does not.

V/2 is a number z so that > 0 and 22 = 2.

Theorem: There does not exists a rational number z so that z2 = 2.

Proof. We will argue by contradiction. So suppose that there exists a rational number x =

m
")

where m € Z and n € N, so that 22 = ’7’;—22 = 2. We can assume m and n does not have a
common factor (other than one). We have that m? = 2n? and so 2 is a factor in m? and
therefore in m itself. This means that m = 2m;y, where m; is also an integer. It follows that
m? = 4m? = 2n? and therefore 2m; = n and so n is also even. We have now that both m
and n are even and so have 2 as a common factor. This is the desired contradiction. This
show that there is no rational number x with the property that 22 = 2. U

How do we add v/2 to the number system?
V2 =1.4142136 - - -
So 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, — /2.

v/2 is the limit of a sequence of numbers.
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Completeness of R. (Least upper bound property.)

Completeness is: If a subset A of R has an upper bound, then A has a least upper bound.

Suppose that S is an ordered set and A is a subset of S, then M is an upper bound for A if
for all a € A we have that a < M.

Example: If A ={1,2,3} C Z, then 4 is an upper bound, whereas 2 is not an upper bound.

Example: If S = Q, then N as a subset does not have an upper bound

Least upper bound: Suppose that S is an ordered set and A is a subset that has an upper
bound. We say that M is a least upper bound for A if M is an upper bound for A and for
any other upper bound M; we have that M < M;.

Complete ordered set: We say that an ordered set is complete if any subset that has an
upper bound has a least upper bound.

Theorem: There exists a complete ordered Field that contains Q.

This Field is denoted by R.

We will not prove this, as a proof would take us too far a field, rather we will take it for
granted.

Theorem: V2 € R.

Proof. Let A = (0,v/2)NQ. That is A consists of all the positive rational numbers a so that
a® < 2. Let = be the least upper bound for A. Note that A is nonempty (since 1 € A) and
that 2 is an upper bound for A. Note also that x > 1 > 0 since it is an upper bound. We
need to show that 22 = 2.

We will first show that 22 < 2. Suppose not; so assume that 22 > 2. We will show that
this leads to a contradiction. Consider

(x—h)?=2"—-2zh+h*>2—2hz.

As long as h > 0 is chosen so that
2hx < x? —2
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or, equivalently, that

)
h <
2x
then
(x—h)*>2

and therefore x — h is also an upper bound for A. This contradict that z is the least upper
bound. We therefore have that if x is the least upper bound for A, then z? < 2.
To show the reverse inequality (that 22 > 2) we argue similarly. Assume that for the least
upper bound = we have that 22 < 2. Consider z + h, where 0 < h < 1. We have that
(x+h)?=2*+2zh+h*<2*+2xh+h=2>+h(Qz+1).
Since we are assuming that 2% < 2 we can choose h positive so that
2 — 2

h < )
2z +1

We therefore have that

(x+h)? <2 +2—-2°<2.
This is the desired contradiction and show that 22 > 2. Together with the first step we have
that 22 = 2. O

Corollary: Q is not complete.

Proof. If Q was complete, then v/2 € Q but we have already proven that there is no rational
number with the property that 22 = 2. O

Archimedean property: For all x € R, there exists a natural n € N so that = < n.

Proof. If this was not the case, then N would be bounded. To see that N is not bounded
we argue as follows. Assume it is bounded and let o be the least upper bound for N. We
would now have that for all n € N that n < «. Since n + 1 is also a natural number we
would have that n 4+ 1 < a as well. So, in fact, n < a — 1 or in other words, since n was any

natural number, a — 1 would be an upper bound contradicting that  was the least upper
bound. O

As a corollary of the Archimedean property we get the following:

Corollary: If z < y, then there exists a rational number ™ such that

m
r< —<y.
n
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Proof. Set 8 = y%x From the Archimedean property we have that there exists a natural
number n with n > 5. It follows that
1 1
O0< —< —.
n B

Now let m — 1 be the largest integer so that
m—1<axn.

It follows that ™ has the desired property. 0
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Lecture 3

Theorem: R is a complete ordered Field that contains Q.

S is an ordered set. A non-empty subset A of S is said to have an upper bound if there
exists an M € S such that for all a € A we have that a < M.

Completeness is the property that every bounded non-empty subset has a least upper bound.

We denote by sup A the smallest upper bound of A.

Lower bound: A non-empty subset A is said to have a lower bound if there exists m € S
such that for all a € A we have that m < a.

The greatest lower bound is a lower bound that is greater or equal to all other lower bounds.

The greatest lower bound is denoted by inf A.

From now on we will concentrate of the case of R.
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How to write a mathematical proof?

This lecture we will look at how to write a mathematical proof.
We will explain this in two results that we talked about last time.

Let us return to the example of showing that v/2 € R.

We already showed this but we did not write it as a "proper proof”’. That is what we will
do next.

Theorem: There exists a > 0 such that o? = 2.

Proof. Define a set A by
A={z€R|z>0and 2° < 2}.

We will show that A is a non-empty bounded subset and that o = sup A has the property
that & > 0 and o? = 2.

Observe first that 1 € A, so A is non-empty. Moreover, 2 is an upper bound for A so A is
bounded from above. Let a = sup A, we need to show that o > 0 and that a®> = 2. Since
1 € A it follows that 0 < 1 < a.. To show that a? = 2 we divide the proof into two parts.

Part 1: We will show that a? < 2. Suppose not; we will see that this lead to a contra-
diction. Indeed, we will show that that if this was the case, then there exists an 0 < oy < «
such that a3 > 2 so ag is an upper bound that is smaller than a. To show this we set

and set
apg=a—h.

Note that since we are assuming that o > 2, then we have that A > 0 and therefore oy < a.
Note also that since 1 < a < 2 we have that

h <

1
— <
_QOé_

DN | —
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In particular, 0 < a. Next

2_2 2
ozg:a2+h2—2hoc>oz2—a2 :%—i-lZQ.

This is the desired contradiction and show that o? < 2.

Part 2: We will next show that o® > 2. Suppose not; we will see that this lead to a
contradiction. Indeed, we will show that if this was the case, then there exists an a1 > «
such that af < 2 contradicting that o was an upper bound for A. So assume that a? < 2.
This time we will set
2 — o?

4o
Note that 1 > h > 0 (the first inequality follows from that 1 < «). Set a; = a+ h. It follows
that

2—a2<a2+22—a2
- 2

i =a’+h*+2ha<a®+h+ =2.

Together parts 1 and 2 show that o? = 2; completing the proof. 0

1"
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Archimedean property:

Formal proof:

Theorem: The set of natural number is not bounded from above.

Proof. If N is bounded from above, then we can let M be the least upper bound. We now
have that for all n € N

n<ouo
We claim that also o — 1 is an upper bound contradicting that o was the least upper bound.
Namely, for a given n since « is an upper bound for all natural numbers we have that

n+1<a
but this implies that
n<a-—1
showing that o — 1 is an upper bound. That is the desired contradiction. 0

Corollary: For any € > 0, there exists an n € N such that % < €.

Proof. Set a = %, By the Archimedean property we know that there exists an n € N with
n > «. It follows that % < €. 0J

12
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Sequences:

V2 can be thought of a limit of a sequence of decimal numbers as follows.
l<ld4<141<1414---.

When does a limit exist?

A sequence of real numbers is a function f: N — R.

We usually use the notation a,, = f(n).

Example 1: /2 is the limit of a1 = 1, as = 1.4, ag = 1.41, a4 = 1.414 etc.

Example 2: a,, = (—1)". This sequence has NO limit. The a,,’s alternates between —1 and
1.

Example 3: The sequence a,, = % has zero as its limit.

Limit: Let a, be a sequence and a a real number. We say that a,, converges to a if for all
€ > 0, there exists an N € N such that if n > N, then

la, —al < €.
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Lecture 4

Theorem: R is a complete ordered Field that contains Q.

S is an ordered set. A non-empty subset A of S is said to have an upper bound if there
exists an M € S such that for all a € A we have that a < M.

Completeness is the property that every bounded non-empty subset has a least upper bound.

We denote by sup A the greatest lower bound of A.

Lower bound: A non-empty subset A is said to have a lower bound if there exists m € S
such that for all @ € A we have that m < a.

The greatest lower bound is a lower bound that is greater or equal to all other lower bounds.

Sequences:

V2 can be thought of a limit of a sequence of decimal numbers as follows.

1<14<141<1414---.

A sequence of real numbers is a function f : N — R.

14
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We usually use the notation a,, = f(n).

Example 1: /2 is the limit of a1 = 1, as = 1.4, ag = 1.41, a4 = 1.414 etc.

Example 2: a,, = (—1)". This sequence has NO limit. The a,,’s alternates between —1 and
1.

Example 3: The sequence a,, = % has zero as its limit.

Limit: Let a, be a sequence and a a real number. We say that a,, converges to a if for all
€ > 0, there exists an N € N such that if n > N, then

la, —a] <e.

If this is the case, then we also say that a is the limit of the sequence and we say that the
sequence is convergenet.

A sequence that is not covergent is said to be divergent.

Example:
0.999999999 - .- =1.

What does the left hand side mean?

Define a sequence a,, as follows: Set

a; =0.9,
as =0.99,
az = 0.999,

ay = 0.9999 ,

ete.

The left hand side above is then defined as the limit of the sequence a,,.

15
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Claim:

lim a, =1.
n—oo

Proof. We need to show that for all € > 0, there exists an N € N such that for n > N we

have that
la, — 1] < €.

By the Archimedean property we can choose N such that ]lv < €. We also have that

la, — 1| =107".
Therefore, for n > N we have that
1 1
a,—1|=10"< - < —<e
| | ~ <y
This proves the claim. [l
Theorem If a, is a , then the set {a,} is a subset of R.
Proof. Since a,, is convergent to a we can find N such that for n > N we have that
la —a,| < 1.
Note also that the set {aj,---,ay_1} is bounded so there exists C' € R such that for
n=1,---,N —1 we have that
la,| < C'.
To see that the larger set {a,} is bounded we will use that for n > N
|an| < la] + |an —af <fa]+1.
From this we have that for all n
la,| < max{C, |a| + 1}.
O
Basic algebraic properties of limits:
Theorem Suppose that a, and b, are convergenet sequences with lima, = a, limb, = b

and C € R, then

) ¢, = Cay, is convergenet and lim,, ., ¢, = C a.
2) ¢n = ay + b, is convergent and lim,,_,, ¢, = a + b.
3) ¢, = ay b, is convergent with lim,, ., ¢, = ab.
4) If b, #0,b# 0 and ¢, = ‘Z:, then ¢, is convergent and lim,, . ¢, =

(1
(
(
(

Salls]

16
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Proof. (of the first property.) If ¢ = 0, then the claim is obviously true so we need only show
the claim for C' # 0. Given € > 0, there exists an N such that if n > N, then
€

m .

la —a,| <

Multiplying both sides by |C| gives that
|ICa—Cayl <e.

for n > N. This show the first property.
(Of the second of these properties.) Observe that

|en = (a4 b)| = [an + by = (@ + b)| = |(an — @) + (bn = b)| < fan — af + |b, — O]

Since a, — a, given € > 0 we can find a N, such that if n > N,, then
€
la, —a| < 3"

Likewise since b,, — b we can find N, such that if n > N, then
€
b, —b| < =.
bu bl < ¢

We now set N = max{Na, N,} and observe that if n > N, then
€

€
|cn—(a+b)|§|an—a|—|—|bn—b|<§+2

= €.

This proves the second property.
(Outline of how to show the third property.) To prove the third property we will use that

lab—anb,| <lab—a,b|+ |anb—a,b,| = b |a — an| + |an||b — by|.
We then combine it with the theorem above that show that the set
{lan||n € N}

is bounded. This is the main idea of the proof of the third property. There are the details
to fill in to make it a proof.

(Outline of how to show the fourth property.) To prove the fourth property we will assume
that a, = 1. The general case indeed will follow from this together with the third property.
We will use that

1 1 |b — by
by b (bl [ba]

together with that

|bn| < [b] 4 |6 — 0] -
and therefore

|bn| = [b] — [b — b].

We then want to use this to bound the denominator (when n is sufficiently large) from below
in

|b B bn|
] [bn]
Like for the third property there are details to fill in but these are the main ideas. 0

17
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Subsequence:

Example 1: Suppose that a, = (—1)".

This is a sequence of 1’s and —1’s that is alternating between —1 and 1.
The sequence b, = 1 for all n is a subsequence.

Another subsequence is where ¢, = —1.

Also the sequence ¢, = (—1)""! is a subsequence of a,,.

Another example of a subsequence is

]-7 17 _]-7 _]-7 17 17 _17 _17 e

Example 2: Suppose a,, = n. So a, is:
1,2,3,4,5,6,-- .
The sequence of increasing odd numbers
1,3,5,7,9,--- .

is a subsequence.
The sequence of increasing even numbers

2,4,6,8,10,- - .

is another subsequence.
The sequence

1a1727273a374747575”' )
is NOT s subsequence.

Formel definition: Recall that a sequence a, is a function f : N — R where we set
a, = f(n). A subsequence b, of a, is a composition of functions f o g where g : N — N is a
strictly increasing function. So b, = f(g(n)). Sometimes a subsequence of the sequence a,
also denoted by a,, .

Theorem: A sequence a,, is convergent with limit a if and only if all subsequences of a,, are
also convergent with limit a.

Proof. We need to show two implications.

First we need to show that is all subsequences of a, are convergent with limit a, then
the sequence a,, is convergent with limit a. However, this is trivially so since a,, itself is a
(trivial) subsequence of a,,.

Next we need to show that any subsequence of a convergent sequence is convergent with
the same limit. Suppose therefore that € > 0 is given and choose N so large so that for

18
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n>N

la, —al <e.
For k > N we have that ny > k& > N and therefore

lan, —al <e.

This proves the second implication.
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Lecture 5
A sequence of real numbers is a function f : N — R.
We usually use the notation a, = f(n).

Limit: Let a, be a sequence and a a real number. We say that a,, converges to a if for all
€ > 0, there exists an N € N such that if n > N, then

la, —al <e.

If this is the case, then we also say that a is the limit of the sequence and we say that the
sequence is convergenet. A sequence that is not covergent is said to be divergent.

Theorem If a, is a , then the set {a,} is a subset of R.

Basic algebraic properties of limits:

Theorem Suppose that a, and b, are convergenet sequences with lima, = a, limb, = b

and C' € R, then

(1) ¢, = Ca, is convergenet and lim,,_,, ¢, = C a.

(2) ¢, = an + b, is convergent and lim,, o ¢, = a + b.

(3) ¢, = an b, is convergent Wlth lim,, oo ¢, = ab.

(4) If b, #0,b# 0 and ¢, = bn’ then ¢, is convergent and lim,,_,., ¢, =

S =

Subsequence: A subsequence b, of a,, is a composition of functions f o g where g : N — N
is a strictly increasing function. So by = f(g(k)). We often write a,, for by.

20
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Example: A sequence is defined by a,,

n?+4+1
p = ———.
n?+n+1
We will show that a,, is convergent with limit 1. We have
1+ .5
p = ——2—.
1+14+ 5
Since % — 0 and # — 0 we have that
1
1+ - —1
n

and

It now follows from the algebraic properties of limits that

a, — 1.

Example: To show that v/2 is the limit of a; = 1, ay = 1.4, a3 = 1.41, ay = 1.414, .... we
need something else. We need the monotone convergence theorem.

Monotone convergence theorem: Increasing version. Let a, be a monotone increasing
sequence. This means that a1 < as < a3z < ---. (Which we can also write this as a,, < a,41)-
If the sequence is bounded from above so that there exists A with

a, <A,

then a, is convergent with limit sup {a,}.

Monotone convergence theorem: Decreasing version. Similarly, for a bounded monotone
decreasing sequence a,, where a, 1 < a,, we have that a,, converges and

nh_)rglO a, = inf {a,}.

21
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Using the monotone convergence theorem we can now show that v/2 is the limit of a; = 1,
a9 = 14, as = 141, a4 = 1414, as = - --.

To show this we argue as follows:

Let
bn
p = ———
107171
where b, is the largest integer so that

b2 <2-10°"2.

We will show that a,, is an increasing and bounded sequence and that the limit a has the
property that a? = 2.

So suppose that b, is an integer and that
b2 <2102,

then obviously
(10b,)? < 2-102M+D=2

This implies that b,,1 > 10b,; so a,+1 > a, and the sequence is increasing.

It is clear that b, < 2-10""!, since (2- 10?"72)2 > 2-10?"2,

b’ll
10n—1

Therefore the sequence a,, = is bounded and by the monotone convergence theorem

a, — a.

22
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To show that a? = 2 we argue as follows:

By the algebraic properties of limits we have that a®> = lim,,_,, a2, but for each n we have
that a2 10°" 2 =12 <2-10*""% s0 a? < 2.

This show that a? < 2.

Similarly, since (b, + 1)% > 2 - 10272 we have that (a,, + 1017")2 = Garl 5 o

102n—2

Therefore, 2 < lim,,_,o0(a, + 1017")? = lim,,_,, a2 = a®.
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Proof of the monotone convergence theorem (Increasing version):

The decreasing version is proven similarly.

So suppose that we have a sequence with
Qn, S QAn+1 S A

and set
a=sup{a,}.
We want to show that
ay, — Q.

Given € > 0, since a — € < a we have that a — € is not an upper bound for the sequence,
therefore there exists NV such that
ay > a—€.

Since the sequence is increasing we have for n > N that
a—e<any <a, <a

Here the last inequality used that a is an upper bound for the sequence.

We now have that for n > N
0<a—a, <e.

This shows that the sequence is convergent with limit a.
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Cauchy sequence: A sequence a, is said to be a Cauchy sequence if for all € > 0, there
exists an N such that if m, n > N, then

la, —an| < €.

(Tail of the sequence bunch together.)

From Wikipedia: Baron Augustin-Louis Cauchy (1789 — 1857) was a French mathematician,
engineer, and physicist. He was one of the first to rigorously state and prove the key theorems
of calculus (thereby creating real analysis), pioneered the field complex analysis, and the
study of permutation groups in abstract algebra. Cauchy also contributed to a number of
topics in mathematical physics, notably continuum mechanics.

Theorem: A sequence is convergent if and only if it is a Cauchy sequence.

Application: Existence of fixed points for a maps. If T : R — R is a map, then 2o € R is a
fixed point if

T(ZL’O) = 2.

Definition A contracting map is a map 7' : R — R such that there exists ¢ < 1 so for all
x, y € R we have that

T(x) = T(y)| < clz —yl.

(Points are squeezed together under the map.)

Contracting mapping theorem: Any contracting map has a fixed point.

Application of contracting mapping theorem: Existence of solutions to ODEs.

More on all of this next time......
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Lecture 6
Last time:
Basic algebraic properties of limits.
Monotone convergence theorem.

Cauchy sequence.

Cauchy sequence: A sequence a, is said to be a Cauchy sequence if for all € > 0, there
exists an N such that if m, n > N, then

la, —am| < €.

(Tail of the sequence bunch together.)

Theorem (Cauchy convergence theorem): A sequence is convergent if and only if it is
a Cauchy sequence.

Application: Existence of fixed points for a maps.
If T:R — R is amap, then x5 € R is a fixed point if

T(l‘o) =Xy -

Definition A contracting map is a map 7 : R — R such that there exists ¢ < 1 so for all
x, y € R we have that

T (z) =T(y)| <clz—yl.

(Points are squeezed together under the map.)

Contracting mapping theorem: Any contracting map has a fixed point.
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For a contracting map the fix point is unique.

Suppose that = and y are two fixed point we want to show that x = y. We have
[z =yl =[T(x) - T(y)| <clz —y|.

Since ¢ < 1 this implies that |z — y| = 0 and so z = y.

On Pset 3 you will be asked to show that for a contracting map 7" and any a; € R the
sequence a,.1 = T'(a,) is a Cauchy sequence. By the Cauchy theorem we then have that a,
is convergent.

Let a denote the limit. We claim that 7'(a) = a. Observe that T'(a,) = ap+1 — a. If we can
show that if x, — x, then T'(z,) — T'(z), then

T(a,) — T(a)

but we already have that 7'(a,) = a,+1 — a so we would have that T'(a) = a and thus a is
a fixed point.

We need therefore show that if z,, — x, then T'(x,,) — T'(x). To do that observe that
IT(@) — T@) < el — .

Since x,, — x we have that |z, — z| — 0 and so |T(z,) — T'(z)| — 0. It follows that
T(x,) — T(x). Applying this to the sequence a,, shows that a is a fixed point for T'.

Applications of contracting mapping theorem:

Existence of solutions to ODEs. We will return to this later as this needs a version of the
contracting mapping theorem where T' is defined on a more general space than the real
numbers.

Newton’s method: Finding a zeroth of a function f : R — R. (So find a solution x to
flz) =0.)

Suppose that x; is a "good” initial guess, so f(x;) is sufficiently small. Assume also that
f" # 0. Define a map

. f@)
T(x) =z — )
We have
, . B f_/ ff// _ f//
P =5t e e
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So as long as x stay close to the initial guess and for the initial guess f(x) is small compared

with %, then T is a contracting map. By the contracting mapping theorem the sequence
Zpt1 = T(z,) is a Cauchy sequence that converges to a fixed point of T

For a fixed point for 7" we have T'(x) = x so = — ]{,((?) = z and therefore f(x) = 0.

Back to Cauchy sequences.

Bolzano -Weirstrass theorem: Any bounded sequence has a convergent subsequence.

Once we have the Bolzano-Weirstrass theorem we can prove the Cauchy theorem.

Proof. (of the Cauchy theorem.) So suppose that a, is a Cauchy sequence. We will first
show that a,, is bounded. From the definition of a Cauchy sequence we have that there exists
N such that for m, n > N, then

la, —an| < 1.
It follows, in particular, that for all n > N, we have that
la, —an| <1,
and so
la,| = |(an —an) +any| < 1+ |an].
Therefore,
|an| < max{lay|+1,[ai],- -, an-a]}-

So the sequence is bounded.

From the Bolzano-Weirstrass theorem it follows that a, has a convergent subsequence a,,,
with limit a. We want to show that a,, is convergent with limit a. Given € > 0, there exists
an N7 such that if m, n > Ny, then

€
|an—am|<§.

Moreover, there exist an Ny such that if & > N, then |a,, —a| < §. Set N = max {1, N,}.
It follows that if n > N and k > N, then

€
5
This show that a,, — a as claimed. ]

€
[an = al < lan = an,| +lan, —al < 5 +

Another application of the Bolzano-Weirstrass theorem is the Extreme value theorem.
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Before stating this we need another key notion:

A function f : R — R is said to be continuous at a point zo € R, if for all ¢ > 0, there
exists a 0 > 0 such that if

v — x| <6 = |f(x) — f(z0)| <E€.

A function is said to be continuous if it is continuous at all points in the domain.

Theorem: If f : R — R is continuous and z,, is a sequence with z,, — xg, then f(x,) —
f (o).

Proof. Given e > 0, since f is continuous, there exists a § > 0, such that if |z — x¢| < §, then
|f(z) — f(zo)] < €. Since z,, — w0, there exists N such that if n > N, then |z, — x¢| < §
and therefore | f(x,) — f(zo)| < €. This show that f(x,) — f(zo) as claimed. O

Extreme value theorem: Let f be a continues function on an interval [a,b]. The extreme

value theorem says that the sup and inf are achieved. That is, there exist z € [a,b] such
that f(z) = sup f. Likewise for inf f.

Proof. We will show that the supremum is achieved. The proof that the infimum is the
same with obvious modification. Let x,, € [a,b] be a sequence where f(z,) — sup f. Since
the sequence is contained in [a, b] it is bounded and therefore by the Bolzano - Weirstrass
theorem has a convergent subsequence x,, — x. Note that = € [a,b]. By the theorem above
f(zn,) — f(x) and since we also have that f(x,, ) — sup f it follows that sup f = f(x).
This proves that the supremum is achieved. 0
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Lecture 7
Last time:
Cauchy convergence theorem: Every Cauchy sequence is convergent.

Bolzano-Weirstrass theorem.
Last time we showed that the Bolzano-Weirstrass implies the Cauchy theorem.

Bolzano-Weirstrass theorem: Any bounded sequence has a convergent subsequence.

Proof. (of the Bolzano-Weirstrass theorem.) Suppose that a, is a bounded sequence. For
simplicity assume that a, € [0,1].

Defining the subsequence a, . Either there are infinite many n such that a, € [0, 3] or
there are infinite many such a,, in [%, 1] (or both). Assume that there are infinitely many in
[0,2]. Set a,, = a;. Let an, be the next a, such that a, € [0, 3]. We have

ng >ny =1,

an, € [0,1],
1
Anyq S |:O, §:| .
Next either infinitely many a,, lies in [0, 1] or infinitely many a, lies in [, 3]. Assume that
infinitely many lies in [3, ;]. Pick an n > ny such that a, € [3,3] and set ap, = a,. We

continue this way.
Convergence of a,,. Note that for k;, ks > k we have that

\ankl — ank2] < 21k,

Since 27% — 0 as k — oo this shows that the subsequence a,, is a Cauchy sequence. However,
more is true. Squeezed between two other sequences by, < a,, < ¢;. We will define sequences
b, and ¢, as follows. The sequence by, will be the left endpoint of the interval of length 2'=*
that all the element a,, will lie in when 7 > k£ and ¢, will be the right end point of the same
interval. We have now that the sequence b is increasing and the sequence ¢y, is decreasing
and the a,, are squeezed between the two. It follows that by is convergent (as it is also
bounded) and likewise for c;. Since cx — by = 217" it follows that by, and ¢;, converges to the
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same number and since the later a,, are all squeezed between the two they also converges
to that same number. 0

From Wikipedia: Karl Theodor Wilhelm Weierstrass (1815 — 1897) was a German math-
ematician often cited as the "father of modern analysis”. Despite leaving university without
a degree, he studied mathematics and trained as a school teacher, eventually teaching math-
ematics, physics, botany and gymnastics. Among many other contributions, Weierstrass
formalized the definition of the continuity of a function and complex analysis, proved the
intermediate value theorem and the Bolzano—Weierstrass theorem, and used the latter to
study the properties of continuous functions on closed bounded intervals.

Series: Suppose that a, is a sequence, we can form a new sequence s,, as follows. We let
$1=4ay,
So = aj + as
S3 =ai +ag+as,

and in general set

sn:a1+---+an:2ai.

. o0 . . . . o.)
A series ) .2, a; converges if the sequence s,, converges and if it do we also write ) >~ a; for
the limit.

Geometric series: Suppose now that a, = ¢" so the series is

n
=0

This is the geometric series. It is convergent precisely when |c| < 1. Moreover, when |c| < 1,
then the limit (infinite sum) is

E ¢ = :

, 1-c

=0

To see this observe that

(1—c) ) '=1-c"".

It follows from this that if ¢ # 1, then

3
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Therefore, s,, converges with limit - if |¢| < 1 and diverges if [¢| > 1 or ¢ = —1. One easily
checks, separately, that it also diverges for ¢ = 1.

Harmonic series: For the harmonic series a,, = % so the series is -, % This series is

divergent. To see this we will show that

n
Son__1 Z 5 .

This is trueforn =1as sy =1 >

N =

Assume that it is true for n we will show that it is also true for n + 1. Namely,

antl_q

IL.n . 1 n 1 n+l

Son+1_1 2 Sgn_1 + 22254’2 ng—i_ﬁ: 5
i=2n

So the formula also holds for n + 1 and therefore for all n.

n

Since 5 — 00 it follows that the subsequence son_; is divergent and therefore so is the
original series.

Absolutely convergent; We say that a series
oo
>
n=0

is absolutely convergent if the series

oo
> lawl
n=0

is convergent. Absolutely convergent implies convergent but not the other way around.

Example: We will see later that the series

—1)"
S EF

is convergent but if we take the absolute values of the a,’s, then we get the harmonic series
which is divergent.

Proof. (of why absolutely convergent implies convergent.) By the Cauchy convergence the-
orem we only need to show that the sequence
o0
Q;
i=0
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is Cauchy sequence if the series

oo
E ||
n=0
is convergent. Set
n
Sp = E Qg
i=0
n
Sy, = E la;| .
i=0
For m < n we have
Sn = Sml = lan + - + @] <lanl + -+ |amsr| = [sp — s
Since the sequence s, is a Cauchy sequence it now follows that s, is. O

Theorem: A series of non-negative numbers
o
a; ,
=0
where a,, > 0, is convergent if and only if the sequence s, is bounded from above.
Proof. The sequence s,, is monotone nondecreasing since
Sp+1 = Sp + Gy > Sp .

The claim now follows from the monotone convergence theorem. O

Example: The series

1
02
=1
is convergent. This is a sequence of non-negative numbers so we only need to show that
there exist M such that for all n

Claim:
n—1 1 3
Son_1 S Zz:; (§> .

This would be enough because the last is a convergent geometric series so in particular
bounded.

34



SPRING 2025 - 18.100B/18.1002 5

We will show this by induction. For n = 1 we have that

1 0
81:1: 5 .

So it is correct for n = 1. Assume next that it is true for n; we will show that it also holds

for n + 1.
ontl_1 1 n—1 1
oot ¥ 523 () +r g

1=2"

z<>z<>

This show the induction step and completes the proof.

To help determine whether or not a series converges there are a number of tests:

e Comparison test.
e Ratio test.
e Root test.

Comparison test; version 1: Suppose that a, and b, are two sequences with
0<a,<b,.
If
o
>_bn
n=1
is convergent, then so is

(e.)
g Ay .

n=1
Example: The series
X 9-—n
n=1 n
is convergent. Namely, if we set
2777,
ap, = —
n
and
b, =27" ’

then 0 < a,, < b,, and since the series Y~ | b, is convergent, then by the comparison test so
is the series Y7 a
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Comparison test; version 2: Suppose that a, and b, are two sequences with b, # 0 and

lim & = [, £0,

n—oo n

)
D> an
n=1

The series

is convergent if and only if
o
>_bn
n=1

18.

Example: The series

>
2 _
—n 1
is convergent since
n2
—1
n?—1 ’
and the series
o
1
n2
n=2
is convergent.
Ratio test: Let a,, > 0 and assume that
Ap+1
ap,

If

e o < 1, then the series > a, is convergent.
e a > 1, then the series ) a, is divergent.
e ¢ = 1, it is inconclusive.

Example 1:
1
ap = —.
n

In this case a
1
e, |
Qn,
so the test is inconclusive, but the series is divergent.
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Example 2:
1
Ay = ﬁ
In this case a
n+1 N 1
an,

so the test is inconclusive, but the series is convergent.
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Lecture 8

Series: Suppose that a, is a sequence, we can form a new sequence s, as follows. We let
s1=4ag,
So = a1 + ag

33:a1+a2+a3,

and in general set

n
Sp=a1+ -+ a, = E a; .
i=1

A series ) :°, a; converges if the sequence s,, converges and if it do we also write >~ a; for
the limit.

Geometric series:

i=0
Convergent precisely when |c| < 1.

Harmonic series:
o

1

This series is divergent.

Absolutely convergent; We say that a series

oo
> an
n=0

38
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is absolutely convergent if the series

> lan

n=0
is convergent. Absolutely convergent implies convergent but not the other way around.

Theorem: A series of non-negative numbers a,, > 0

o0
Z a; ,
i=0
is convergent if and only if the sequence s, is bounded from above.

To help determine whether or not a series converges there are a number of tests:

e Comparison test.

e Ratio test.

e Root test.

e Other tests that we will discuss later.

Comparison test; version 1: Suppose that a,, and b, are two sequences with
0<a, <b,.

>
n=1

If

is convergent, then so is

n=1
Example: The series
X 9-—n
n=1 n
is convergent. Namely, if we set
2—71
Qp = —
n
and
b, =2"",

then 0 < a,, < b,, and since the series Y~ | b, is convergent, then by the comparison test so
is the series Y 7 a,.
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Comparison test; version 2: Suppose that a, and b, are two sequences with b, # 0 and

lim & = [, £0,

n—oo n

)
D> an
n=1

The series

is convergent if and only if
o
>_bn
n=1

18.

Example: The series

>
2 _
—n 1
is convergent since
n2
—1
n?—1 ’
and the series
o
1
n2
n=2
is convergent.
Ratio test: Let a,, > 0 and assume that
Ap+1
ap,

If

e o < 1, then the series > a, is convergent.
e a > 1, then the series ) a, is divergent.
e ¢ = 1, it is inconclusive.

Example 1:
1
ap = —.
n

In this case
An41
Qn,
so the test is inconclusive, but the series is divergent.

—1
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Example 2:
1
Ay = ﬁ
In this case
Qp,
1,y
Qp,

so the test is inconclusive, but the series is convergent.

3=

Root test: Let a, > 0 be a sequence of non-negative numbers. Suppose lim,,_,.(a;,)
If

e 1 < 1, then the series ZZOZO a, is convergent.
e r > 1, then the series >~ a, is divergent.
e r = 1, then it is inconclusive.

Proof. (of root test.) Suppose that r < 1. It follows that for r < ry < 1, there exists N such
that if n > N, then

(an)% <rp.
Therefore,

0<a, <r{.

However, the series ) r{ is a geometric series that is convergent since ro < 1. We now
have by the first version of the comparison test that also the series Y °  a, is convergent.

Suppose that » > 1. In that case we have that for 1 < ry < r, there exists /N such that if
n > N, then

1
(ap)™ >rg.
Hence, for n > N
ap Z rga

where, the series >~ 7 is a divergent geometric series. Therefore, by the comparison test
the original series is divergent. U

Power series:

°
o0
1
> "=
1—=x
n=0
°
o0 xn
S % —epe.
n!
n=0
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[ J
oo 2n
n T o
;(—1) ) = COS T .
[
0 p2ntl '
;(_ S ey e

Formel definition: Let ¢, be a sequence, then >~ ¢, 2™ is a power series.

When does a power series converge?

Why does it give familiar functions?

We will answer the second question next time for the exponential function.

The answer to the first question comes from the root test or the ratio test.

Example: Consider the power series:

By the ratio test with a,, = ‘;—7: we have

| on+1
anp1 0l __ % o
an (n+ Dz n+1

It follows that the power series is convergent for all z.

Example:
S
n=0

This series is convergent for |z| < 1 and divergent otherwise.
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To talk about convergence of a general power series we need the notion of limsup of a
sequence. This is defined as follows.

Let a, be a sequence. If it is not bounded from above, then we set limsupa, to be oc.
Otherwise we will define a new sequence b,, from a,, as follows.

bn = sup {an7an+17an+27 e } :

Note that since we are assuming that the a,’s are bounded from above the b,’s are real
numbers and the sequence b, is decreasing. — It is decreasing since

by, = sup{an, Gni1, Gnio, -+ } = sup{ani1, Gnyo, -} = bpgr -

(For b,+1 supremum is taken over a smaller set.)

Since the sequence b,, is decreasing it is converging with limit b that possibly could be —oo
if the sequence b,, is not bounded from below.

Definition (of lim sup):

limsupa, = lim b, = 0.
n—o00 n—0o0

Back to power series. Suppose that

o0
Z an "
n=0
is a power series. Set
1

B limsup,,_, o |an\% '

R is said to be the radius of convergence.

: If limsup,,_, |an|% = 0, then the radius of convergence is said to be oco. If
limsup,, .. |an|" = oo, then we set R = 0.

From the root test one can now show the following;:

The power series in convergent if |z| < R and divergent if |z| > R.
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The case of where |z| = R has to be examined on a case by case basis.
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Lecture 9

Power series: Suppose that a,, is a sequence, for each x we can form a series

o
E anx" .
n=0

Exponential map as a power series: Define E(x) as the power series

E(@:Z%.

n=0

Step 0: The power series converges for all . Namely, since

n+1| T

a1 x |n! x|

la 27| |(n+ 1) an| T on+l

—0,

the claim follows from the ratio test.

Step 1: Define e = F(1) and e? = ee, e® = eee etc. This way e is defined for all £ € N.
We also define e = &. (The idea is that we would like to have e"™¥ = ¢%eV. )

We set e = 1.

This way e? is defined for all rational numbers.

What about the irrational numbers like /27
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Step 2: Next time we will show that
E(x+y) = E(x) E(y).

Here we claim that E(z) > 0 for all . If x > 0, then this is clear since

x x>

E(x):1+F+§+§+---zl.

If z < 0, then using the formula we will show next time we have that
1 =E(0) = E(zx) E(—x).

Therefore,

Using that E(z +y) = E(x) E(y) we now claim that F(q) = ¢ for all rational numbers q.
For integers m this is how we defined e™. For m = —k, where k € N we defined

I T
= =g = BER).

For a general rational number ¢ = =, where m € N and n € Z, we have

(B(2) =5 (2)-£(2) =

E(%)>o.

and

This gives us that E(q) = e? for all rational numbers gq.

Step 3: We now have F(z) is defined for all x whereas e” is defined for all rational numbers.
What other properties would we want of the exponential function?
We would want it to be continuous!

A function f : A — R on some set A C R is said to be continuous if for all
zo € A we have:

For all € > 0, there exists a § = d(zg) > 0 such that if |z — 29| < 0 (z € A), then
[f(x) = f(zo)] <&
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On Pset 5 you will be asked to show that E(x) is continuous at all points.

Step 4: We will next show that E(x) is the unique continuous function where E(q) = e? for
all rational numbers q.

Theorem: Let f and g be two continuous function on R that agrees on all rational numbers,
then f =g.

We will show this theorem next time. For now here are some more about what it means for
a function to be continuous.

Example 1: Suppose f(z) = ¢, where ¢ is a constant. We will show that f is continuous.
Given zp € R and € > 0, set 6 = 1. We then have that if |z — 29| < 6 = 1, then
|f(z) — f(xo)] = 0 < e. This show that f is continuous.

Example 2: Suppose f(x) = z, we will show that f is continuous. Given zy € R and € > 0,
set 6 = e. We then have that if |z — x| < 0 = ¢, then |f(z) — f(z0)| = |x — 20| < e. This
show that f is continuous.

Algebraic properties of continuous functions:

e If f and ¢ are continuous functions, then so is f + g.

e If f is continuous and c is a constant, then ¢ f is continuous.
e If f and g are continuous, then f ¢ is also continuous.

e If f is continuous and f # 0, then % is continuous.

o If f(x) and g(x) are continuous, then f(g(z)) is continuous.

Proof. (the proof is very similar to the one we gave for the algebraic properties of limits.) O

Theorem: All polynomials are continuous.

Example 3: If f(z) = 2% + 1, then f is continuos. We have already proven that g(x) = x
is continuous so by the algebraic properties we have that 2% = g ¢ is continuous. We have
also already shown that the constant functions are continuous so h(z) = 1 is continuous and
therefore by the algebraic properties we have that f = ¢? + h is continuous.
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Lecture 10

Power series: Suppose that a, is a sequence. For each z we can form a series

o
E anx" .
n=0

Exponential function as a power series: Define F(z) by the power series

o n

E@):Z%.

n=0

Step 0: The power series converges for all z.
Step 1: Define e? for all rational numbers q.

Step 2: Need to show that
E(z+y) = E(z) E(y) .

Step 3: E(z) is defined for all z, whereas e” is defined for all rational numbers, and E(q) = e?
for all rational numbers.

Step 4: E is continuous on all of R. (Pset 5.)

Step 5: If f and g are continuous functions on R that agrees on Q, then f = g everywhere.
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Suppose that we have two convergent series

i a, and i b,
n=0 n=0

of non-negative numbers a,,, b, > 0.

Form the "product series”
o
E Cn
n=0
where
n
Cp = E a; bn—i .
i=0

Note that each ¢, > 0 so by the monotone convergence theorem the series
[e.e]
D cn
n=0

is convergent if it is bounded.

Theorem 1: If Y ° ja, and Y~ b, are as above, then the series

is convergent with limit

n=0 n=0
Proof. Denote
n n n
a b c
sn:E azandsnzi biandsn—g ci
1=0 1=0 =0

The idea here is that

n 2n
(%) Zae be | = a; by + Z a; b; SZ Z a; bj .
=0

£=0 k=0 i+j=Fk i+j>n and i,j<n k=0 i+j=k

3
3

In other words

This is because (x) is
a b __ _c c
nSn = S, E : aibjSSZTH

i+j>n and i,5<n
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OS Z aibj.

i+j>n and i,5<n

and

Note that the first inequality in (x*) implies that the sequence s¢ is bounded and therefore
since a,, b,, ¢, > 0 we have that
b op b
sy 1 s”, s, 18", sy T s¢
by the monotone convergence theorem for sequences. Since the product s? s’ is squeezed
between s¢ and s5, by (#*) we have that
§¢ < s%sb < s¢.

From this the claim follows. O

Applying Theorem 1 to the power series E(x) we can now prove the following:

Theorem 2:
E(z+y) = E(z) E(y) .

Proof. We will show this assuming that z, y > 0. Once we have shown the theorem for x,
y > 0 the general case is not too difficult but we will not prove that here. The idea is that
E(z + y) will play the role of

n=0
above. So set
_(z+y)
n - n! 9
By the "binomial” formula
n . n T n—1
(z+y)" = (Z)w y
=0
So
1 . (n) (A n—
Cp = — )2ty
nl 4 )
=0
Since

we have that

This shows that
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where 4
xl
a; = H
and A
b= L
7!
The claim now follows from Theorem 1. O

Coming back to the functions F and e. We have that they agree on all rational numbers
and that F is defined for all real numbers.

We would want the exponential function to be continuous!

A function f : A — R on some set A C R is said to be continuous if for all
o € A we have:

For all € > 0, there exists a § = d(zg) > 0 such that if |z — 29| < § (x € A), then
[f (@) = flzo)| <

On Pset 5 you will be asked to show that E(x) is continuous at all points.

Step 5: We will show that F(z) is the unique continuous function where E(q) = e? for all
rational numbers q.

Theorem 3: (On Pset 5.) Let f and g be two continuous function on R that agrees on all
rational numbers, then f = g.

We will next see that there are functions on R that are not continuous at any point!

Before defining such a function recall that we already proved that v/2 is a irrational number
and thus for all § > 0, there exists an N such that if n > N, then

V2

0< — <9.
n

So arbitrarily close to zero there are irrational numbers. Likewise by the Archimedean
property we have that arbitrarily close to any irrational number there is a rational number.

52



SPRING 2025 - 18.100B/18.1002

On R define a function f as follows

f($)={1 r€Q

0 otherwise

We claim that f is nowhere continuous. Suppose first that xq is rational and let 0 < e < 1.
We have that f(x¢) = 1 and for any § > 0, there exists a irrational number x with |z —zq| < §
but we also have that

e <1=|f(z) = f(xo)l.

This show that f is discontinuous at xg.

Likewise suppose zg is an irrational number. We have that f(x¢) = 0. Given 0 < € < 1 for
any ¢ > 0, there exists a rational number z with | — x¢| < d. On the other hand

e<1=[f(z)— f(zo)|.

This show that f is discontinuous at xg.

This gives an example of a function that is discontinuous at all points. On the other hand
recall from last time how to generate continuous functions from known continuous functions:

Algebraic properties of continuous functions:
e If f and g are continuous functions, then so is f + g.
e If f is continuous and c is a constant, then ¢ f is continuous.
e If f and ¢ are continuous, then f ¢ is also continuous.
e If f is continuous and f # 0, then % is continuous.
e If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (The proof is very similar to the one we gave for the algebraic properties of limits of
sequences.) O

Theorem: All polynomials are continuous.
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Lecture 11

A function f : A — R on some set A C R is said to be continuous if for all
zo € A we have:

For all € > 0, there exists a § = d(zg) > 0 such that if |z — 29| < 0 (z € A), then
|f(x) = f(zo)] <&

Two theorems about continuous functions:

Extreme Value Theorem: Suppose that f : [a,b] — R is a continuous function, then
there exist x); € [a,b] such that f(zp) > f(x) for all © € [a,b]. Similarly, there exists
T € [a,b] such that f(x,,) < f(z) for all z € [a,b)].

Intermediate Value Theorem: Suppose that f : [a,b] — R is a continuous function, then
for all y between f(a) and f(b), there exists x € [a,b] such that f(z) =y.

We will show these theorems using a lemma that connects sequences and continuous func-
tions. This is the following:

Lemma: Suppose that f : [a,b] — R is a continuous function and z, — 7. a sequence,
then f(x,) — f(2x). We can also write this as

lim f(xz,)=f ( lim xn> .

n—oo n—oo

Proof. To show that f(z,) — f(zs) let € > 0 be given. Since f is continuous at z,, there
exists 0 > 0 such that if |z — x| < §, then |f(z) — f(2)| < €. Since z,, — T, there exists
N such that if n > N, then |z, — 2| < 0 and therefore |f(z,) — f(zx)| < €. This shows
the lemma. U
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Using this lemma we can now prove the extreme value theorem:

Proof. (of EVT.) Let E = f([a,b]) and set M = sup E. We will show that M < oo and
that M = f(x) for some x € [a,b]. We show first that M is finite. Otherwise for each n
there exists an x,, € [a, b] such that f(x,) > n. Since the sequence {z,} is bounded by the
Bolzano-Weirstrass theorem it has a convergent subsequence. Let us denote that by z,, .
We have z,, — T« € [a,b]. By the lemma above f(z,,) — f(zw) but we assumed that the
sequence f(x,,) is unbounded which is the desired contradiction.

For each integer n we can now choose z, € [a,b] such that f(z,) > M — % Again since
this sequence is bounded by the Bolzano-Weirstrass theorem it has a convergent subsequence
T, — Too € [a,b]. By the lemma above f(x,,) — f(2s) > M. Since M = sup f([a,b]) we
have that f(zs) = M. This show the EVT. O

Proof. (of IVT.) We will assume that f(a) < 0 < f(b) and show that there exists = € [a, b]
such that f(x) = 0. The general case is similar. Let A = {y| for all x <y we have that f(z) <
0}. Note that a € A so the set is non-empty. Set M = sup A and let z,, be a sequence with
x, < M and z, — M. It follows that f(z,) < 0 and so by the lemma above we must have
that f(M) < 0. We are done if f(M) = 0 so assume that f(M) < 0. We have that M < b
and by continuity there exist a whole interval around M where f < 0. This contradict that
M was the supremum of the set A. Showing the IVT. U
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Abstract metric space.

Definition: Metric space A metric space is a set X with a function d : X x X — R with
the following three properties:

(1) d(z,y) > 0 for all z, y € X and d(z,y) = 0 if and only if z = y. (Distances > 0.)
(2) d(z,y) = d(y,z). (Symmetric.)
(3) d(z,2) < d(z,y) +d(y,z). (Triangle inequality.)

Examples:
(1) X =R and
d(z,y) = v —yl.
(2) X =R? and for x = (z1,22) and y = (y1,y2)
d(z,y) = V]z1 — il + |22 — v
(3) X = R3 and for # = (21,22, 23) and y = (y1, y2, y3)

d(z,y) =]z — > + z2 — v + |zs — ys.

Example: Continuous function on an interval [a,b]. Let X = C([a, b]) where C([a, b]) is the
set of continuous functions on [a,b]. The distance between two continuous functions f and
g is then

d(f,g) = max |f(z —g(z)].

Since f — g is also a continuous function the EVT theorem guarantees that the max is
achieved for some z € [a, b].

Metric spaces plays the role of generalised real numbers. A lot of the discussion that we
have had in the class holds also for metric spaces and this is useful in many circumstances.
For instance, we will see in a later class that we can use it to solve ODEs.

Sequences in a metric space: A sequence in a metric space (X,d) is a map f: N — X.
We typically denote the image f(n) by x,. Similarly we define a subsequence as the
composition of a strictly increasing map ¢ : N — N with f and z,,, = f(g(k)).

It is not all results that we know from R that generalises to general metric spaces. For
instance, in general there are no algebraic properties, no squeeze theorem, no monotone
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convergence theorem. On the other hand the statement of both the Cauchy convergence
theorem and the Bolzano-Weirstrass theorems makes sense in a general metric space.

Example (Box distance): The space is X = R* and if z = (21, %) and y = (y1,¥2), then

d(z,y) = |21 — y1| + |12 — 92| .

Example (Strange metric on integers): The space is X = N and if m, n are integers,
then

1 1
d = —— —
(mm)= =~
Here is a wild example of a metric space:
Example (French railway metric): The space is X = R? and if z = (z1,79) and

Y= (yla 92)7 then

d(z,y) =

lz — y| if x=cyory=cx for some ce R
o]+ |y| otherwise '

Here

lz—yl= V(@ — 1) + (22— 12)?,

and likewise for |z| and [y|.

Definition: Convergent sequence in a metric space If (X, d) is a metric space and z,,
is a sequence in X, then we say that z,, converges to x and write x,, — x or z = lim,, , x,
if for all € > 0, there exists an N such that if n > N, then

d(xz,z,) < €.

This is equivalent to that the sequence d(z,, ) — 0.

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and z,, is a
sequence in X, then we say that z,, is a Cauchy sequence if for all € > 0, there exists an NV,
such that if m, n > N, then

d(zpm, x,) < €.
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Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence.

Proof. So suppose that z, € X is a sequence and z,, — x. Given € > 0, convergence means
that there exists IV such that if n > N, then d(z,z,) < §. If both m, n > N, then we have
by the triangle inequality that

d(‘rmaxn> < d(l‘m,l’) + d((L’,ZL’n) < % + g —c.

This show the theorem. O

The converse is not always the case: If X = (0,1) € R with d(z,y) = |z — y|, then the
sequence T, = % is a Cauchy sequence but since 0 is not in X, it is not convergent. We

sometimes express this by saying that in this case X is not Cauchy complete.

Definition: Continuous function on a metric space (X, d) Suppose that F': X — R
is a function. We say that f is continuous at xq € X, if for all € > 0, there exists a 6 > 0,
such that if € X with d(z,z() < J, then

|F(z) — F(xo)| <e€.

Example: Let again X = C([0,1]) be the set of continuous functions on [0, 1]. Equip X
with the distance described above. So the distance between to continuous functions f and g
is then

d(f,g) = max |f(z—g(x)].

Define F' on X to be the function F(f) = f(0) where f € C([0,1]). F' is easily seen to be a
continuous function on the metric space X.

We can now extend one of the earlier lemmas to general metric spaces.

Lemma: Let (X, d) be a general metric space. Suppose that f : X — R is a continuous
function and x, is a sequence in X with x,, — z, then f(z,) = f()-

Proof. To show that f(z,) — f(zs) let € > 0 be given. Since f is continuous at z,, there
exists § > 0 such that if d(z,x+) < 9, then |f(z) — f(2)| < €. Since z,, — x, there exists

N such that if n > N, then d(z,,2+) < ¢ and therefore |f(x,) — f(2x)| < €. This shows
the lemma. O
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Lecture 12

(1) R is the complete ordered field that contains Q.
(2) Sequences and limits.

(3) Series.

(4) Continuous functions.

(5) Metric spaces.

Definition: Metric space. A metric space is a set X with a function d : X x X — R with
the following three properties:

(1) d(z,y) > 0 for all z, y € X and d(z,y) = 0 if and only if 2 = y. (Distances > 0.)
(2) d(z,y) = d(y,z). (Symmetric.)
(3) d(z,z) < d(z,y) + d(y, z). (Triangle inequality.)

Examples (Euclidean distance):
(1) X =R and
d(z,y) = |z =yl
(2) X = R? and for # = (21, 22) and y = (y1,92)
d(z,y) = V]zr =y + |22 — o]
(3) X =R? and for x = (21, 22, 73) and y = (y1, y2, y3)

d(z,y) =]z — 1> + z2 — y2? + |zs — ysf.

Example: Continuous function on an interval [a,b]. Let X = C([a, b]) where C([a, b]) is the
set of continuous functions on [a, b]. The distance between two continuous functions f and
g is then

d(f,g) = max |f(z —g(z)].

Since f — g is also a continuous function the EVT theorem guarantees that the max is
achieved for some z € [a, b].

60



2 TOBIAS HOLCK COLDING

Example (Box distance): The space is X = R* and if z = (21, 2) and y = (y1,¥2), then
d(z,y) = o1 — 1| + w2 — 1o

Sequences in a metric space: A sequence in a metric space (X, d) is amap f: N — X.
We typically denote the image f(n) by x,. Similarly we define a subsequence as the
composition of a strictly increasing map ¢ : N — N with f and z,,, = f(g(k)).

It is not all results that we know from R that generalises to general metric spaces. For
instance, in general there are no algebraic properties, no squeeze theorem, no monotone
convergence theorem. On the other hand the statement of both the Cauchy convergence
theorem and the Bolzano-Weirstrass theorems makes sense in a general metric space.

Definition: Convergent sequence in a metric space If (X, d) is a metric space and z,,
is a sequence in X, then we say that x,, converges to x and write x,, — x or x = lim,,_,o T,
if for all € > 0, there exists an N such that if n > N, then

d(z,x,) <e.

This is equivalent to that the sequence d(z,,z) — 0.

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and z,, is a
sequence in X, then we say that z, is a Cauchy sequence if for all € > 0, there exists an IV,
such that if m, n > N, then

d(zpm, x,) < €.

Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence.

Proof. So suppose that z, € X is a sequence and z,, — x. Given € > (0, convergence means
that there exists IV such that if n > N, then d(z,z,) < §. If both m, n > N, then we have
by the triangle inequality that

d(l‘m,l‘n) < d(l’m,l’) + d(x,xn) < % + % —c.

This show the theorem. O

The converse is not always the case: If X = (0,1) C R with d(z,y) = |z — y|, then the
sequence ,, = % is a Cauchy sequence but since 0 is not in X, it is not convergent. We
sometimes express this by saying that in this case X is not Cauchy complete.
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A metric space is said to be Cauchy complete if every Cauchy sequence is convergent.

Definition: (metric) ball. If (X, d) is a metric space, € X and r > 0, then
By(x) ={y € X |d(z,y) <r}

is said to be the ball with center x and radius 7.

Definition: Bounded subset. If (X, d) is a metric space and A C X, then we say that A is
bounded if A is contained in some metric ball B,(z).

Theorem: In a metric space (X, d) any Cauchy sequence is bounded.

Proof. Suppose that z, is a Cauchy sequence. By definition of a Cauchy sequence, there
exists some N such that if m, n > N, then

d(xp, Tm) < 1.
Set
r=14+max{d(zn,z;) |1 < N}.
We claim that
{z,} C B.(zn).

Since r > 1 and d(zy, z,) < 1 for n > N we only need to see that z,, € B.(zy) for n < N.
This follows from that d(zy,x,) < r when n < N by definition of r. O

Bolzano - Weirstrass theorem: Any bounded sequence of real numbers have a convergent
subsequence. This theorem does not hold for a general metric space but it holds if the metric
space is compact. To discuss this we need the notion of what an open subset of a metric
space is.

Definition (Open subset): Let (X, d) be a metric space. We say that O is an open subset
of X if for all z € O, there exists an r > 0 such that B,(x) C O.

Note that () (the empty set) and X are both open.

On subsets of a set X we have the following operations.
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e Union of two or more subsets.
If U; and U, are subsets, then U; U Us is the union. So
UyuUs ={x € X |z €U orx €U, or both}.

Similarly, for union of more than two subsets.
e Intersection of two or more subsets.
If U; and U, are subsets, then U; N U, is the intersection. So

UyNUs={z € X|zeU and z € Us} .

Similarly, for intersection of more than two subsets.
e Complement of a subset U.
X \ U is all the elements of X that are not in U.

Example: X =R, A=(0,3), B=(-1,2) and C = (0,2).
AUB = (0,3).

ANB=(0,2).

X\ A= (—00,0]U|[3,00).

C C B.

Union and intersections of families of subsets

e Union of families.
If U, is a family of subsets, then U, U, is the union of all the subsets. So

Ua Uy = {z € X |z € U, for some a}.

e Intersection of families.
If U, is a family of subsets, then N, U, is the intersection of all the subsets. So

NoUs ={x € X |z €U, for all a}.

Example: X =R, U, = (—+,+), where n € N, then

n

Un U, = (-1,1) and N, U, = {0}.

Lemma: For a set X and subsets A, B we have A = B if and only if A C B and B C A.

Lemma: For a set and subset A, B and A, we have

(1) X\ (X \ A)=A.
(2) X\ UaAa = Na(X \ Ag).
(3) X\ Nada = Ua (X \ Aq).
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Proof. To prove the first of these claim that X \ (X \ A) = A we need to show two directions.
Suppose x € A, then ¢ X \ A and therefore z € X\ (X \ A). Conversely, if z € X\ (X'\ 4),
then x ¢ X \ A and therefore z € A.

To prove the second claim observe that if x € X \ U,A,, then = ¢ U, A, so x is not in any
of the A,’s. Therefore z must be in all the X \ A, and hence in the intersection of those
so x € Na(X \ Ay). This show that X \ NaA, C Nu(X \ As). To show the other direction
suppose that x € Ny (X \ An). This means that for all @ we have that © ¢ A,. Therefore,
x ¢ Uy A, and hence x € X \ (U, Ay) . This show the other direction.

Finally, to prove the third claim observe that if x € X \ N,A,, then = ¢ N, A, and so
there exists some « so that z € X \ A,. In other words, z € U, (X \ A,). This show one
direction. To see the other direction observe that if x € U, (X \ A, ), then there exists some
a so that © € X'\ A,. It follows that = ¢ A, and hence z ¢ N, A, but instead z € X \ Ny A,-
This show the other direction and completes the proof of the lemma. O

Lemma: In a metric space any ball B,(z) is an open subset.

Proof. Suppose that y € B,(x), and let s = r — d(z,y). Note that since y € B,(x) we have
that d(z,y) < r and so s > 0. We will show that Bs(y) C B,(x). To see that assume that
z € Bs(y) we then have that d(y, z) < s and so by the triangle inequality

d(z,z) < d(z,y) +d(y,x) <s+d(y,z) = (r —d(z,y)) +dy,z)="1.
This shows the claim. ]

Lemma: In a metric space if O, are open subsets, then

UaOa
is open.
Proof. See Pset. OJ
Lemma: In a metric space if Oy, --- , O, are finitely many open subsets, then
Oo,nN---NO,
is open.

Proof. Suppose that z € O;N---N0O,,, then x lies in each O;. For each 7, there exists an r; > 0,
such that B,,(z) C O;. Let r = minr;, then for each ¢ we have that B,.(z) C B,,(z) C O; so
B,.(z) is a subset of each O; and hence B,.(z) C Oy N ---NO,. This shows the claim. O

Warning: Intersection of infinitely many open subsets may not be open!!!!
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Example: X =R and for each natural number let O, be the open set O,, = (=, 1), then
N, O, ={0}.

So the intersection of these infinitely many open subsets is not open.
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Lecture 13

Definition (Closed subsets): Let (X, d) be a metric space. We say that C' is a closed subset
of X if the complement X \ C' is open.

Note that @) (the empty set) and X are both closed.

Examples:

e (0,1) is not a closed subset of R.

e {0} is a closed subset of R.

e [0,1] is a closed subset of R.

e [0,1] x [0,1] is a closed subset of R

Lemma: Let (X, d) be a metric space and r > 0, then
Ay ={yld(z,y) > r}
is open. Equivalently, B,(x) = {y|d(z,y) < r} is closed.

Proof. Suppose that y € A,, then d(y,x) > r and if we set s = d(y,z) — r, then s > 0.
Moreover, if z € B,(y), then by the triangle inequality

d(z,y) <d(y,z)+d(z,x).

So
r<r+s-— d(yaz) < d('I?y) - d(y7Z) < d(za‘T) :
This show that Bs(z) C A, and so A, is open. O

There is an equivalent way of defining closed subsets and that comes from the next theorem.

Theorem: A subset C' of a metric space (X,d) is closed if and only if for all convergent
sequences x, with all x,, in C also the limit is in C.
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Proof. Suppose first that A is closed and let x,, be a convergent sequence is A with limit x
we need to show that z € A. Since A is closed the complement is open and if z € X \ A,
then there exists some r > 0 so B,(x) C X \ A and therefore for all y € A we would have
that d(y,x) > r. This contradict that x,, — = and z,, € A.

We also need to show the converse. So suppose that A is a subset with the property that
for all sequences in A that are convergent in X the limit is in A. We will show that A is
closed or equivalent that the complement is open. If the complement is not open, then there
exists an x € X \ A such that no ball around z is entirely contained in the complement.
Therefore for each n there exists an x,, € A. This sequence converges to x which was assumed
not to be in A contradicting that A contained all limits of sequences in A and therefore the
complement must be open and A itself closed. O

For union and intersection of closed subsets we have the following:

Theorem:

e Union: If C,, is a family of closed subsets, then N, C,, is also closed.
e Intersection: If C1,--- ,C, are closed subsets, then C; U---U C, is also closed.

Proof. There are several ways of proving this. The easiest is probably straight from the defi-
nition using the operations on sets. For the first claim we need to show that the complement
of N, C, is open. Using the operations of sets we have that

X\ Mo Ca = Un(X \ ).

Since each X \ C, are open this is the union of open sets and therefore open. This shows
the first claim.

To see the second claim we argue similarly. We want to show that C; U ---U C), is closed
or, equivalently, X \ (C; U---U(C,) is open. However,

X\ (C1U---UC,) =(X\C)nN---N(X\C,),

where the last is the intersection of finitely many open sets and therefore open. This show
the second claim. 0

Warning: Union of infinitely many closed sets may not be closed!!!

Definition (Cover, open cover and finite sub-cover): If A is a subset of X, then a cover of
A is a collection collection of subsets U, of X so that

ACUU,.

We say that a U,,, -, U,, is a finite sub-cover if also {U,, }; is a cover.

If (X, d) is a metric space and all the U, are open, then we say that {U,}, is an open cover.
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Example: If X = R x R, then A, = (—n,n) x (—n,n) is an open cover of X.

Example: Note that in the example where X = R x R and A,, = (—n,n) X (—n,n) is an
open cover, then there is no finite sub-cover. On the other hand if A C R x R is bounded,
then for n sufficiently large A C A,, so for A, there is a finite sub-cover of this cover.

Definition (Compact subset): If (X,d) is a metric space and A is a subset, then we say
that A is compact if each open cover has a finite sub-cover.

Example: If (X, d) is R with the usual metric and A = (0,1), then A, = (+,1) is an open
cover of A but there is no finite sub-cover of {A,},, that covers A.

Theorem: [a,b] C R is compact.

Proof. We will show this next time. O

Theorem: If (X, d) is a metric space and A a compact subset, then A is closed and bounded.

Proof. Suppose first that A is not closed. We will show that this leads to a contradiction. If
it is not closed, then there exists a convergent sequence x,, € A with limit  not in A. Set

0u={ulde)> 1}

. By the earlier lemma these are open sets. Since U, A, = X \ {z} and x is assumed not
to be in A we indeed have that A, is an open cover of A. Since A, C A, 1 any finite cover
of A,’s would be contained in Ay for some large N but this would imply that for all y € A
we would have that d(x,y) > + contradicting that z,, € A and x,, — x. This show that the
limit z is in A.
Since A is compact,
X = UyBr@)

and each Bj(x) is open, then finitely many of these covers A. Say A C Bi(y;)U---U By (yn)-
Set r = 1+ max;{d(y1,y;)}. It follows by the triangle inequality that A C B,.(y;). Hence, A
is bounded. U

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces
that are not compact.

68



4 TOBIAS HOLCK COLDING

If (X,d) = (0,1) with the usual metric, then X is closed and bounded but it is not compact.
Here is a more illuminating example:

Example: Let X = C([0,1]) be the set of continuous functions on the unit interval [0, 1].
We equip X with the metric where

d(f, g) = max|f(z) — g(x)|.

Let f.(x) be the sequence of continuous functions on [0, 1] given by that

1 if0 <2< 25
folz) = 1—n(n+1)($—n+rl) ifﬁﬂgxg%
0 otherwise

We have the f, is a bounded sequence. After all they all lies in the metric ball By(0)
where 0 is the zero function. That is, the function on [0, 1] that is identically equal to zero.
However, the sequence f, does not have a convergent subsequence (and does not even have
a subsequence that is a Cauchy sequence). Indeed, for any m # m we have that

d(fm: fn) =1.

Note also that the (closed) ball A = B;(0) is closed and bounded but not compact. It is not
compact because for the balls U fB%( f) finitely many does not cover A. If finitely many did

cover A, then for one such ball say B% (f) infinitely many f,,’s would lie in it but any two

elements in such a ball would have distance < 1 showing that there could at most be one f,
in such a ball.

Theorem: If (X,d) is a metric space and A a compact subset, then any closed subset C
contained in A is also compact.

Proof. Let O, be a open cover of C. Since C is closed X \ C' is open and so {O,} together
with X \ C' is an open cover of A and hence finitely many of those say Oy,---,0,, X \ C
covers A. Since X \ C' contains no elements in C' it follows that C' C Oy U---U O,, and thus
C' is compact. O

Bolzano-Weirstrass theorem for metric spaces.

Theorem: If (X, d) is a metric space and A a compact subset, then any sequence in A has
a convergent subsequence.
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Proof. We will show this next time.
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Lecture 14

Definition (Compact subset): If (X,d) is a metric space and A is a subset, then we say
that A is compact if each open cover has a finite sub-cover.

Theorem 0: If (X,d) is a metric space and A a compact subset, then A is closed and
bounded.

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces
that are not compact.

Example: If (X,d) = (0,1) with the usual metric, then X is closed and bounded but it is
not compact.

Here is a more illuminating example:

Example: Let X = C([0,1]) be the set of continuous functions on the unit interval [0, 1].
We equip X with the metric where

d(f,9) = max|f(z) — g(x)].

Let f,(z) be the sequence of continuous functions on [0, 1] given by that

1 if0 <2< 45
fo(z) = l—n(n—l—l)(x—%ﬂ) ifﬁﬂgxg%
0 otherwise

We have the f, is a bounded sequence. After all they all lies in the metric ball By(0)
where 0 is the zero function. That is, the function on [0, 1] that is identically equal to zero.
However, the sequence f, does not have a convergent subsequence (and does not even have
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a subsequence that is a Cauchy sequence). Indeed, for any m # m we have that

Note also that the (closed) ball A = B;(0) is closed and bounded but not compact. It is not
compact because for the balls Uy B 1 (f) finitely many does not cover A. If finitely many did

cover A, then for one such ball say B 1 (f) infinitely many f,,’s would lie in it but any two

elements in such a ball would have distance < 1 showing that there could at most be one f,
in such a ball.

Using what we have shown in earlier lectures one can show the following:

Theorem 1: In R", a subset is compact if and only if it is closed and bounded.

In a general metric space this is not the case as the above examples shows.

We won’t show this theorem here but instead we will show a version of the Bolzano-Weirstrass
theorem for metric spaces. This is the next theorem.

Theorem 2: If (X, d) is a metric space and A a compact subset, then any sequence in A
has a convergent subsequence.

Before proving Theorem 2 we will need some results:

Lemma: Let (X, d) be a compact metric space if C,, is a family of closed (decreasing) nested
subsets. That is, closed subsets so that C,,1 C C,,. If all C,, are non-empty, then

MnCr # 0.
Proof. Set O, = X \ Cy, then each O, is open. If N,C, # (0, then
U,Op = X .

Therefore, finitely many of the O,’s cover X by compactness. Denote these by O; for
1=1,---,k. Since

O1U---UO0,=X
it follows that

Cin---NCy=90.
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However, by the nested property one of these k closed subsets is the smallest, say C) and
therefore C7 N --- N Cy = C%. Contradicting that the intersection is empty. 0J

Before stating the next results recall that in a metric space (X, d) the set B.(x) = {y €
X |d(z,y) < r} is closed and is referred to as the closed ball. The above lemma gives the
following useful corollary:

Corollary: Let (X,d) be a compact metric space and suppose that B,, (x,) is a family of
balls with centres z,, and radii r,, > 0, where r, = 0 and B,, ,(2n41) C B,, (z,). Then

By, (z,) = {2} .
That is, the intersection is non-empty and consists of a single point.

Proof. Set
A=n,B,, (x,).
Observe first that for each n we have that x, € B, (x,) so from the lemma above we have

that A is non-empty. We claim that A consists of just one element. Suppose that z, y € A,
for any integer n we have that

T,y € By, (),
and so by the triangle inequality

d(z,y) < d(z,z,) + d(xn,y) <1+ 10 =27,

Since this holds for all n we see that d(z,y) = 0 and so there is at most one such point. [

Proof. (of Theorem 2.) Suppose that x, is a sequence in a compact subset A of a metric
space. Fix r > 0 and write

A CCEEA BT($) .

Since A is compact finitely many of these cover A. This means that in one of these balls,
say B, (y1), there are infinitely many x,’s. From here on and out we will focus on this ball.
Since AN B,(y) is a closed subset of a compact set we can now cover B,(y) by balls of radius
. By compactness finitely many of these sub-balls cover the ball B,(y). In one of those
sub-balls there are also infinitely many x,’s. Fix such a sub-ball and call it Bﬁ (y2). We have

that
Bz (y2) C Bar(y1)

and that infinitely many x,,’s belongs to B%(yg). If the original r = 1 gives after repeating
this process i times balls By-i(y;) so that

-+ C Bog1-i(yi) C -+~ Boy—1(y2) C Ba(y1).
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where each of these balls contains infinitely many elements from the original sequence. Since
the radii of this sequence converges to zero this sequence satisfies the assumptions of the
corollary we have from the corollary that

ﬂB241—i(yl‘) = {ZE}
Moreover, we can pick a subsequence x,, of the original sequence such that
’Ink - BQ417k (yk) .
It follows that this subsequence converges to x. 0
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Lecture 15

Definition: If f : R — R is a function, then we say that f is differentiable at xzq if the limit
1o @) = flwo)
T—T0 r — 2o

exists. (Note that in this fraction z is assumed to be # z.) When the limit exists, then we
say that the function f is differentiable at zy and that its derivative at z( is the limit. In
this case we denote the derivative at zq by f'(xg).

Examples:

(1) Constant functions. Suppose that f(z) = ¢ for some constant ¢ € R, then

f@) = fla) _e—c

T — 2o T — 2o

It follows that the limit exists and is zero and so f is differentiable at all points and
the derivative is zero.
(2) Linear functions. Suppose that f(z) = x, then
fl@) = flzg) -9

= :1.
T — Xo T — X

It follows that the limit exists and is one and so f is differentiable at all points and
the derivative is one.

These are just two examples where we computed the derivative directly from the definition.
How do we compute the derivative of a general function?

For that there are some tools:

e Sum rule.

e Product rule.
e Quotient rule.
e Chain rule.
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Once we know how to compute the derivative of a function, then we would like to understand
the function using information about its derivative. For that we have the following tools:

e Mean value theorem.
e [’Hopital’s rule.
e Taylor expansion.

Before getting to how to use the derivative we need to be able to compute it. For that it
will be useful to note the following;:

Lemma: If f is differentiable at xg, then f is continuous at z.

Proof. Since f is differentiable at zy, we have that

fz) = fzo)

r — Xy

— f/(ZL'()) .
Therefore, there exist d; > 0 such that if |x — x| < d1, then

f(@) = f(xo)

T — 2o

— f/(ZL‘Q) <1

or, equivalently,
|f(x) = f(w0) = f'(20) (2 — w0)| < |2 — 0.
Therefore, for |z — x¢| < ; we have
|f(x) = fzo)] < (If'(xo)| + 1) |2 — 0] -

Given € > 0, set

€
§=min 6, —— L
{ 1 |f’($o)|+1}
It follows that if |z — x¢| <, then
|[f(2) = f(xo)| <e.

This show that f is continuous at xg. 0

Example: On the real line suppose that f is the function given by that f(0) = 0 and for
all other x

flz)==x sin;.

This is an example of a function that is continuous at zero but not differentiable at zero.
It is not differentiable at zero because it fluctuate too much near zero. To see that it is
continuous at zero we will use that |sint| < 1 for all ¢. Indeed using that it is easy to see
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that f is continuous at zero. Next we will see that it is not differentiable at zero. To see
that we look at the difference quotient
f(:v)—f(O)_xsin%—O 1

= = sin — .
z—0 z—0 T

As £ — 0 this function fluctuate between —1 and 1 so it does not have a limit and therefore
the original function f is not differentiable at zero.

Example: If we dampen the fluctuation of the function given in the previous example
further, then we get a differentiable function at zero even if it still fluctuate but just not as
much. This is done in the following example. Suppose that f is the function that is given
by that f(0) = 0 and for all other x

1
= 2 G —
f(x) = 2” sin =
Again we form the difference quotient
f0)=J0) a0 1
x—0 x—0 x

In this case we see that as x — 0, then x Sin% — 0 and so the function is differentiable at
zero and the derivative there is zero.

The following is very useful to compute the derivative of many functions:

Theorem: If f, g are functions on R that both are differentiable at xy, then
e (Sum rule.)
(f +9)(x0) = f'(20) + ¢'(20) -
o (Leibniz’s rule.)
(f 9)(zo) = f'(z0) g(z0) + f(z0) g'(20) -
e (Quotient rule.) If also g(zg) # 0, then
<i>’ _ J"(@o) g(xo) — f(20) g' (o)
(o) = 2 :
9 9*(o)
Proof. To prove the sum rule consider the difference quotient

This show the sum rule.
To prove the Leibniz rule we form the difference quotient

(f 9)(x) — (f 9)(x0)

T — T ’

77



4 TOBIAS HOLCK COLDING

We rewrite this using a trick we have used before in other settings. Namely, we can write
this as

(f9)(x) = (f9)(xo) _ f(x)g(x) = f(x) g(wo) + f(x) g(x0) — f(x0) g(w0)

r — g r — X9

= flay 2 ZI0) TEVZ TG0 ) s ) g )+ () o).
r — X T — 2o
(Here we used that by the continuity lemma above f(x) — f(x¢).) This proves Leibniz’s
rule.
Finally, to prove the quotient rule we observe first that since g is differentiable at xq it is
continuous at xy and therefore (since g(z) # 0) when x is close to xy we have that g(x) # 0.
Moreover, we have that

66~ 568 _ F@)gle) — [(xo) o()
T — o (z — o) g() g(o)
f(x) g(xo) — f(x0) g(wo) N f(@o) g(wo) — f(wo) g()
(z — 0) g() g(0) (z — m0) g(7) g(0)
1 f@) - f@) | f) glx) —g(a)
g9() T — To 9(x) g(zo) T —x0
f'(xo) | f(x0) g'(20)
9(o) - 9?(zo)
From this the claim easily follows. 0

Leibniz’s rule is named after Gottfried Wilhelm Leibniz (1646 - 1716). Leibniz [from
Wikipedia] was a German polymath active as a mathematician, philosopher, scientist and
diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition
to many other branches of mathematics, such as binary arithmetic and statistics. Leibniz has
been called the ”last universal genius” due to his vast expertise across fields, which became
a rarity after his lifetime with the coming of the Industrial Revolution and the spread of
specialised labor.

Theorem: (Chain rule.) If f : [a,b] — [c,d] and g : [¢,d] — R are functions, where
f is differentiable at xo and ¢ differentiable at yo = f(x¢), then the composition g o f is
differentiable at xy and the derivative at zg is

(g0 f)(w0) = g'(vo) f'(w0) -

Proof. Set y = f(z) and yo = f(x¢). Assume first that f'(xq) # 0. In this case for z # xg
but close to xg we have that y # yo and we can write the difference quotient as follows. We

have that
g(f(r)) —g(f(x0))  g(y) — g(yo) f(z) — f(x0)

T — Xo Y—1Y T — To
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Since f is differentiable at g as © — zy we have that

f<$> — f(ﬂfo) N f/(xo) )

r — Xy
Moreover, when z — xy we have that f(z) = y — f(x9) = yo by the continuity lemma

above. It follows that when x — zy we have that
9g\y) — gy
9) = 9(a0) — ¢ (%0) -
Y—%Y%

Combining this gives that

9(f(@)) = 9(f(20)) _ 9(y) —g(vo) f(x) = f(z0) | J o) F(z0)
T —To Y—Y T = To

This proves the chain rule when f’(z¢) # 0. When f’(z9) = 0 we argue as above but have
to be more careful as in this case we can have that y = yy even when = # x,. For x where
y = 1o the difference quotient is zero and where y # 1y, we can argue as above and rewrite
the difference quotient as the product of two factors. In either case we get that the limit is
zero proving the remaining case of the chain rule. 0

Lemma: Let f : [a,b] — R be a differentiable function and suppose that a < xy < b and
that f has a local maximum or minimum at x(, then

f/(I()) = 0 .

Proof. Suppose that xg is a local maximum. The proof when zy is a local minimum. It
follows from the assumption that for all x near zg

f(x) = f(xo) <0.
Therefore, when = > xy we have that

f(@) — (o)

T — TIg

<0

- )

whereas when = < xy we have that for the difference quotient

) = flao)

r — T

>0.

Since the limit is the same whether = converges to xy from the the left (negative side) or
from the right (positive side) it follows that f’(z) = 0 as claimed.
O

Theorem: (Rolle’s theorem.) Let f : [a,b] — R be a differentiable function with f(a) =
f(b), then there exists a xy between a and b such that

f/(l’o) = 0 .

Proof. There are three cases to consider:

79



6 TOBIAS HOLCK COLDING

(1) f is constant equal to f(a).

(2) For some = between a and b we have that f(z) > f(a).

(3) For some = between a and b we have that f(z) < f(a).
In the first case the function is constant and the derivate is zero everywhere. The second
and third cases are similar so we will just argue in the second case. In the second case by
the extreme value theorem there exists some zg such that f(xy) = max f > f(a). It now
follows from the previous lemma that f'(zq) = 0. O

Theorem: (Mean value theorem.) Let f : [a,b] — R be a differentiable function, then there
exists a o between a and b such that

Proof. Consider the function g given by
f(b) — f(a)

g(x)Zf(ﬁ)—ﬁ(ﬁ—a)'
Observe that for g we have g(a) = ¢(b) and so Rolle’s theorem applies and we have that
0.

there exists some xy where ¢'(z¢) = 0. Since
f(b) — f(a)
/ . !/ _ s NS ST
g() = fie) - 1O
the claim follows. d
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Lecture 16
Last time we defined what it means for a function to be differentiable. This is the following:

Definition: If f : R — R is a function, then we say that f is differentiable at z if the limit
o 1) = f)
T—x0 Tr — IO

exists. (Note that in this fraction z is assumed to be # z.) When the limit exists, then we
say that the function f is differentiable at zy and that its derivative at z( is the limit. In
this case we denote the derivative at zo by f'(x).

One of the first things we showed about differentiable function was that they are continuous:
Lemma: If f is differentiable at xg, then f is continuous at xg.

We also established some very useful rules for computing the derivative of functions that are
constructed from other functions whose derivative we know:

Theorem: If f, g are functions on R that both are differentiable at z(, then

e (Sum rule.)
(f +9) (x0) = f'(z0) + g'(x0) -
e (Leibniz’s rule.)
(f 9)(zo) = f'(z0) g(x0) + f(20) g (20) -
e (Quotient rule.) If also g(zg) # 0, then

<f>/ (20) = f'(z0) 9(xo) — f(20) g'(0)

g 92(x0)
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Finally, for the composition of functions we have the chain rule:

Theorem: (Chain rule.) If f : [a,b] — [c,d] and g : [¢,d] — R are functions, where
f is differentiable at zy and ¢ differentiable at yo = f(zo), then the composition g o f is
differentiable at xy and the derivative at zg is

(go f)(w0) = g'(vo) f'(w0) -

Now that we know how to compute the derivative of many functions we will be interested
in using the derivative to describe the growth or decay of a function. The first step towards
this is the next lemma.

Before stating it recall that a function f : R — R has a local maximum at z, if there exists
a 0 > 0 such that

i = max y
f< O) [:t076,x0+5] f

and similarly for a local minimum.

Lemma: Let f : [a,b] — R be a differentiable function and suppose that a < xy < b and
that f has a local maximum or minimum at xg, then

f/(l'o) = 0 .

Proof. Suppose that xg is a local maximum. The proof when z; is a local minimum is similar.
It follows from the assumption that for all x near x

f(x) = f(zo) <0.

Therefore, when x > xy we have that
fla) = fan) _

r — T
whereas when = < xy we have that for the difference quotient

) = flao)

T — X

>0.

Since the limit is the same whether = converges to xy from the the left (negative side) or
from the right (positive side) it follows that f’(z) = 0 as claimed. O

We can now use this lemma to establish the following very useful result:
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Theorem: (Rolle’s theorem.) Let f : [a,b] — R be a differentiable function with f(a) =
f(b), then there exists a xy between a and b such that

f(x9) =0.
Proof. There are three cases to consider:
(1) f is constant equal to f(a).
(2) For some = between a and b we have that f(x) > f(a).
(3) For some = between a and b we have that f(z) < f(a).
In the first case the function is constant and the derivate is zero everywhere. The second
and third cases are similar so we will just argue in the second case. In the second case by

the extreme value theorem there exists some zg such that f(xy) = max f > f(a). It now
follows from the previous lemma that f'(zq) = 0. O

Rolle’s theorem can then be used to show both the mean value theorem and the Cauchy
mean value theorem:

Theorem: (Mean value theorem.) Let f : [a,b] — R be a differentiable function, then there
exists a g between a and b such that

f(b) — f(a)
/ R—
f o) = b—a
Proof. Consider the function ¢ given by
f(b) — fla
o) = fa) - 0T (),

—a
Observe that for g we have g(a) = g(b) and so Rolle’s theorem applies and we have that
there exists some xy where ¢'(x¢) = 0. Since

f(b) = f(a)

/ . !/ .
g() = () - =1

the claim follows. O

Theorem: (Cauchy mean value theorem.) Let f, g : [a,b] — R be differentiable functions,
then there exists a xy between a and b such that

f'(x0) l9(b) = g(a)] = g'(x0) [f (b) — f(a)].
In particular, if g(b) — g(a) # 0, then
f'(xo) _ f(b) — f(a)

g (wo)  g(b) —g(a)
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Proof. Consider the function

h(z) = f(2)[9(b) = g(a)] = g(x) [f(b) = f(a)].
Note that
h(a) = f(a)[9(b) = g(a)] = g(a) [f(b) = f(a)] = f(a) g(b) — g(a) f(b).
h(b) = f(0) [9(b) — g(a)] — g(b) [F(b) — f(a)] = f(a) g(b) — g(a) f(D).
Therefore, by Rolle’s theorem, there exists zg between a and b such that h'(x¢) = 0. Since
W(x) = f'(x)[g(b) — g(a)] = g'(x) [£(b) — f(a)]

this shows the claim. OJ

We observe that the Cauchy mean value theorem implies the earlier mean value theorem.
Namely, if we let the second function g be g(z) = z, then ¢’'(x) = 1 and ¢(b) — g(a) = b — a.
Therefore, the Cauchy mean value theorem becomes

f'(@o) (b—a) = ['(z0) (9(b) — g(a)) = ¢'(x0) (f(b) — f(a)) = f(b) — f(a),

which is the earlier mean value theorem.

The next two rules are useful to establishing the limit of a faction of function when the
denominator either tend to zero or infinity.

Theorem: (L’Hopital’s rule, version 1.) Let f, g : (a,b) — R be differentiable functions
with g(z) # 0 and ¢'(x) # 0 for all x, assume that

lim f(z) = lim g(z) = 0.
If /
@
z—a g'(x)
/
lim M = lim f,(x) :
Tr—a g(.I) r—a g (I‘)
Proof. We will see that this is an easy consequence of the Cauchy mean value theorem. By
assumption given € > 0, there exists ¢ > 0 such that if a < x < 9, then

f'(x)

g'(z)
By the Cauchy mean value theorem we have for any y with a < y < x that there exist z
with y < z < x so that

exists, then

—L <e.
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We therefore have that

fa) i),
9(x) —g(y)
By letting y — 0 we see that
M — L <e.
9()
Since this holds for all € we get that
im 1) _
z—a g(z)
as claimed. U

Theorem: (L’Hopital’s rule, version 2.) Let f, g : (a,b) — R be differentiable functions
with g(z) # 0 and ¢'(x) # 0 for all x, assume that

lim f(z) = lim g(z) = oo

If
lim f/ (z)
z—a ¢' (1)
exists, then
lim _f(x) = lim f(z)

r—a g(x) T—a g’(gj) '

Proof. Given € > 0, since % — L as as ¢ — a we have that there exists a 6 > 0 such that
ifa<x<a+ 26, then

f'(z)
g'(x)
Set 1 = a + 0. For a given x € (a,x;), there exists x¢ € (x,z1) such that
[lan) _ J) - f()
g(xo)  g(z1) —gla)

—L <e.

It follows that

f(z1) — f(=) _ I <e.
g(@1) — g(x)
By dividing the nominator and denominator of the fraction in this expression by g(z) we get
flx)  flz1)
9(z) glz) L <e¢
1— g(z1) )
9(z)
This implies that
f(z) _ f(z1) 1 (1 _ 9(1’1)) <€ (1 _ 9(531))
g(x)  gla1) 9(x) 9(x)
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Since this holds for all € (a,a + J) and g(z) — 0o as © — a we have that for x > a but
sufficiently close to a that

=2 [ <e€
g(x) B
Since this holds for all € we see that
lim _f(:v) =1L
r—a g(m)
This proves the claim. 0

Finally, we have the following key fact that show that any differentiable function can be
approximated by a polynomial and give a way of estimate the difference between the function
and the approximating polynomial.

Theorem: (Taylor expansion.) Let f : [a,b] — R be a function and k a positive integer.

Assume that f, f/, f® ... f*=1 exists on [a, b] and are continuous and that f*) is defined
on (a,b), then there exists ¢ between a and b such that
2 (k=1)
10 = @+ 1@ -0+ T om0 S 0 0
F®(e) k
b
+ ) (b—a)
Proof. Define the Taylor polynomial by
(2 (k=1)
Ple) = f(@) + @) (o =)+ T om0 TS o o

and define a number M by that

F(b) = P(O) + 2 (b — )

k!
We want to show that there exists some ¢ between a and b such that
M = f®(c).

To do that we set
M
R(x) = f(z) = P(z) = 75 (x = a)".

We have that R(a) = R(b) = 0 and so by Rolle’s theorem, there exists some ¢; between a and
b with R'(c;) = 0. Next observe that R'(a) = R'(c;) = 0 and so again by Rolle’s theorem,
there exists ¢, between a and ¢; with R®(cy) = 0. Since RV (a) =0 fori =0,--- k-1
we can continue this process k times and find some ¢ = ¢, such that R*)(c) = 0. However,
0= R®(c) = f*(c) — M Therefore, M = f*)(c) as claimed. O
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Lecture 17

Recall that last time we showed the Taylor expansion theorem:

Theorem: (Taylor expansion.) Let f : [a,b] — R be a function and k a positive integer.
Assume that f, f/, f@ ... f*=1 exists on [a, b] and are continuous and that f*) is defined
on (a,b), then there exists ¢ between a and b such that

f®(a)
2

k=1)(g,
f ( ) (b— a)kfl

(b—a)*+- + =)

fb) = f(a) + f'(a) (b —a) +

Question: One naturally wonders how well does this polynomial approximate f when x is
near a?

Answer: This depend on the value of the remainder

f® (¢
= k‘( ) (x —a)*.
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Example 1: Suppose that f(z) = e® so f*)(z) = f(z) for all k. This means that the Taylor
expansion near a = 0 becomes

k=1
x
Pk,l(:c) = i:EO J .
By the Taylor expansion theorem we have that
f®e)

f(x) = Pe_y(x) + "

k!
Since f®¥)(z) = f(z) for all k, it follows from the Taylor expansion theorem that we have

||

F(@) = Pa(@)] < -

We conclude that for k£ large the polynomial P._; gives a pretty good approximation to f.
For instance, if |z| < 1, then we have that

|f(z) — Po_y(z)] < %

Example 2: On R define a function f by

f(gj):{o if 2 <0

_ 1 )
e 2 otherwise

It is easy to see that f is infinitely differentiable and that f*)(0) = 0 for all k. It follows
that for all k£ the Taylor polynomial at 0 is P,_; = 0. Thus in this case f(x) = Rg(z).

Riemann integrals

Partition: Let [a,b] be an interval. A partition P of the interval [a,b] is a number of
sub-divisions z; such that

Aa=Tg< T <A< --<x,=>.

The partition is then the sub-intervals [z;_, z;]. We will set Az; = 2; — 2.

Upper and lower sums: Suppose now that f : [a,b] — R is a bounded function and that
P = {x;} is a partition of the interval [a,b]. We define upper and lower sums as follows. Set

Mi: sup f>
[25—1,24]

m; = inf f,
[ —1,24]
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and upper U(f,P) and lower sums L(f,P) by

U(f,P) :ZMi Ay,
i=1

L(f,P):imiAxi.

Example 3: Suppose that the function is f(z) = 2 + 1 on the interval [—2, 2] and that the
partition is P is {—2,—1,0, 1,2}. We have

my=2and M; =5,
me =1 and My = 2,
ms=1and Mz =2,
my=2and My, =5.
For the lower and upper sums we have
L(f,P)=2+14+1+4+2=6,
U(f,P)=5+2+2+5=14.

The following lemma is immediate (from that M; > m;):

Lemma 1: We always have that

U(f,P) =z L(f,P).

Sub-partition: Let [a,b] be an interval and P; and P, two partitions of the interval [a, b].
We say that P, is a sub-partition (or refinement) of P; if all the dividing points in P; are
also in P; (and then presumable some additional dividing points).

Example 4: Suppose that the interval is [—2,2] and the given partition P; is
{-2,-1,0,1,2}.
Then the partition
1 1
=4¢—2,—-1-,-1,0,=,1,2
PZ { ) 27 ) a27 ) }

is a refinement (or sub-division) of P;. Indeed, P, has the same dividing points as P; in
addition to some more.
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We now have the following:

Lemma 2: Suppose now that f : [a,b] — R is a bounded function and that P, is a partition
of the interval [a, b] and P, is a refinement of Py, then

L(f,P1) S L(f,P2) SU(f,P2) SU(f,Pr).

Proof. The middle inequality is the previous lemma. The inequality to the right follows from
that if Py is a subdivision of P;. Namely, suppose that a = x¢o < 21 < --- < x,, = b are the
dividing points for P; and that between say z;_; and x; there is an extra dividing point in
Py say y so x;—1 <y < x;, then we have

sup f < M;
["Ei—l’y}

and
sup f < M;
[y’ri]

SO

[ sup f](y —x1) + [sup f] (zi —y) < M; Aw;.

[i—1,y] [y,z]

From this it follows easily that
U(.fa 732) S U(fv 731) :
Similarly, for the inequality to the left. ([l

Upper and lower integrals: Suppose now that f : [a,b] — R is a bounded function.
Define the upper Riemann integral of f by

T b
/afdx:i%fU(f,P).

Here the infimum is taken over all partitions of [a, b]. Likewise, we define the lower Riemann
integral by

b
/fd:z::supL(f,P).
L P

Riemann integral: Suppose that f : [a,b] — R is a bounded function, then we say that f

is Riemann integrable if
b b
/ fdx = / fdx.
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If the function is Riemann integrable, then the Riemann integral is

/abfdx:ffdx:/abfdx.

The Riemann integrable functions is denoted by R ([a, b]).

From Wikipedia: Georg Friedrich Bernhard Riemann (1826 — 1866) was a German math-
ematician who made profound contributions to analysis, number theory, and differential
geometry. Riemann held his first lectures in 1854, which founded the field of Riemannian
geometry and thereby set the stage for Albert Einstein’s general theory of relativity. In the
field of real analysis, he is mostly known for the first rigorous formulation of the integral,
the Riemann integral, and his work on Fourier series. His contributions to complex anal-
ysis include most notably the introduction of Riemann surfaces, breaking new ground in
a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting
function, containing the original statement of the Riemann hypothesis, is regarded as a foun-
dational paper of analytic number theory. He is considered by many to be one of the greatest
mathematicians of all time.

Example 5: Let f :[0,1] — R be given by

fx) =

1 otherwise

{0 if 2 €0,1]NQ

For this function and all partitions P we have that
L(f,P)=0and U(f,P)=1.

Thus, f is not Riemann integrable.
We will be interested in the questions: ”What kind of functions are Riemann integrable?”
. and "How do we compute the integral?”

The answer to the second question will be the fundamental theorem of calculus. This will
be the topic of a later lecture.
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Lemma 3: Suppose now that f : [a,b] — R is a bounded function, then f € R ([a,b]) if
and only if for all € > 0, there exists a partition P such that

U(f,P)—L(f,P) <e.
Proof. Suppose that f € R ([a,b]), then

b )
s%pL(f,P):/ifdx:/afdx:i%fU(f,P).

This means that given ¢ > 0, there exists partitions P; and P, such that

b €
[ rdo—5 <Py
and

b
qu%yg/mfmw%g.

Let P be the partition that has all the dividing points of both P; and P,. So P is a refinement
of both P; and P,. It follows that

€

b b
[ tas-5 <14 Py LGP SUGP <UG P < [ fane s

2

This proves the claim.
To see the converse, suppose that for some € > 0, there exists a partition P such that

U(f,P)—L(f,P) <e.

Since ,
L(.P) < [ fao
and _ o
b
/fMSU@P)
we have that L '
b b
/fdac—/fda:SU(f,P)—L(f,P)<€.

Since this holds for all € > 0 we get the claim. O

We now get to a key theorem that gives a simple criterium for a function to be Riemann
integrable:

Theorem: Any continuous function on [a,b] is in R ([a, b]).

Proof. We will show this next time once we have shown that a continuous function on a
closed and bounded interval is, in fact, uniformly continuous. [l
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The proof of this theorem needs the following key concept.

Definition: Uniformly continuous. Suppose that f : I — R is a function, where I is an
interval. We say that f is uniformly continuous if for all € > 0, there exists a 6 > 0 such that

|f(x) = fy)l < eif |z —y| <0.
Note that being uniformly continuous is stronger than being continuous. It means that for
a given € > 0, the same ¢ can be used for all x.
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Lecture 18

Definition: Uniformly continuous. Suppose that f : I — R is a function, where I is an
interval. We say that f is uniformly continuous if for all € > 0, there exists a 6 > 0 such that

|f(z) — fly) <eif |Jx —y| <§.

Note that being uniformly continuous is stronger than being continuous. It means that for
a given € > 0, the same d can be used for all x.

Example 1: Suppose that

flz) =2
on R, then f is NOT uniformly continuous. To see this, let € > 0 be given if f was uniformly
continuous, then there would exists 6 > 0 such that

flx+0) = f(z) <e,
for all . This would mean that
20 < (z+0)*—2? <e

for all x, which is clearly not the case.

Example 2: Suppose that

on (0,1], then f is NOT uniformly continuous. To see this, consider x,, = % and y, =

then

1
2n’

[f(@n) = fyn)| =7

and
1
|xn - yn| <-—.
n

From this it easily follows that f is not uniformly continuous.

Theorem 1: Any continuous function on [a, b] is uniformly continuous.
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Proof. Suppose not; then there exists € > 0 such that for all n > 0, there are z,, and y,, with

1
|Tn — Yn| < —
n

and so that
|f(xn) = f(yn)| = €.

Since the interval [a, b] is compact we can choose a subsequence of z,, say z,, so that
T, — T .

Since
|x _ynk‘ < |‘T _:L.nk‘ + ‘xnk - ynkl

we have that y,, — z as well. Since f is continuous we have that f(z,, ) — f(z) and
f(yn,) — f(x). However, this contradict that

’f(xnk - f(ynk)| > €,

We now get to a key theorem that gives a simple criterium for a function to be Riemann
integrable:

Theorem 2: Any continuous function on [a, b] is in R ([a, b]).

Proof. Given € > 0, since f is uniformly continuous by Theorem 1 it follows that there exists
d > 0 such that if |z — y| < ¢, then

F@) = f) < 5

Let P be a partition so that for all # we have A x; < 9, then on each interval of the partition
of the form [z;_1, x;] we have that

€

_a‘

€
It follows that

= [MZ—mZ]AxZ< ¢ AZEZ'ZE.
, b—a <

Since this holds for all € > 0 we have that f is integrable. 0

Basic properties of integrals.
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Theorem 3: We have the following basic formulas for integrals:
(1) If f € R(Ja,b]) and ¢ € R, then ¢ f € R ([a,b]) and

flpsa=ef ras

(2) If f, g € R([a,b]), then f + g € R (|a,b]) and

b b
/(f—l—g)d:z:: fda:—l—/gd:c.
(3) If f, g € R([a,b]) and f < g, then

b b
/fdxg/gdx.

(4) If f € R(Ja,b]) and ¢ € (a,b), then f € R ([a,c]) and f € R ([c,b]) and

/acfdx+/cbfdx:/abfdx.

Proof. The first claim follow from that if P is a partition, then
L(c f,P) = cL(f,P)

and
Ulcf,P)=cU(f,P).

To prove the second claim. Given € > 0, let P; and P, be partitions so that

U(f.Py) = L(L.Py) < 5
and

Ulg.P) = L{g. P2) < 5.

Let P be the partition that has the combined dividing points of P; and P,. It follows that

and .
U(g,P) - Lo, P) < 5.

Therefore,
Ulf+9.P) = L(f +9.P) < 5+5 =¢

From this the second claim follows.
To see the third claim let P be any partition of [a, b]. It follows that

U(g,P) <U(f,P).

Since ,
/ gdr = i%fU(g,P)

and likewise for f the claim now follows.
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Finally, to see the fourth claim. Let P be any partition of [a, b] and let Py be the refinement
of P that in addition to the dividing points of P also have ¢ as a dividing point. It follows
that

U(f7 7DO N [CL, C]) + U(f? 7DO N [07 b]) = U(f? 7)0) :

Likewise,
L(f,PoNla,c]) + L(f,Po N [c,b]) = L(f,Po) -
Therefore,
U<f7 PO N [CL, C]) - L(fa 730 N [CL, C]) + U<f7 730 N [67 b]) - L(fa 730 N [67 b])
=U(f,Po) = L(f, Po) -
From this the fourth claim easily follows. 0

Corollary: Suppose that f, |f| € R ([a,b]), then

/fdx </ If] dz .

Proof. This follows from the lemma since f < |f| and —f < |f|. Namely, from the first of
these inequalities together with the lemma we get that

/abfdxé/ab|f|dw,

whereas from the second we get that

—/abfdx:/ab(—f)dxé/ab|f|d$-

Together these gives the claim. O

Fundamental theorem of calculus, version 1: Let f be a continuous function on |[a, b]
and define F' on [a, b] by
- [ ss)as

The function F' is differentiable with derivative f.
Proof. Fix zy € [a,b] and assume first that x > z,. We then have that

/f ds-/f ds+/f )ds = F(xg) /f
Fm—ﬂmzéy@w

(x —xp) min f < F(z) — F(x) < (z — xp) max f

[zo,x] [zo,x]

It follows that

Therefore,
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and hence
< —F(x) — F(zo) < max f.

min f <
[zo,x] T — X [zo,x]

Since f is continuous at xg as * — xy both the left and right hand side of this string of
inequalities converges to f(zg). This proves the claim when x > xy. When x < zy we can
write F(z) as

Fz) + / " F(s)ds = Flay).
Therefore,
F(x)—F(mO):—/ f(s)ds.

Arguing as above gives the claim also in this case. 0

Fundamental theorem of calculus, version 2: Suppose that F : [a,b] — R is differen-
tiable and that F' = f € R ([a,b]), then

F(b)—F(a):/ f(s)ds.

Proof. Since f is integrable, then for all € > 0, there exists a partition P of [a, b] such that

For a given partition P with dividing points x; we have

L(fa P) = Zmi (ZEz - in—l) )

U(f,P) =) M (z; — i),
Moreover, by the mean value inequality Z
F(x;) = Flxio1) = f(yi) (@ — @) -
We now have that
m; (2, — xim1) < Fa;) — Fzioq) < M (2 — 1) .
It follows that

n

L(f,P) <) [F(z:) = Flaio)] U(f,P).
i=1
Finally, the claim follows from the above by observing that

n

F(b) = Fla) =) _[F(x;) = F(ai)]-

i=1
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1
/xzdx,
0

we use the second version of the fundamental theorem of calculus. Namely, observe that the
derivative of the function

Example 3: To compute

is 22 and therefore, by the second version of the fundamental theorem of calculus we have
that

/Oxzdm:F(l)—F(O):g—0=§.
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Lecture 19
Question: What kind of functions are integrable?
Theorem: Any continuous function on [a,b] is in R ([a, b]).
Basic properties of integrals.

Theorem: We have the following basic formulas for integrals:
(1) If f € R(Ja,b]) and ¢ € R, then ¢ f € R ([a,b]) and

/ab(cf)dx:c/abfd:p.

(2) If f, g € R([a,b]), then f + g € R ([a,b]) and

/ab(f—l—g)d:c—/abfdxjt/abgdx.

(3) If f, g € R([a,b]) and f < g, then

b b
/fdxg/gdx.

(4) If f € R([a,b]) and ¢ € (a,b), then f € R ([a,c]) and f € R([c,b]) and

/acfder/cbfdx:/abfdx.

Corollary: Suppose that f, |f| € R ([a,b]), then
b b
[ rar < [ipia
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Fundamental theorem of calculus, version 1: Let f be a continuous function on |[a, b]
and define F' on [a, b] by

Flz) = / F(s)ds.

The function F' is differentiable with derivative f.

Fundamental theorem of calculus, version 2: Suppose that F : [a,b] — R is differen-
tiable and that F' = f € R ([a,b]), then

b
F(b)—F(a):/ f(s)ds.

Application of integrals: arclength.

Suppose that f and ¢ : [a,0] — R are differentiable functions and their derivatives are
continuous, then we define the arclength of the curve

s = (f(s),9(s))
by

b
L= / VIR T (@) ds.

Example 1: Suppose that f(s) = s and g(s) = s%, then f' =1 and s’ = 2s. Therefore, the
arclength of the curve (s, s?), where s € [0, 1] is

1 1
L:/ \/1+(23)2ds:/ V1+4s2ds.
0 0

Improper integrals.

Unbounded interval.

Suppose that f € R([a,b]) for all b > a. If

lim / ’ ) de

b—o0
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exists, then we say that the improper integral
| rayas

00 b
/ f(x)de = bli)m f(z)dx

exists and that

Example 2: On [1,00), set

then

€1 ik 1
1 T x], c

Since —% +1— 1 as ¢ — oo, the improper integral

exist and is equation to 1.

Example 3: On [1,00), set
then
The improper integral

does not exist.

Unbounded function.

Suppose that f € R([c,b]) for all ¢ > a. If

b
lim [ f(x)dx

c—a c

exists, then we say that the improper integral
b
| reyas
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exists and that

b b
/ f(z)de =lim [ f(z)dz

c—a c

Example 4: On (0, 1], set

then
/ —dx— 2V7]. =2-2vc.

Since 2 — 24/c — 2 as ¢ — 0, the improper integral exists and is equal to

|
—dx =2.
|

Example 5: On (0, 1], set
1
flx) =—,

T
then
"1
/ —dx = [logz]} = —logec.
.

Note that —logc — 0o as ¢ — 0 so the improper integral does not exist.

Question: How do we define angle?

Answer: We define it through arclength.

On the unit circle

{(z.y)|2* +y* =1}
we define angle and the arclength. That is, suppose that (z,y) lies on the unit circle. The
angle 0 between (1,0) and (x,y) is the arclength of the part of the unit circle from (1,0)

o (x,y). This part of the circle is parametrized by (f(s),g(s)) = (s,v1 — s?) and where
x <s<1. Since f'(s) =1and ¢'(s) = — =z we get that

9—/./ 1_82d5—/m
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The function arcsin x is defined by

* 1
arcsinx = ——ds.
/0 V1 —s2
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Lecture 20

Application of integrals: arclength.

Suppose that f and ¢ : [a,b] — R are differentiable functions and their derivatives are
continuous, then we define the arclength of the curve

s = (f(s),9(s))
by

L= [ VIO G ds.

Example 1: Suppose that f(s) = s and g(s) = s?, then f' =1 and s’ = 2s. Therefore, the
arclength of the curve (s, s?), where s € [0, 1] is

1 1
:/ \/1—1—(23)2(15:/ V1+4s2ds.
0 0

Question: How do we define angle?

Answer: We define it through arclength.

On the unit circle

{(z.y)|2" +y* =1}
we define angle and the arclength. That is, suppose that (z,y) lies on the unit circle. The
angle 0 between (1,0) and (x,y) is the arclength of the part of the unit circle from (1,0)
o (x,y). This part of the circle is parametrized by (f(s),g(s)) = (s,V1 — s?) and where
x < s<1. Since f'(s )—1andg = we get that

0 = ds =

1—32
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The function arccos x is defined by

1
1
arccosr = ——ds.
/z V1—s2

By the fundamental theorem of calculus we see that
1

i

arccosr = —

Pointwise convergence: Suppose that f, is a sequence of functions on an interval I, then
we say that f,, convergences pointwise to a function f if for all x we have

fu(@) = f(x).

Example 1: Suppose that f,(z) = 2™ on [0, 1], then f,, converges pointwise to f where

fz) =

0 ifo<z<l1
1 ifx=1.

Suppose first that 0 < x < 1, then f,(z) = 2™ — 0. If x = 1, then f,(z) = 1 for all n and
so fn(x) — 1. This show the claim.

Example 2: If E,(z) =Y, %, then FE,(z) — exp x pointwise. We have already proven
that the radius of convergence for the power series

2

k=0

is infinity. From this the claim follows.

Uniform convergence: Suppose that f, is a sequence of functions on an interval I, then
we say that f, convergences uniformly to a function f if for all € > 0, there exists an N such
that if n > N, then for all x

|f(x) = falz)] <e.

Lemma 1: Suppose that [ is an interval and f,, is a sequence of functions on I that converges
uniformly to a function f, then f,, also converges pointwise to f.
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Proof. This is immediate from the definition of uniform convergence. U

Example 1A: Suppose again that f,(x) = 2™ on [0, 1], then f, converges pointwise but
NOT uniformly to f where
0 ifo<z<l1
-]

1 ife=1.

To see this observe that for each n,since f,, is continuous by the intermediate value theorem
there exists z,, with 0 < x,, < 1 such that f,(x) = % It now follows that

% = |f(@n) = fulwa)| < sup |f(2) = ful.

z€[0,1]

Thus we see that the convergence is not uniform. We already saw in Example 1 that the
convergence is pointwise.

Example 2A: If E,(z) =Y ;_, ’;;—T, then E,(x) — exp z uniformly on any interval of the
form [—L, L]. This will be a consequence of of Weirstrass M-test that we will discuss next.

Lemma 2 [Weirstrass M-test]: Suppose that [ is an interval and f,, is a sequence of functions
on I. Suppose also that M, is a sequence of non-negative numbers with

| fu(z)| < M, forall z € I.

If the series

converges, then the sequence of functions
Sulw) =) filx)

converges uniformly.

Proof. For each fixed x we have that that the sequence

> fulx)

converges. Moreover, we have that for all x and m < n we have

[Sn(@) = S (@) < |fa(@)] + [foa(@)] + -+ (2 ()] < My 4 -+ + Moy
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For m fixed and since S, (z) — S(x) it follows that

[S(x) = Sm(@)] < Y

M;, .

k=m+1

Since ), _, M}, is convergent it implies that given e > 0, there exists N such that if m > N,

then >~ ., My < e. Therefore, for m > N and all =

|S(z) — Sp(x)] < €.

This proves the claim.

Example 2A: On the interval I = [—L, L] suppose

n

T
fn = 1
n!
Then
L'fl
n!
Since

Ln
20

is convergent Weirstrass M-test gives that the series
[ee)
> I
n=0

converges uniformly on I.

Theorem: If
S o
k=0

is a power series and R is its radius of convergence.
(finite) interval of the form [—L, L] where L < R.

Proof. Recall that if M = limsup,, . ]anﬁ, then the radius of convergence is R =

follows that if |z| < L < R, then

Then it converges uniformly on any

1
LTt

limsup|anx”|% = |z| limsup|an|% <LM<1.

Choose 1 > o > L M. For n sufficiently large |a, " < M,, = o". Since the geometric series
>, a" is convergent, Weirstrass M-test gives the claim. ([

109



SPRING 2025 - 18.100B/18.1002 5

Example 3: The geometric power series
oo
>
k=0

converges uniformly to - on all intervals of the form [—L, L] where L < 1. Since the radius
of convergence of the power series is one the claim therefore follows from the theorem above.
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Lecture 21

Theorem 1: Suppose that [ is an interval and f,, is a sequence of continuous functions on
I. If f, converges uniformly to f, then f is also continuous.

Proof. Let zy in I be arbitrary but fixed. We will show that f is continuous at x,. Given
e > 0, since f,, — f uniformly, there exists a N such that if n > N, then for all x in [

(@) = fal)] < 5.

Since fy is continuous at xg, there exists § > 0 such that if |z — x| < 0, then
€
(@) = fn(wo)l < 3.
Combining this gives that for |z — x| < ¢

F() = F@o)] < 1f(@) = fu@)] + (@) = Jv(wo)| + |feo) = )| < 5+ 5 +5 =€

This gives the claim. U

Example 1: Set
nok
x
k=0

E(z)=)_ o
k=0
In the previous lecture we showed that Weirstrass M-test implies that F,, — E uniformly

on [—L, L]. Since each E,, is continuous we have from Theorem 1 that E is continuous.

Here is another useful way of thinking of uniform convergence. Recall that on the space of
continuous functions C'(I) on an interval I = [a, b] there is a natural metric given by that

d(f.9) = max{|f(z) — g(x)| |z € [}.
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We have the following:

Proposition: Let I be an interval [a,b] and f,, f € C(I), then f, — f in the metric space
if and only if f,, converges to f uniformly.

Proof. To see this note that
|f(z) = fu(z)] <eforal x €l

if and only if
d(f.fn) < €.

To say that f, — f uniformly is therefore equivalent to that d(f, f,) — 0 giving the claim.
0

From this we get:

Corollary: C([a,b]) is Cauchy complete.

Proof. Suppose that f, is a Cauchy sequence in C([a, b]) we need to find a f € C([a, b]) such
that f, — f uniformly. For each x fixed, the sequence f,(z) is a Cauchy sequence in R.
This follows since

() = ()] < d(fn, fin) -

Therefore, since R is Cauchy complete, for each = there exists a f(x) such that f,,(x) — f(x).
This defines the function f and show that f, — f converges pointwise. We need to show
that the convergence is uniform. To see that observe that given e > 0 since f, is a Cauchy
sequence, there exists N such that if n and m > N, then

|fu(z) — fin(2)] < g forallz € 1.
Therefore, for f(x) = lim,,  fim(z) we have

|fn($)—f($)|§§<eforallx€].

This show that the convergence is uniform. U

Theorem 2: If f,, € R([a,b]) and f,, — f uniformly, then f € R ([a,b]) and

/abfndx%/abfd:r.

Proof. We need to first show that f € R ([a,b]) and so we need to show that given e > 0,
there exists a partition P of the interval [a, b] such that

U(f,P)— L(f,P) <e.
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Since f,, — f uniformly we have that there exists a N such that if n > N, then
€

[f(x) = fulz)] < 3h—a)

€

We have therefore that for any partition P that
m]| < o
“3(Mb-a)’

jmi" <

€

M < M < ——
| 7 — z|—3(b_a)7

It follows that for any partition when n > N, then

|U(f7 7)) - U(fn’lp)‘

mC.»QI('!'\

|L(f,P) = L(fn, P)| <

We can now use that since fy € R ([a,b]) we have that there exists a partition P such that
€

U(fn,P) = L(fn,P) < 3

C}J

Combining it all gives that
U(f.,P) = L(f,P) <U(f.P) = U(fn,P) + U(fn,P)

cE e ¢
3 3 3

This show that f € R ([a,b]). We also need to see that
/ fdxr = lim fn dx .

n—o0

— L(fx,P) + L(f~,P) = L(},P)

This, however, follows from that

b
L(f,P) S/ fdx <U(f,P),

L(fa, P / fude <U(fn,P).

and that for n > N

|U(f7 P) - U(fn’P)‘ <

Wl | o

|L(fa P) - L(fn77j)| <

Namely, we now have that also

€ b
L(f,P) -5 S/ fodz <U(f,P)+ -

and therefore , ,
/ fd:v—/ fdxr <e.
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Example 1A: Set

n Ik_
En(z) = Z A s
k=0
ok
x
k=0

Then we have from Example 1 that E, — E uniformly on [—L,L]. We now have from
Theorem 2 that

n

Theorem 3: Suppose that f,, are differentiable functions on [a,b] and x¢ € [a,b]. If
o fu(z0) = ¢,
e f/ — g uniformly,
e f! are continuous on [a, bl
then there exists a differentiable function f with
e f, — f uniformly,
o [/ — f" uniformly.

Proof. Define a function F' on [a, b] by

f(x):c+/xgdx,

o
and note since f! are continuous and that f; — ¢ uniformly, it follows from Theorem 1 that
g is also continuous. Therefore, by the fundamental theorem of calculus f is differentiable
and f’ = g. Moreover, by the fundamental theorem of calculus we have that

M@—mefﬁmx

We are done provided we can show that f, — f. To see that note that

(@) — ful)] = c+/xgdx—fn<x0)_/xf,;dx

Skame%/@—ﬂwak—hWMﬁ/m—ﬂwx

T

< le = fulzo)| + (b—a)d(g, 1)
The claim now follows since f,,(xy) — ¢ and d(g, ;) — 0. O

Example 1B: Set
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E(r)=)
k=0
Then .
L e =
E, = I{j _— = -, — En_ .
n ; k! ]; (k—1)! !

From Example 1 that E,,_; — E uniformly on [—L, L] and each E,, are continuous. Moreover,
for all n we have that
E,(0)=1= E(0).
It follows therefore from Theorem 3 that
E;L = Ly 1 — El

uniformly and since E! = E,,_;, then we have that £’ = E.
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Lecture 22

Suppose that a, is a sequence and

o0
g ay T,
n=0

is a power series, the radius of convergence R is

1 1
R= i where M = limsup |a,|" .

Lemma: The radius of convergence is the same for the power series

oo
g an, "
n=0
as the power series
(e.)
g na, "t
n=1
Proof. Since
1 logn

and

lim sup |an|% = limsup |Cln|ﬁ
n—oo n—0o0

we have that

lim sup |n ozn|ﬁ = lim sup |an|% :

From this the claim follows.

Iterating this gives:
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Corollary: The power series

E an "
n=0
has the same radius of convergence as the power series

[e.9]

n! n—~k
—a, x
— (n—k)!
We now get the following:
Theorem: Suppose that
flz) = Z a, ",
n=0

is a power series with radius of convergence R, then

00 nl .
n=~k
and
2 :(J,n,1
d p— n .
/f(x) v — n o

Proof. Let us first argue for = 1. We will see that this is a consequence of Theorem 3 from
Lecture 21. Set

folz) = Z ay "
k=0

and

f(z) = Zakxk.

k=0
Moreover, let R be the radius of convergence for the power series f. We have the following
three properties

(1)
fa(0) = ag = f(0).

(2) On each interval [—L, L], where L < R, we have uniform convergence
I = Zk‘akxk_l.
k=1

(3) Each f/ is continuous.
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We see that Theorem 3 applies and show that

o]
= E kagxt 1.
k=1

Iterating this gives the claim for all k. Finally, the claim about the integral

/f(:v) dx

follows easily from Theorem 2 from Lecture 21.

Ordinary differential equations: A differential equation is an equation that involves an

unknown function and its derivative.

Example: Here are some examples of differential equations
fl@)=ua.
f'(z) = f(z) = 0.
f(@) f'(@) f'(x) = 1.
For the first of these and each constant ¢, the function
1

fe(x) = §x2 +c

is a solution. For the second

fla) = —

is a solution. For the third y = 0 is a solution and so is y = x.

We will be interested in an ordinary differential equation (ODE) of the form
y' = fy) +9().

Here y = y(z) is the unknown function and f, g are given functions. Note that while g only

depend on z the function f also depend on the unknown function .

We are interested in whether there exist solutions and when they exist if they are unique.

More precisely, suppose that we have the following:

e f be a continuously differentiable function on R.
e g be a continuous function on R.
e a is a real number.
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We are intersted in existence and uniqueness of the ODE:

y'(z) = fly(z)) +g(z)
y(0) =a.

We will show next time the following;:

Picard-Lindelof theorem: There exists 6 > 0 such that there is a unique solution to this
ODE on (-4, 9).
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Lecture 23

Ordinary differential equations: A differential equation is an equation that involves an
unknown function and its derivative.

Suppose that we have the following:

e f be a continuously differentiable function on R.
e g be a continuous function on R.
e ¢ is a real number.

We will be intersted in existence and uniqueness of the ODE:
y'(@) = fy(x) +9(x),
() _

y(0) =a.

We say that this is a first order equation since it only involves the function and its derivative
and not higher derivatives.

The following theorem gives a satisfying answer to the question of existence and uniqueness
for this ODE:

Picard-Lindel6f theorem: There exists 6 > 0 such that there is a unique solution to ()
on (—46,0).

Before we prove this theorem let us recall a result that we have proven earlier. Suppose that
[a,b] is an interval and let C'([a,b]) be the space of continuous functions on [a, b]. We equip
this space with the metric d given by that if hy, hy € C([a,b]), then

d(hl, hg) = xfél[a)é} |h1(£€) — hg(l')’ .

)

We proved earlier the following theorem:
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Theorem 1: The metric space (C([a,b]),d) is Cauchy complete.

We will also need to recall what it means for a map from a metric space to itself is contracting.
A map T is a contracting map on a metric space (X, d) if for some ¢ < 1 and all z, y € X

d(T(z), T(y)) < cd(z,y).

We shall also use that we have proven the following fact:

Theorem 2: If (X, d) is a Cauchy complete metric space and T : X — X is a contracting
map, then 7" has a unique fix point.

Indeed this theorem was proven by showing that for any x € X, the sequence z, T'(z), T?%(z),
T3(x),- -+ is a Cauchy sequence and the limit is the unique fix point of 7. The proof of this
used that

d(T"*(2), T"(2)) < " d(T(x), ),

and therefore by the triangle inequality
k
AT (), 7)) < 3 AT (2), T4 () < ¢4 d(T(x), )
i=1

Which is easily seen to imply that the sequence 7" (z) is a Cauchy sequence.
We will also use the following lemma:

Lemma 1: Suppose that u; and uy are continuous functions on an interval I. Assume also
that

) ul(ﬁo) = UQ(LU()).
o If ui(x) = ug(x), then w3 = uy in a neighborhood of z.
then ©; = us.
Proof. Let
Jp={z€1Tl|z>xyand uy(r) = us(x) for all x € [xg, 2]}.
Then zg € Jy so Jy # 0. Let zo = sup J,, if 29 € I, then u;(29) = u2(2p) by continuity.
Since also u; and uy agrees in a neighborhood of zj it follows that zy must be the right end

point of I. Similarly one can show that u; = us everywhere to the left of z5. This proves
the lemma. U
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Finally, in the proof of the Picard-Lindelof theorem we will also need the next lemma. In
this lemma f is a function on R as above, so f differentiable and the derivative of f is
continuous and ¢ will be a continuous function on R. For § > 0, on the space of continuous
functions on [—¢, 0] we define a map T on functions y as follows

T@xw=ar+4muwwn+gwn@.

Note that when y is continuous, then so is 7'(y).

Lemma 2: Let a be a constant and set R = |a| + 2. There exists a ¢ > 0 such that:

e The map 7 maps the ball (in the metric space (C([—9,d]),d)) of radius R and with
center the constant function zero into itself. We write Bg(0) for this ball and so have
e The map T is contracting on Bg(0).

Proof. Let
Ly = max (2],
L, = .
> ﬁglg(xﬂ

We will first show that if that if we choose dy > 0 small enough, then 7" maps Bg(0) into
itself. That is, we will show that if |y| < R on [—dy, dg], then

T(y)| < R.

1 1
§o = min { 1 .
0 mm{ ’L1+1’L2+1}
Now suppose that |y| < R and |z| < &y, then
)@ < ol + [ IsDlds+ [ lolds

S ‘CL| +50L1+50L2 S ‘CL| +2= R.
This show that 7" maps Bg(0) into itself.
Next set

To see this set

M = '
lrgg;g\f ()|,

and

) 1
0 = min {50,m} .

Suppose that y; and y are two continuous functions on [—d, ] in Bg(0), then

T(y1)(x) = T(y2)(2)| = /Ox [f(y1(s)) = fya2(s))] ds .

By the mean value theorem applied to f for each s we have a z; between y;(s) and yo(s)
such that

F(i(s)) = Fly2(s)) = F'(20) (92(s) = wa(s)) -
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Since |y;| < R we have that we have that for each s

|f(y1(s)) = F(y2(s))] < M |ya(s) — ya(s)| < M max |y — yo| = M d(y1,2)
and therefore

T (y1)(x) = T(y2)(x)| = /Om [f(v1(s)) = fy2(s)] ds < M dd(y1,y2) < %d(yhyz)-
O

We are now ready to show the Picard-Lindelof theorem:

Proof. (of the Picard-Lindel6f theorem.) Let T be defined as above and R and > 0 be given
by Lemma 2. A fixed point for 7" is a function y such that T'(y) = y. By the fundamental
theorem of calculus if y is a fix point of T', then we have that

Y ()= (T) (=) = fy(x)) + g().
Moreover, y(0) = a. In other words any fix point of 7" is a solution to the ODE.

We need to show that the solution is unique. Suppose that y* is any other solution, then
by the fundamental theorem of calculus

y'(2) = at / () () ds = Ty (s).

Note that this holds even if the interval I that y* is defined on (containing 0) is different
from [—6,0]. We have from this that any solution is a fix point of T". Since T is contracting
on Bg(0) it follows that for any fix point with |y| < R, then y is unique. In general, suppose
that y; and ys are two solutions defined on intervals I; and Iy both containing 0. We have
from the above that they agree in a neighborhood of 0. The argument in Lemma 2 that
proved uniqueness in a small neighorhood of 0 works equally well in a neighborhood of any
other point. It now follow from Lemma 1 that y; and y, agrees everywhere. 0
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