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TOBIAS HOLCK COLDING 

Lecture 1 

Two key topics for this class: 

• How to write a mathematical proof.
• How to prove theorems.

Here is an example: 

Intermediate value theorem: 

• Suppose that f : [a, b] → R is a continuous functions.
• Assume that f(a) < 0 and f(b) > 0.

The intermediate value theorem says that there exists a c between a and b where f(c) = 0. 

• How do we prove this?
• If we draw a picture, then it seems obvious, but how to we actually prove this?

. 

That a function is continuous basically means that when you draw the graph of the function 
the pencil is not allowed to leave the paper. 

• How do we make this into a proper proof?

• What properties of the real values are needed for a proof?

This leads to several questions: 

• Q1: What is a real number?√ 
• Q2: Why is 2 a real number?√ 
• Q3: What is 2?

The answer to these questions: R is a complete ordered field that contains the rational 
numbers Q. 
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Here is some notation: 

(1) N is the natural numbers. This means that N = {1, 2, 3, · · · }.
(2) Z is the integers. This means that Z = {0, ±1, ±2, ±3, · · · }.
(3) Q is the rational numbers. So all numbers of the form m

n , where m ∈ Z and n ∈ N. 

Properties: 

Rational numbers: 
Rational numbers Q are numbers of the form m

n , where m ∈ Z and n ∈ N. 

(1) When are two numbers the same?

m1 m2 
= ⇐⇒ m1 n2 = m2 n1 . 

n1 n2 

(2) How do we add two numbers?

m1 m2 m1 n2 + m2 n1 
+ = . 

n1 n2 n1 n2 

(3) How do we multiply two numbers?

m1 m2 m1 m2 
= . 

n1 n2 n1 n2 

(4) When is one number less than another?
m1 m2 

< ⇐⇒ m1 n2 < m2 n1 . 
n1 n2 

For this to make sense we need (for instance) to show that multiplication is well-defined: 

This means that if we have two representations of the same rational number 
m1 m2 

= 
n1 n2 

and likewise 
p1 p2 

= , 
q1 q2 

then 
m1 p1 m2 p2 

= . 
n1 q1 n2 q2 

Proof. We have that m1 n2 = m2 n1 and p1 q2 = p2 q1. Therefore, 

m1 p1 n2 q2 = m1 n2 p1 q2 = m2 n1 p2 q1 . 

�
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This illustrate how detailed a proof should be. 

A Field: 

Definition: 
A Field F is a set with two operations that we are denoting suggestively by ”+” and ” · ”. 
Those two operations satisfies the following axioms: 

Additive properties: 

(1) x, y ∈ F, then x + y ∈ F. 
(2) x + y = y + x. 
(3) (x + y) + z = x + (y + z). 
(4) There exists an element 0 ∈ F such that 0 + x = x for all x ∈ F. 
(5) For all x ∈ F there exists an element, suggestively, denoted by (−x) such that 

x + (−x) = 0. 

Multiplicative properties: 

(1) x, y ∈ F, then x y ∈ F. 
(2) x y = y x. 
(3) (x y) z = x (y z). 
(4) There exists an element, suggestively, denoted by 1 such that 1 x = x for all x ∈ F. 
(5) For all x ∈ F \ {0} there exists an element, suggestively, denoted by 1 such that 

x 
1 x = 1. 
x 

The final axion that we need is an axiom that chains addition and multiplication together: 

• 
(x + y) z = x z + y z . 

Theorem: For any field ’zero’ is unique. 

Proof. Suppose there are two. Let us denote them by 01 and 02. Then 

01 + 02 = 02 

since 01 is a ’zero’ and 
01 + 02 = 01 

since 02 is a ’zero’ so 01 = 02. � 
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Examples: Q is a Field, whereas N and Z are not Fields. 

Ordered set: An ordered set S is a set with a relation < with the following properties: 
(1) For an x, y ∈ S, one of the following holds: x < y or y < x or x = y. 
(2) If x, y, z ∈ S with x < y and y < z, then x < z. 

Ordered Field: 
An ordered Field is an ordered set that is also Field and has the following two additional 
properties that chains the operations in the Field together with the ordering: 

(1) If x < y, then x + z < y + z. 
(2) If x > 0 and y > 0, then x y > 0. 

Example: Q is an ordered Field. 

Theorem: If x < y and z > 0, then x z < y z. 

Proof. We need to show that x z < y z or equivalently y z − x z > 0. The latter can be 
rewritten as y z − x z = (y − x) z. Since y > x we have that y − x > 0 and the claim therefore 
follows since z > 0. � 
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Lecture 2 

The real numbers R is a complete ordered Field that contains Q. 

Question: What is the difference between R and Q?√ 
One difference is that R contains 2 and Q does not. 

√ 
22 is a number x so that x > 0 and x = 2. 

2Theorem: There does not exists a rational number x so that x = 2. 

Proof. We will argue by contradiction. So suppose that there exists a rational number x = m
n , 

where m ∈ Z and n ∈ N, so that x2 = m
n2

2 
= 2. We can assume m and n does not have a 

2 2 2common factor (other than one). We have that m = 2 n and so 2 is a factor in m and 
therefore in m itself. This means that m = 2 m1, where m1 is also an integer. It follows that 

2 2 2m = 4 m1 = 2 n and therefore 2 m1 = n and so n is also even. We have now that both m 
and n are even and so have 2 as a common factor. This is the desired contradiction. This 
show that there is no rational number x with the property that x2 = 2. �

√ 
How do we add 2 to the number system? 

√ 
2 = 1.4142136 · · · 

√ 
So 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, → 2. 

√ 
2 is the limit of a sequence of numbers. 
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Completeness of R. (Least upper bound property.) 

Completeness is: If a subset A of R has an upper bound, then A has a least upper bound. 

Suppose that S is an ordered set and A is a subset of S, then M is an upper bound for A if 
for all a ∈ A we have that a ≤ M . 

Example: If A = {1, 2, 3} ⊂ Z, then 4 is an upper bound, whereas 2 is not an upper bound. 

Example: If S = Q, then N as a subset does not have an upper bound (we will return to 
this shortly). 

Least upper bound: Suppose that S is an ordered set and A is a subset that has an upper 
bound. We say that M is a least upper bound for A if M is an upper bound for A and for 
any other upper bound M1 we have that M ≤ M1. 

Complete ordered set: We say that an ordered set is complete if any subset that has an 
upper bound has a least upper bound. 

Theorem: There exists a complete ordered Field that contains Q. 

This Field is denoted by R. 

We will not prove this, as a proof would take us too far a field, rather we will take it for 
granted. 

√ 
Theorem: 2 ∈ R. 

√
Proof. Let A = (0, 2) ∩ Q. That is A consists of all the positive rational numbers a so that 
a2 < 2. Let x be the least upper bound for A. Note that A is nonempty (since 1 ∈ A) and 
that 2 is an upper bound for A. Note also that x ≥ 1 > 0 since it is an upper bound. We 

2need to show that x = 2. 
We will first show that x2 ≤ 2. Suppose not; so assume that x2 > 2. We will show that 

this leads to a contradiction. Consider 

(x − h)2 = x 2 − 2 xh + h2 > x 2 − 2 hx . 

As long as h > 0 is chosen so that 
2 hx < x 2 − 2 
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or, equivalently, that 
x2 − 2 

h < 
2 x 

then 
(x − h)2 > 2 

and therefore x − h is also an upper bound for A. This contradict that x is the least upper 
bound. We therefore have that if x is the least upper bound for A, then x2 ≤ 2. 

To show the reverse inequality (that x2 ≥ 2) we argue similarly. Assume that for the least 
upper bound x we have that x2 < 2. Consider x + h, where 0 < h < 1. We have that 

(x + h)2 = x 2 + 2 xh + h2 < x 2 + 2 xh + h = x 2 + h (2 x + 1) . 

Since we are assuming that x2 < 2 we can choose h positive so that 

2 − x2 

h < . 
2 x + 1 

We therefore have that 
(x + h)2 < x 2 + 2 − x 2 < 2 . 

This is the desired contradiction and show that x2 ≥ 2. Together with the first step we have 
that x2 = 2. �

Corollary: Q is not complete. 
√ 

Proof. If Q was complete, then 2 ∈ Q but we have already proven that there is no rational 
number with the property that x2 = 2. �

Archimedean property: For all x ∈ R, there exists a natural n ∈ N so that x < n. 

Proof. If this was not the case, then N would be bounded. To see that N is not bounded 
we argue as follows. Assume it is bounded and let α be the least upper bound for N. We 
would now have that for all n ∈ N that n ≤ α. Since n + 1 is also a natural number we 
would have that n +1 ≤ α as well. So, in fact, n ≤ α − 1 or in other words, since n was any 
natural number, α − 1 would be an upper bound contradicting that α was the least upper 
bound. �

As a corollary of the Archimedean property we get the following: 

Corollary: If x < y, then there exists a rational number m
n such that 

m 
x < < y . 

n 
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Proof. Set β = 1 . From the Archimedean property we have that there exists a natural 
y−x 

number n with n > β. It follows that 
1 1 

0 < < . 
n β 

Now let m − 1 be the largest integer so that 

m − 1 ≤ xn . 
mIt follows that 
n has the desired property. �
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Lecture 3 

Theorem: R is a complete ordered Field that contains Q. 

S is an ordered set. A non-empty subset A of S is said to have an upper bound if there 
exists an M ∈ S such that for all a ∈ A we have that a ≤ M . 

Completeness is the property that every bounded non-empty subset has a least upper bound. 

We denote by sup A the smallest upper bound of A. 

Lower bound: A non-empty subset A is said to have a lower bound if there exists m ∈ S 
such that for all a ∈ A we have that m ≤ a. 

The greatest lower bound is a lower bound that is greater or equal to all other lower bounds. 

The greatest lower bound is denoted by inf A. 

From now on we will concentrate of the case of R. 
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How to write a mathematical proof? 

This lecture we will look at how to write a mathematical proof. 
We will explain this in two results that we talked about last time. 

√ 
Let us return to the example of showing that 2 ∈ R. 

We already showed this but we did not write it as a ”proper proof”. That is what we will 
do next. 

Theorem: There exists α > 0 such that α2 = 2. 

Proof. Define a set A by 

A = {x ∈ R | x > 0 and x 2 ≤ 2} . 

We will show that A is a non-empty bounded subset and that α = sup A has the property 
that α > 0 and α2 = 2. 

Observe first that 1 ∈ A, so A is non-empty. Moreover, 2 is an upper bound for A so A is 
bounded from above. Let α = sup A, we need to show that α > 0 and that α2 = 2. Since 
1 ∈ A it follows that 0 < 1 < α. To show that α2 = 2 we divide the proof into two parts. 

Part 1: We will show that α2 ≤ 2. Suppose not; we will see that this lead to a contra-
diction. Indeed, we will show that that if this was the case, then there exists an 0 < α0 < α 
such that α2 

0 > 2 so α0 is an upper bound that is smaller than α. To show this we set 

h = 
α2 − 2 
4 α 

and set 

α0 = α − h . 

Note that since we are assuming that α > 2, then we have that h > 0 and therefore α0 < α. 
Note also that since 1 ≤ α ≤ 2 we have that 

1 1 
h ≤ ≤ . 

2 α 2 
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In particular, 0 < α0. Next 

α2 − 2 α2 

α2 = α2 
0 + h2 − 2 hα > α2 − = + 1 ≥ 2 .

2 2 
This is the desired contradiction and show that α2 ≤ 2. 

Part 2: We will next show that α2 ≥ 2. Suppose not; we will see that this lead to a 
contradiction. Indeed, we will show that if this was the case, then there exists an α1 > α 
such that α1

2 < 2 contradicting that α was an upper bound for A. So assume that α2 < 2. 
This time we will set 

2 − α2 

h = . 
4 α 

Note that 1 > h > 0 (the first inequality follows from that 1 ≤ α). Set α1 = α + h. It follows 
that 

2 − α2 2 − α2 

α2 = α2 
1 + h2 + 2 hα < α2 + h + ≤ α2 + 2 = 2 . 

2 2 

Together parts 1 and 2 show that α2 = 2; completing the proof. �
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Archimedean property: 

Formal proof: 

Theorem: The set of natural number is not bounded from above. 

Proof. If N is bounded from above, then we can let M be the least upper bound. We now 
have that for all n ∈ N 

n ≤ α 
We claim that also α − 1 is an upper bound contradicting that α was the least upper bound. 
Namely, for a given n since α is an upper bound for all natural numbers we have that 

n + 1 ≤ α 

but this implies that 
n ≤ α − 1 

showing that α − 1 is an upper bound. That is the desired contradiction. �

Corollary: For any � > 0, there exists an n ∈ N such that 
n 
1 < �.

Proof. Set α = 1 
� , By the Archimedean property we know that there exists an n ∈ N with 

n > α. It follows that 1 < �. �
n 
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Sequences: 

√ 
2 can be thought of a limit of a sequence of decimal numbers as follows. 

1 < 1.4 < 1.41 < 1.414 · · · . 

When does a limit exist? 

A sequence of real numbers is a function f : N → R. 

We usually use the notation an = f(n). 

√ 
Example 1: 2 is the limit of a1 = 1, a2 = 1.4, a3 = 1.41, a4 = 1.414 etc. 

Example 2: an = (−1)n . This sequence has NO limit. The an’s alternates between −1 and 
1. 

Example 3: The sequence an = 
n 
1 has zero as its limit.

Limit: Let an be a sequence and a a real number. We say that an converges to a if for all 
� > 0, there exists an N ∈ N such that if n ≥ N , then

|an − a| < � . 
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Lecture 4 

Theorem: R is a complete ordered Field that contains Q. 

S is an ordered set. A non-empty subset A of S is said to have an upper bound if there 
exists an M ∈ S such that for all a ∈ A we have that a ≤ M . 

Completeness is the property that every bounded non-empty subset has a least upper bound. 

We denote by sup A the greatest lower bound of A. 

Lower bound: A non-empty subset A is said to have a lower bound if there exists m ∈ S 
such that for all a ∈ A we have that m ≤ a. 

The greatest lower bound is a lower bound that is greater or equal to all other lower bounds. 

Sequences: 

√ 
2 can be thought of a limit of a sequence of decimal numbers as follows. 

1 < 1.4 < 1.41 < 1.414 · · · . 

A sequence of real numbers is a function f : N → R. 
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We usually use the notation an = f(n). 

√ 
Example 1: 2 is the limit of a1 = 1, a2 = 1.4, a3 = 1.41, a4 = 1.414 etc. 

Example 2: an = (−1)n . This sequence has NO limit. The an’s alternates between −1 and 
1. 

Example 3: The sequence an = 
n 
1 has zero as its limit.

Limit: Let an be a sequence and a a real number. We say that an converges to a if for all 
� > 0, there exists an N ∈ N such that if n ≥ N , then

|an − a| < � . 

If this is the case, then we also say that a is the limit of the sequence and we say that the 
sequence is convergenet. 

A sequence that is not covergent is said to be divergent. 

Example: 

0.999999999 · · · = 1 . 

What does the left hand side mean? 

Define a sequence an as follows: Set 

a1 = 0.9 , 

a2 = 0.99 , 

a3 = 0.999 , 

a4 = 0.9999 , 

etc. 

The left hand side above is then defined as the limit of the sequence an. 
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Claim: 

lim an = 1 . 
n→∞ 

Proof. We need to show that for all � > 0, there exists an N ∈ N such that for n ≥ N we 
have that 

|an − 1| < � . 

By the Archimedean property we can choose N such that 
N 
1 < �. We also have that

|an − 1| = 10−n . 

Therefore, for n ≥ N we have that 

1 1 |an − 1| = 10−n < ≤ < � . 
n N 

This proves the claim. �

Theorem If an is a convergent sequence, then the set {an} is a bounded subset of R. 

Proof. Since an is convergent to a we can find N such that for n ≥ N we have that 

|a − an| < 1 . 

Note also that the set {a1, · · · , aN−1} is bounded so there exists C ∈ R such that for 
n = 1, · · · , N − 1 we have that 

|an| ≤ C . 

To see that the larger set {an} is bounded we will use that for n ≥ N 

|an| ≤ |a| + |an − a| ≤ |a| + 1 . 

From this we have that for all n 

|an| ≤ max{C, |a| + 1} . 

�

Basic algebraic properties of limits: 

Theorem Suppose that an and bn are convergenet sequences with lim an = a, lim bn = b 
and C ∈ R, then 

(1) cn = C an is convergenet and limn→∞ cn = C a.
(2) cn = an + bn is convergent and limn→∞ cn = a + b.
(3) cn = an bn is convergent with limn→∞ cn = a b.
(4) If bn =6 0, b =6 0 and cn = a

bn
n , then cn is convergent and limn→∞ cn = a

b .
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Proof. (of the first property.) If c = 0, then the claim is obviously true so we need only show 
the claim for C 6= 0. Given � > 0, there exists an N such that if n ≥ N , then 

� |a − an| < . 
|C| 

Multiplying both sides by |C| gives that 
|C a − C an| < � . 

for n ≥ N . This show the first property. 
(Of the second of these properties.) Observe that 

|cn − (a + b)| = |an + bn − (a + b)| = |(an − a) + (bn − b)| ≤ |an − a| + |bn − b| . 
Since an → a, given � > 0 we can find a Na such that if n ≥ Na, then 

� |an − a| < . 
2 

Likewise since bn → b we can find Nb such that if n ≥ Nb, then 
� |bn − b| < . 
2 

We now set N = max{Na, Nb} and observe that if n ≥ N , then 
� � |cn − (a + b)| ≤ |an − a| + |bn − b| < + = � . 
2 2 

This proves the second property. 
(Outline of how to show the third property.) To prove the third property we will use that 

|a b − an bn| ≤ |a b − an b| + |an b − an bn| = |b| |a − an| + |an| |b − bn| . 
We then combine it with the theorem above that show that the set 

{|an| | n ∈ N} 
is bounded. This is the main idea of the proof of the third property. There are the details 
to fill in to make it a proof. 

(Outline of how to show the fourth property.) To prove the fourth property we will assume 
that an = 1. The general case indeed will follow from this together with the third property. 
We will use that 

1 1 |b − bn|− = ,
bn b |b| |bn|

together with that 
|bn| ≤ |b| + |bn − b| . 

and therefore 
|bn| ≥ |b| − |bn − b| . 

We then want to use this to bound the denominator (when n is sufficiently large) from below 
in 

|b − bn| 
. 

|b| |bn|
Like for the third property there are details to fill in but these are the main ideas. �
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Subsequence: 

Example 1: Suppose that an = (−1)n . 
This is a sequence of 1’s and −1’s that is alternating between −1 and 1. 
The sequence bn = 1 for all n is a subsequence. 
Another subsequence is where cn = −1. 
Also the sequence cn = (−1)n+1 is a subsequence of an. 
Another example of a subsequence is 

1, 1, −1, −1, 1, 1, −1, −1, · · · . 

Example 2: Suppose an = n. So an is: 

1, 2, 3, 4, 5, 6, · · · . 

The sequence of increasing odd numbers 

1, 3, 5, 7, 9, · · · . 

is a subsequence. 
The sequence of increasing even numbers 

2, 4, 6, 8, 10, · · · . 

is another subsequence. 
The sequence 

1, 1, 2, 2, 3, 3, 4, 4, 5, 5 · · · , 
is NOT s subsequence. 

Formel definition: Recall that a sequence an is a function f : N → R where we set 
an = f(n). A subsequence bn of an is a composition of functions f ◦ g where g : N → N is a 
strictly increasing function. So bn = f(g(n)). Sometimes a subsequence of the sequence an
also denoted by ank . 

Theorem: A sequence an is convergent with limit a if and only if all subsequences of an are 
also convergent with limit a. 

Proof. We need to show two implications. 
First we need to show that is all subsequences of an are convergent with limit a, then 

the sequence an is convergent with limit a. However, this is trivially so since an itself is a 
(trivial) subsequence of an. 
Next we need to show that any subsequence of a convergent sequence is convergent with 

the same limit. Suppose therefore that � > 0 is given and choose N so large so that for 

18
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n ≥ N 
|an − a| < � . 

For k ≥ N we have that nk ≥ k ≥ N and therefore 

|ank − a| < � . 

This proves the second implication. �
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Lecture 5 

A sequence of real numbers is a function f : N → R. 

We usually use the notation an = f(n). 

Limit: Let an be a sequence and a a real number. We say that an converges to a if for all 
� > 0, there exists an N ∈ N such that if n ≥ N , then

|an − a| < � . 

If this is the case, then we also say that a is the limit of the sequence and we say that the 
sequence is convergenet. A sequence that is not covergent is said to be divergent. 

Theorem If an is a convergent sequence, then the set {an} is a bounded subset of R. 

Basic algebraic properties of limits: 

Theorem Suppose that an and bn are convergenet sequences with lim an = a, lim bn = b 
and C ∈ R, then 

(1) cn = C an is convergenet and limn→∞ cn = C a.
(2) cn = an + bn is convergent and limn→∞ cn = a + b.
(3) cn = an bn is convergent with limn→∞ cn = a b.
(4) If bn =6 0, b =6 0 and cn = 

b 
1 
n
, then cn is convergent and limn→∞ cn = 1 

b . 

Subsequence: A subsequence bk of an is a composition of functions f ◦ g where g : N → N 
is a strictly increasing function. So bk = f(g(k)). We often write ank for bk. 
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Example: A sequence is defined by an
n2 + 1 

an = . 
n2 + n + 1 

We will show that an is convergent with limit 1. We have 
11 + 2 

an = n . 
1 + 1 + 1 

2n n 

Since 1 → 0 and 1 → 0 we have that2n n 

1 
1 + → 1

n2 

and 
1 1 

1 + + → 1 . 
2n n 

It now follows from the algebraic properties of limits that 

an → 1 . 

√ 
Example: To show that 2 is the limit of a1 = 1, a2 = 1.4, a3 = 1.41, a4 = 1.414, .... we 
need something else. We need the monotone convergence theorem. 

Monotone convergence theorem: Increasing version. Let an be a monotone increasing 
sequence. This means that a1 ≤ a2 ≤ a3 ≤ · · · . (Which we can also write this as an ≤ an+1). 
If the sequence is bounded from above so that there exists A with 

an ≤ A , 

then an is convergent with limit sup {an}. 

Monotone convergence theorem: Decreasing version. Similarly, for a bounded monotone 
decreasing sequence an where an+1 ≤ an, we have that an converges and 

lim an = inf {an} . 
n→∞ 
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√ 
Using the monotone convergence theorem we can now show that 2 is the limit of a1 = 1, 
a2 = 1.4, a3 = 1.41, a4 = 1.414, a5 = · · · . 

To show this we argue as follows: 

Let 
bn

an = 
10n−1 

where bn is the largest integer so that 

b2 
n ≤ 2 · 102 n−2 . 

We will show that an is an increasing and bounded sequence and that the limit a has the 
property that a2 = 2. 

So suppose that bn is an integer and that 

b2 
n ≤ 2 · 102 n−2 , 

then obviously 
)2 ≤ 2 · 102 (n+1)−2(10 bn . 

This implies that bn+1 ≥ 10 bn; so an+1 ≥ an and the sequence is increasing. 

It is clear that bn ≤ 2 · 10n−1 , since (2 · 102 n−2)2 > 2 · 102 n−2 . 

Therefore the sequence an = bn is bounded and by the monotone convergence theorem
10n−1 

an → a. 
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To show that a2 = 2 we argue as follows: 

By the algebraic properties of limits we have that a2 = limn→∞ an 
2 , but for each n we have 

that a2 102 n−2 = b2 ≤ 2 · 102 n−2 so a2 ≤ 2.n n n 

This show that a2 ≤ 2. 

(bn+1)2 

Similarly, since (bn + 1)2 > 2 · 102 n−2 we have that (an + 101−n)2 = > 2.
102 n−2 

Therefore, 2 ≤ limn→∞(an + 101−n)2 = limn→∞ a
2 
n = a2 . 
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Proof of the monotone convergence theorem (Increasing version): 

The decreasing version is proven similarly. 

So suppose that we have a sequence with 

an ≤ an+1 ≤ A 

and set 
a = sup {an} . 

We want to show that 
an → a . 

Given � > 0, since a − � < a we have that a − � is not an upper bound for the sequence, 
therefore there exists N such that 

aN > a − � . 

Since the sequence is increasing we have for n ≥ N that 

a − � < aN ≤ an ≤ a 

Here the last inequality used that a is an upper bound for the sequence. 

We now have that for n ≥ N 
0 ≤ a − an < � . 

This shows that the sequence is convergent with limit a. 
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Cauchy sequence: A sequence an is said to be a Cauchy sequence if for all � > 0, there 
exists an N such that if m, n ≥ N , then 

|an − am| < � . 

(Tail of the sequence bunch together.) 

From Wikipedia: Baron Augustin-Louis Cauchy (1789 – 1857) was a French mathematician, 
engineer, and physicist. He was one of the first to rigorously state and prove the key theorems 
of calculus (thereby creating real analysis), pioneered the field complex analysis, and the 
study of permutation groups in abstract algebra. Cauchy also contributed to a number of 
topics in mathematical physics, notably continuum mechanics. 

Theorem: A sequence is convergent if and only if it is a Cauchy sequence. 

Application: Existence of fixed points for a maps. If T : R → R is a map, then x0 ∈ R is a 
fixed point if 

T (x0) = x0 . 

Definition A contracting map is a map T : R → R such that there exists c < 1 so for all 
x, y ∈ R we have that 

|T (x) − T (y)| ≤ c |x − y| . 
(Points are squeezed together under the map.) 

Contracting mapping theorem: Any contracting map has a fixed point. 

Application of contracting mapping theorem: Existence of solutions to ODEs. 

More on all of this next time...... 
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Lecture 6 

Last time: 

Basic algebraic properties of limits. 

Monotone convergence theorem. 

Cauchy sequence. 

Cauchy sequence: A sequence an is said to be a Cauchy sequence if for all � > 0, there 
exists an N such that if m, n ≥ N , then 

|an − am| < � . 

(Tail of the sequence bunch together.) 

Theorem (Cauchy convergence theorem): A sequence is convergent if and only if it is 
a Cauchy sequence. 

Application: Existence of fixed points for a maps. 
If T : R → R is a map, then x0 ∈ R is a fixed point if 

T (x0) = x0 . 

Definition A contracting map is a map T : R → R such that there exists c < 1 so for all 
x, y ∈ R we have that 

|T (x) − T (y)| ≤ c |x − y| . 

(Points are squeezed together under the map.) 

Contracting mapping theorem: Any contracting map has a fixed point. 
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For a contracting map the fix point is unique. 

Suppose that x and y are two fixed point we want to show that x = y. We have 

|x − y| = |T (x) − T (y)| ≤ c |x − y| . 

Since c < 1 this implies that |x − y| = 0 and so x = y. 

On Pset 3 you will be asked to show that for a contracting map T and any a1 ∈ R the 
sequence an+1 = T (an) is a Cauchy sequence. By the Cauchy theorem we then have that an
is convergent. 

Let a denote the limit. We claim that T (a) = a. Observe that T (an) = an+1 → a. If we can 
show that if xn → x, then T (xn) → T (x), then 

T (an) → T (a) 

but we already have that T (an) = an+1 → a so we would have that T (a) = a and thus a is 
a fixed point. 

We need therefore show that if xn → x, then T (xn) → T (x). To do that observe that 

|T (xn) − T (x)| ≤ c |xn − x| . 

Since xn → x we have that |xn − x| → 0 and so |T (xn) − T (x)| → 0. It follows that 
T (xn) → T (x). Applying this to the sequence an shows that a is a fixed point for T . 

Applications of contracting mapping theorem: 

Existence of solutions to ODEs. We will return to this later as this needs a version of the 
contracting mapping theorem where T is defined on a more general space than the real 
numbers. 

Newton’s method: Finding a zeroth of a function f : R → R. (So find a solution x to 
f(x) = 0.) 

Suppose that x1 is a ”good” initial guess, so f(x1) is sufficiently small. Assume also that 
f 0 6= 0. Define a map 

f(x)
T (x) = x − . 

f 0(x) 

We have 
f 0 f 00f f 00 

T 0(x) = 1 − + = f . 
f 0 (f 0)2 (f 0)2 
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So as long as x stay close to the initial guess and for the initial guess f(x) is small compared 
f 00 

with 
(f 0)2 , then T is a contracting map. By the contracting mapping theorem the sequence 

xn+1 = T (xn) is a Cauchy sequence that converges to a fixed point of T . 

For a fixed point for T we have T (x) = x so x − f (x) = x and therefore f(x) = 0.
f 0(x) 

Back to Cauchy sequences. 

Bolzano -Weirstrass theorem: Any bounded sequence has a convergent subsequence. 

Once we have the Bolzano-Weirstrass theorem we can prove the Cauchy theorem. 

Proof. (of the Cauchy theorem.) So suppose that an is a Cauchy sequence. We will first 
show that an is bounded. From the definition of a Cauchy sequence we have that there exists 
N such that for m, n ≥ N , then 

|an − am| < 1 . 

It follows, in particular, that for all n ≥ N , we have that 

|an − aN | < 1 , 

and so 

|an| = |(an − aN ) + aN | ≤ 1 + |aN | . 
Therefore, 

|an| ≤ max {|aN | + 1, |a1|, · · · , |aN−1|} . 
So the sequence is bounded. 
From the Bolzano-Weirstrass theorem it follows that an has a convergent subsequence ank

with limit a. We want to show that an is convergent with limit a. Given � > 0, there exists 
an N1 such that if m, n ≥ N1, then 

� |an − am| < . 
2 

Moreover, there exist an N2 such that if k ≥ N2, then |ank − a| < � . Set N = max {N1, N2}.2 
It follows that if n ≥ N and k ≥ N , then 

� � |an − a| ≤ |an − ank | + |ank − a| < + . 
2 2 

This show that an → a as claimed. �

Another application of the Bolzano-Weirstrass theorem is the Extreme value theorem. 
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Before stating this we need another key notion: 

A function f : R → R is said to be continuous at a point x0 ∈ R, if for all � > 0, there 
exists a δ > 0 such that if 

|x − x0| < δ =⇒ |f(x) − f(x0)| < � . 

A function is said to be continuous if it is continuous at all points in the domain. 

Theorem: If f : R → R is continuous and xn is a sequence with xn → x0, then f(xn) → 
f(x0). 

Proof. Given � > 0, since f is continuous, there exists a δ > 0, such that if |x − x0| < δ, then 
|f(x) − f(x0)| < �. Since xn → x0, there exists N such that if n ≥ N , then |xn − x0| < δ 
and therefore |f(xn) − f(x0)| < �. This show that f(xn) → f(x0) as claimed. �

Extreme value theorem: Let f be a continues function on an interval [a, b]. The extreme 
value theorem says that the sup and inf are achieved. That is, there exist x ∈ [a, b] such 
that f(x) = sup f . Likewise for inf f . 

Proof. We will show that the supremum is achieved. The proof that the infimum is the 
same with obvious modification. Let xn ∈ [a, b] be a sequence where f(xn) → sup f . Since 
the sequence is contained in [a, b] it is bounded and therefore by the Bolzano - Weirstrass 
theorem has a convergent subsequence xnk → x. Note that x ∈ [a, b]. By the theorem above 
f(xnk ) → f(x) and since we also have that f(xnk ) → sup f it follows that sup f = f(x). 
This proves that the supremum is achieved. �
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Lecture 7 

Last time: 

Cauchy convergence theorem: Every Cauchy sequence is convergent. 

Bolzano-Weirstrass theorem. 

Last time we showed that the Bolzano-Weirstrass implies the Cauchy theorem. 

Bolzano-Weirstrass theorem: Any bounded sequence has a convergent subsequence. 

Proof. (of the Bolzano-Weirstrass theorem.) Suppose that an is a bounded sequence. For 
simplicity assume that an ∈ [0, 1]. 
Defining the subsequence ank . Either there are infinite many n such that an ∈ [0, 1

2 ] or 
there are infinite many such an in [1

2 , 1] (or both). Assume that there are infinitely many in 
[0, 1

2 ]. Set an1 = a1. Let an2 be the next an such that an ∈ [0, 1
2 ]. We have 

n2 > n1 = 1 , 

an1 ∈ [0, 1] ,� � 
1 

an2 ∈ 0, . 
2 

Next either infinitely many an lies in [0, 1 ] or infinitely many an lies in [1 , 1 ]. Assume that
4 4 2 

infinitely many lies in [1 , 1 ]. Pick an n > n2 such that an ∈ [1 , 1 ] and set an3 = an. We 
2 4 4 2 

continue this way. 
Convergence of ank . Note that for k1, k2 ≥ k we have that 

|ank1 
− ank2 

| ≤ 21−k .

Since 2−k → 0 as k →∞ this shows that the subsequence ank is a Cauchy sequence. However, 
more is true. Squeezed between two other sequences bk ≤ ank ≤ ck. We will define sequences 
bk and ck as follows. The sequence bk will be the left endpoint of the interval of length 21−k

that all the element ani will lie in when i ≥ k and ck will be the right end point of the same 
interval. We have now that the sequence bk is increasing and the sequence ck is decreasing 
and the ank are squeezed between the two. It follows that bk is convergent (as it is also 

= 21−kbounded) and likewise for ck. Since ck − bk it follows that bk and ck converges to the 
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same number and since the later ank are all squeezed between the two they also converges 
to that same number. �

From Wikipedia: Karl Theodor Wilhelm Weierstrass (1815 – 1897) was a German math-
ematician often cited as the ”father of modern analysis”. Despite leaving university without 
a degree, he studied mathematics and trained as a school teacher, eventually teaching math-
ematics, physics, botany and gymnastics. Among many other contributions, Weierstrass 
formalized the definition of the continuity of a function and complex analysis, proved the 
intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to 
study the properties of continuous functions on closed bounded intervals. 

Series: Suppose that an is a sequence, we can form a new sequence sn as follows. We let 

s1 = a1 , 

s2 = a1 + a2 

s3 = a1 + a2 + a3 , 

and in general set 
nX

sn = a1 + · · · + an = ai . 
i=1 

P∞ P∞A series ai converges if the sequence sn converges and if it do we also write ai fori=1 i=1 
the limit. 

Geometric series: Suppose now that an = cn so the series is 
nX

i sn = c . 
i=0 

This is the geometric series. It is convergent precisely when |c| < 1. Moreover, when |c| < 1, 
then the limit (infinite sum) is 

∞X 1i c = . 
1 − c 

i=0 

To see this observe that 
nX

i n+1(1 − c) c = 1 − c . 
i=0 

It follows from this that if c 6= 1, then X n+1n
1 − ci sn = c = . 
1 − c 

i=0 
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Therefore, sn converges with limit 1 if |c| < 1 and diverges if |c| > 1 or c = −1. One easily 
1−c 

checks, separately, that it also diverges for c = 1. 

1 P∞ 1Harmonic series: For the harmonic series an = so the series is . This series is 
n i=1 2 

divergent. To see this we will show that 
n 

s2n−1 ≥ . 
2 

This is true for n = 1 as s1 = 1 ≥ 1
2 . 

Assume that it is true for n we will show that it is also true for n + 1. Namely, 

2nX+1−1 
1 n 1 n 1 n + 1 

s2n+1−1 ≥ s2n−1 + ≥ + 2n ≥ + = . 
2n+1 − 1i 2 2 2 2 

i=2n

So the formula also holds for n + 1 and therefore for all n. 

Since n 
2 → ∞ it follows that the subsequence s2n−1 is divergent and therefore so is the

original series. 

Absolutely convergent; We say that a series 
∞X

an
n=0 

is absolutely convergent if the series 
∞X
|an|

n=0 

is convergent. Absolutely convergent implies convergent but not the other way around. 

Example: We will see later that the series X (−1)n

n 
n=1 

is convergent but if we take the absolute values of the an’s, then we get the harmonic series 
which is divergent. 

Proof. (of why absolutely convergent implies convergent.) By the Cauchy convergence the-
orem we only need to show that the sequence 

∞X
ai

i=0 
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is Cauchy sequence if the series 
∞X
|an|

n=0 

is convergent. Set 
nX

sn = ai , 
i=0 

nX
sn = |ai| . 

i=0 

For m < n we have 

|sn − sm| = |an + · · · + am+1| ≤ |an| + · · · + |am+1| = |sn − sm| . 

Since the sequence sn is a Cauchy sequence it now follows that sn is. �

Theorem: A series of non-negative numbers 
∞X

ai , 
i=0 

where an ≥ 0, is convergent if and only if the sequence sn is bounded from above. 

Proof. The sequence sn is monotone nondecreasing since 

sn+1 = sn + an ≥ sn . 

The claim now follows from the monotone convergence theorem. �

Example: The series 
∞X 1

i2 
i=1 

is convergent. This is a sequence of non-negative numbers so we only need to show that 
there exist M such that for all n Xn 

1
sn = ≤ M . 

i2 
i=1 

Claim: 
n−1 � �iX 1

s2n−1 ≤ . 
2 

i=0 

This would be enough because the last is a convergent geometric series so in particular 
bounded. 
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We will show this by induction. For n = 1 we have that � �0
1 

s1 = 1 = . 
2 

So it is correct for n = 1. Assume next that it is true for n; we will show that it also holds 
for n + 1. 

2nX+1−1 n−1 � �iX1 1 1 
s2n+1−1 = s2n−1 + ≤ + 2n

i2 2 (2n)2 
i=2n i=0 Xn−1 � �i X�n �i

1 1 1 ≤ + = . 
2 2n 2 

i=0 i=0 

This show the induction step and completes the proof. 

To help determine whether or not a series converges there are a number of tests: 
• Comparison test.
• Ratio test.
• Root test.

Comparison test; version 1: Suppose that an and bn are two sequences with 

0 ≤ an ≤ bn . 

If 
∞X

bn
n=1 

is convergent, then so is 
∞X

an . 
n=1 

Example: The series 
∞ 

2−nX 

n 
n=1 

is convergent. Namely, if we set 
2−n 

an = 
n 

and 
= 2−nbn , P∞then 0 ≤ an ≤ bn and since the series n=1 bn is convergent, then by the comparison test soP∞is the series n=1 an. 
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Comparison test; version 2: Suppose that an and bn are two sequences with bn =6 0 and 
an

lim = L =6 0 , 
n→∞ bn

The series 
∞X

an
n=1 

is convergent if and only if 
∞X

bn
n=1 

is. 

Example: The series 

is convergent since 

and the series 

is convergent. 

Ratio test: Let an

. 

If 

∞X 1 
n2 − 1 

n=2 

2n → 1 ,
n2 − 1 

∞X 1
2n 

n=2 

≥ 0 and assume that 
an+1 → a
an

P 
• a < 1, then the series an is convergent.P 
• a > 1, then the series an is divergent. 
• a = 1, it is inconclusive.

Example 1: 
1 

an = . 
n 

In this case 
an+1 → 1
an

so the test is inconclusive, but the series is divergent. 
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Example 2: 
1 

an = . 
2n 

In this case 
an+1 → 1
an

so the test is inconclusive, but the series is convergent. 
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Lecture 8 

Series: Suppose that an is a sequence, we can form a new sequence sn as follows. We let 

s1 = a1 , 

s2 = a1 + a2 

s3 = a1 + a2 + a3 , 

and in general set 
nX

sn = a1 + · · · + an = ai . 
i=1 

P∞ P∞A series ai converges if the sequence sn converges and if it do we also write ai fori=1 i=1 
the limit. 

Geometric series: 
∞X

i c n . 
i=0 

Convergent precisely when |c| < 1. 

Harmonic series: 
∞X 1

. 
n 

i=1 

This series is divergent. 

Absolutely convergent; We say that a series 
∞X

an
n=0 
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is absolutely convergent if the series 
∞X
|an|

n=0 

is convergent. Absolutely convergent implies convergent but not the other way around. 

Theorem: A series of non-negative numbers an ≥ 0 
∞X

ai , 
i=0 

is convergent if and only if the sequence sn is bounded from above. 

To help determine whether or not a series converges there are a number of tests: 
• Comparison test.
• Ratio test.
• Root test.
• Other tests that we will discuss later.

Comparison test; version 1: Suppose that an and bn are two sequences with 

0 ≤ an ≤ bn . 

If 
∞X

bn
n=1 

is convergent, then so is 
∞X

an . 
n=1 

Example: The series 
∞X 2−n 

n 
n=1 

is convergent. Namely, if we set 
2−n 

an = 
n 

and 
= 2−nbn ,P∞then 0 ≤ an ≤ bn and since the series n=1 bn is convergent, then by the comparison test soP∞is the series n=1 an. 
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Comparison test; version 2: Suppose that an and bn are two sequences with bn =6 0 and 
an

lim = L =6 0 , 
n→∞ bn

The series 
∞X

an
n=1 

is convergent if and only if 
∞X

bn
n=1 

is. 

Example: The series 

is convergent since 

and the series 

is convergent. 

Ratio test: Let an

. 

If 

∞X 1 
n2 − 1 

n=2 

2n → 1 ,
n2 − 1 

∞X 1
2n 

n=2 

≥ 0 and assume that 
an+1 → a
an

P 
• a < 1, then the series an is convergent.P 
• a > 1, then the series an is divergent. 
• a = 1, it is inconclusive.

Example 1: 
1 

an = . 
n 

In this case 
an+1 → 1
an

so the test is inconclusive, but the series is divergent. 
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Example 2: 
1 

an = . 
2n 

In this case 
an+1 → 1
an

so the test is inconclusive, but the series is convergent. 

nRoot test: Let an ≥ 0 be a sequence of non-negative numbers. Suppose limn→∞(an) 
1 
= r. 

If P∞• r < 1, then the series n=0 an is convergent.P∞• r > 1, then the series n=0 an is divergent. 
• r = 1, then it is inconclusive.

Proof. (of root test.) Suppose that r < 1. It follows that for r < r0 < 1, there exists N such 
that if n ≥ N , then 

1 
(an)n ≤ r0 . 

Therefore, 
0 ≤ an ≤ r0 

n . P∞ nHowever, the series r is a geometric series that is convergent since r0 < 1. We now n=0 0 P∞have by the first version of the comparison test that also the series n=0 an is convergent. 
Suppose that r > 1. In that case we have that for 1 < r0 < r, there exists N such that if 

n ≥ N , then 
1 

(an)n ≥ r0 . 

Hence, for n ≥ N 
an ≥ r0 

n ,P∞ nwhere, the series r is a divergent geometric series. Therefore, by the comparison test n=0 0 
the original series is divergent. �

Power series: 

• 
∞X

n 1 
x = . 

1 − x 
n=0 

• 
∞ nX x 

= exp x . 
n! 

n=0 
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• 
∞X 2 nx 

(−1)n = cos x . 
(2 n)!

n=0 

• 
∞X 2 n+1x 

(−1)n = sin x . 
(2 n + 1)! 

n=0 

P∞ nFormel definition: Let cn be a sequence, then n=0 cn x is a power series. 

When does a power series converge? 

Why does it give familiar functions? 

We will answer the second question next time for the exponential function. 

The answer to the first question comes from the root test or the ratio test. 

Example: Consider the power series: 

∞X nx 
. 

n! 
n=0 

By the ratio test with an = x
n 

n 

! we have

n+1n! x xan+1
= = → 0 .

an (n + 1)! xn n + 1 

It follows that the power series is convergent for all x. 

Example: 
∞X

n x . 
n=0 

This series is convergent for |x| < 1 and divergent otherwise. 
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To talk about convergence of a general power series we need the notion of lim sup of a 
sequence. This is defined as follows. 

Let an be a sequence. If it is not bounded from above, then we set lim sup an to be ∞. 
Otherwise we will define a new sequence bn from an as follows. 

bn = sup {an, an+1, an+2, · · · } . 

Note that since we are assuming that the an’s are bounded from above the bn’s are real 
numbers and the sequence bn is decreasing. – It is decreasing since 

bn = sup {an, an+1, an+2, · · · } ≥ sup {an+1, an+2, · · · } = bn+1 . 

(For bn+1 supremum is taken over a smaller set.) 

Since the sequence bn is decreasing it is converging with limit b that possibly could be −∞ 
if the sequence bn is not bounded from below. 

Definition (of lim sup): 
lim sup an = lim bn = b . 

n→∞n→∞ 

Back to power series. Suppose that 
∞X

an x n

n=0 

is a power series. Set 
1 

R = . 
lim supn→∞ |an| 

1 
n

R is said to be the radius of convergence. 

nConvention: If lim supn→∞ |an| 
1 
= 0, then the radius of convergence is said to be ∞. If 

nlim supn→∞ |an| 
1 
= ∞, then we set R = 0. 

From the root test one can now show the following: 

The power series in convergent if |x| < R and divergent if |x| > R. 
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The case of where |x| = R has to be examined on a case by case basis. 
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Lecture 9 

Power series: Suppose that an is a sequence, for each x we can form a series 
∞X

an x n . 
n=0 

Exponential map as a power series: Define E(x) as the power series 

∞X nx 
E(x) = . 

n! 
n=0 

Step 0: The power series converges for all x. Namely, since 

|an+1 x
n+1| |n! xn+1| x 

= = → 0 ,
|an xn| |(n + 1)! xn| n + 1 

the claim follows from the ratio test. 

2 3 kStep 1: Define e = E(1) and e = e e, e = e e e etc. This way e is defined for all k ∈ N. 

−k 1 x+y x yWe also define e = 
ek
. (The idea is that we would like to have e = e e . ) 

0We set e = 1. 

If q = m
n ∈ Q, where m ∈ Z and n ∈ N, then we let eq be the positive number α so that 
m x+y xαn = e . (Again the idea is that we would like to have that e = e ey.) 

This way eq is defined for all rational numbers. 

√ 
What about the irrational numbers like 2? 
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Step 2: Next time we will show that 

E(x + y) = E(x) E(y) . 

Here we claim that E(x) > 0 for all x. If x ≥ 0, then this is clear since 
2 3x x x 

E(x) = 1 + + + + · · · ≥ 1 . 
1! 2! 3! 

If x < 0, then using the formula we will show next time we have that 

1 = E(0) = E(x) E(−x) . 
Therefore, 

1 
E(x) = > 0 .

E(−x) 

Using that E(x + y) = E(x) E(y) we now claim that E(q) = eq for all rational numbers q. 

For integers m this is how we defined em . For m = −k, where k ∈ N we defined 

1 1 
e −k = = = E(−k) . 

ek E(k) 

For a general rational number q = m , where m ∈ N and n ∈ Z, we have � � �� 
n � � � �nm 

E = E 
n 

m 
n 

· · · E m 
= E(m) , 

n 
and � 

E 
� m 
> 0 .

n 

This gives us that E(q) = eq for all rational numbers q. 

Step 3: We now have E(x) is defined for all x whereas ex is defined for all rational numbers. 

What other properties would we want of the exponential function? 

We would want it to be continuous! 

Reminder: A function f : A → R on some set A ⊂ R is said to be continuous if for all 
x0 ∈ A we have: 

For all � > 0, there exists a δ = δ(x0) > 0 such that if |x − x0| < δ (x ∈ A), then
|f(x) − f(x0)| < �. 
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On Pset 5 you will be asked to show that E(x) is continuous at all points. 

Step 4: We will next show that E(x) is the unique continuous function where E(q) = eq for 
all rational numbers q. 

Theorem: Let f and g be two continuous function on R that agrees on all rational numbers, 
then f = g. 

We will show this theorem next time. For now here are some more about what it means for 
a function to be continuous. 

Example 1: Suppose f(x) = c, where c is a constant. We will show that f is continuous. 
Given x0 ∈ R and � > 0, set δ = 1. We then have that if |x − x0| < δ = 1, then 
|f(x) − f(x0)| = 0 < �. This show that f is continuous. 

Example 2: Suppose f(x) = x, we will show that f is continuous. Given x0 ∈ R and � > 0, 
set δ = �. We then have that if |x − x0| < δ = �, then |f(x) − f(x0)| = |x − x0| < �. This 
show that f is continuous. 

Algebraic properties of continuous functions: 

• If f and g are continuous functions, then so is f + g.
• If f is continuous and c is a constant, then c f is continuous.
• If f and g are continuous, then f g is also continuous.
• If f is continuous and f 6= 0, then 

f 
1 is continuous.

• If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (the proof is very similar to the one we gave for the algebraic properties of limits.) �

Theorem: All polynomials are continuous. 

Example 3: If f(x) = x2 + 1, then f is continuos. We have already proven that g(x) = x 
is continuous so by the algebraic properties we have that x2 = g g is continuous. We have 
also already shown that the constant functions are continuous so h(x) = 1 is continuous and 
therefore by the algebraic properties we have that f = g2 + h is continuous. 
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Lecture 10 

Step 0: The power series converges for all x. 

Step 1: Define eq for all rational numbers q. 

Step 2: Need to show that 

E(x + y) = E(x) E(y) . 

Step 3: E(x) is defined for all x, whereas ex is defined for all rational numbers, and E(q) = eq 

for all rational numbers. 

Step 4: E is continuous on all of R. (Pset 5.) 

Step 5: If f and g are continuous functions on R that agrees on Q, then f = g everywhere. 

49

Power series: Suppose that an is a sequence. For each x we can form a series∑∞
n=0

an x
n .

Exponential function as a power series: Define E(x) by the power series

E(x) =
∑∞
n=0

xn

n!
.
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Suppose that we have two convergent series∑∞
n=0

an and
∑∞
n=0

bn

of non-negative numbers an, bn ≥ 0.

Form the ”product series” ∑∞
n=0

cn ,

where

cn =
∑n
i=0

ai bn−i .

Note that each cn ≥ 0 so by the monotone convergence theorem the series∑∞
n=0

cn

is convergent if it is bounded.

Theorem 1: If
∑∞

n=0 an and
∑∞

n=0 bn are as above, then the series∑∞
n=0

cn

is convergent with limit ∑∞
n=0

an
∑∞
n=0

bn .

Proof. Denote

san =
∑n
i=0

ai and sbn =
∑n
i=0

bi and scn =
∑n
i=0

ci .

The idea here is that

(∗)

(∑n
`=0

a`

) (∑n
`=0

b`

)
=
∑n
k=0

∑
i+j=k

ai bj +
∑

i+j>n and i,j≤n

ai bj ≤
2∑n

k=0

∑
i+j=k

ai bj .

In other words

(∗∗) scn ≤ san s
b
n ≤ sc2n .

This is because (∗) is

san s
b
n = scn +

∑
i+j>n and i,j≤n

ai bj ≤ sc2n ,
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and

0 ≤
∑

ai bj .
i+j>n and i,j≤n

Note that the first inequality in (∗∗) implies that the sequence scn is bounded and therefore
since an, bn, cn ≥ 0 we have that

san ↑ sa , sbn ↑ sb , scn ↑ sc

by the monotone convergence theorem for sequences. Since the product san s
b
n is squeezed

between scn and sc2n by (∗∗) we have that

sc ≤ sa sb ≤ sc .

From this the claim follows. �

Applying Theorem 1 to the power series E(x) we can now prove the following:

Theorem 2:

E(x+ y) = E(x)E(y) .

Proof. We will show this assuming that x, y ≥ 0. Once we have shown the theorem for x,
y ≥ 0 the general case is not too difficult but we will not prove that here. The idea is that
E(x+ y) will play the role of ∑∞

n=0

cn

above. So set

cn =
(x+ y)n

n!
,

By the ”binomial” formula

(x+ y)n =
∑n
i=0

(
n

i

)
xi yn−i .

So

cn =
1

n!

∑n
i=0

(
n

i

)
xi yn−i .

Since (
n

i

)
=

n!

i! (n− i)!
,

we have that

cn =
∑n
i=0

xi

i!

yn−i

(n− i)!
.

This shows that

cn =
∑n
i=0

ai bn−i ,
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where 
ix

ai = 
i! 

and 
iy

bi = . 
i! 

The claim now follows from Theorem 1. �

Coming back to the functions E and e. We have that they agree on all rational numbers 
and that E is defined for all real numbers. 

We would want the exponential function to be continuous! 

Reminder: A function f : A → R on some set A ⊂ R is said to be continuous if for all 
x0 ∈ A we have: 

For all � > 0, there exists a δ = δ(x0) > 0 such that if |x − x0| < δ (x ∈ A), then
|f(x) − f(x0)| < �. 

On Pset 5 you will be asked to show that E(x) is continuous at all points. 

Step 5: We will show that E(x) is the unique continuous function where E(q) = eq for all 
rational numbers q. 

Theorem 3: (On Pset 5.) Let f and g be two continuous function on R that agrees on all 
rational numbers, then f = g. 

We will next see that there are functions on R that are not continuous at any point! 

√ 
Before defining such a function recall that we already proved that 2 is a irrational number 
and thus for all δ > 0, there exists an N such that if n ≥ N , then 

√ 
2 

0 < < δ . 
n 

So arbitrarily close to zero there are irrational numbers. Likewise by the Archimedean 
property we have that arbitrarily close to any irrational number there is a rational number. 
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This gives an example of a function that is discontinuous at all points. On the other hand 
recall from last time how to generate continuous functions from known continuous functions: 

Algebraic properties of continuous functions: 
• If f and g are continuous functions, then so is f + g.
• If f is continuous and c is a constant, then c f is continuous.
• If f and g are continuous, then f g is also continuous.
• If f is continuous and f =6 0, then 

f 
1 is continuous.

• If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Proof. (The proof is very similar to the one we gave for the algebraic properties of limits of 
sequences.) �

Theorem: All polynomials are continuous. 
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On R define a function f as follows

f(x) =

{
1 x ∈ Q

0 otherwise

We claim that f is nowhere continuous. Suppose first that x0 is rational and let 0 < ε < 1.
We have that f(x0) = 1 and for any δ > 0, there exists a irrational number x with |x−x0| < δ
but we also have that

ε < 1 = |f(x)− f(x0)| .
This show that f is discontinuous at x0.

Likewise suppose x0 is an irrational number. We have that f(x0) = 0. Given 0 < ε < 1 for
any δ > 0, there exists a rational number x with |x− x0| < δ. On the other hand

ε < 1 = |f(x)− f(x0)| .
This show that f is discontinuous at x0.
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Lecture 11 

Reminder: A function f : A → R on some set A ⊂ R is said to be continuous if for all 
x0 ∈ A we have: 

For all � > 0, there exists a δ = δ(x0) > 0 such that if |x − x0| < δ (x ∈ A), then
|f(x) − f(x0)| < �. 

Two theorems about continuous functions: 

Extreme Value Theorem: Suppose that f : [a, b] → R is a continuous function, then 
there exist xM ∈ [a, b] such that f(xM ) ≥ f(x) for all x ∈ [a, b]. Similarly, there exists 
xm ∈ [a, b] such that f(xm) ≤ f(x) for all x ∈ [a, b]. 

Intermediate Value Theorem: Suppose that f : [a, b] → R is a continuous function, then 
for all y between f(a) and f(b), there exists x ∈ [a, b] such that f(x) = y. 

We will show these theorems using a lemma that connects sequences and continuous func-
tions. This is the following: 

Lemma: Suppose that f : [a, b] → R is a continuous function and xn → x∞ a sequence, 
then f(xn) → f(x∞). We can also write this as 

� � 
lim f(xn) = f lim xn . 
n→∞ n→∞ 

Proof. To show that f(xn) → f(x∞) let � > 0 be given. Since f is continuous at x∞, there 
exists δ > 0 such that if |x − x∞| < δ, then |f(x) − f(x∞)| < �. Since xn → x∞ there exists 
N such that if n ≥ N , then |xn − x∞| < δ and therefore |f(xn) − f(x∞)| < �. This shows 
the lemma. �
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Using this lemma we can now prove the extreme value theorem: 

Proof. (of EVT.) Let E = f([a, b]) and set M = sup E. We will show that M < ∞ and 
that M = f(x) for some x ∈ [a, b]. We show first that M is finite. Otherwise for each n 
there exists an xn ∈ [a, b] such that f(xn) > n. Since the sequence {xn} is bounded by the 
Bolzano-Weirstrass theorem it has a convergent subsequence. Let us denote that by xnk . 
We have xnk → x∞ ∈ [a, b]. By the lemma above f(xnk ) → f(x∞) but we assumed that the 
sequence f(xnk ) is unbounded which is the desired contradiction. 
For each integer n we can now choose xn ∈ [a, b] such that f(xn) > M − 

n 
1 . Again since

this sequence is bounded by the Bolzano-Weirstrass theorem it has a convergent subsequence 
xnk → x∞ ∈ [a, b]. By the lemma above f(xnk ) → f(x∞) ≥ M . Since M = sup f([a, b]) we 
have that f(x∞) = M . This show the EVT. �

Proof. (of IVT.) We will assume that f(a) < 0 < f(b) and show that there exists x ∈ [a, b] 
such that f(x) = 0. The general case is similar. Let A = {y | for all x ≤ y we have that f(x) ≤ 
0}. Note that a ∈ A so the set is non-empty. Set M = sup A and let xn be a sequence with 
xn < M and xn → M . It follows that f(xn) < 0 and so by the lemma above we must have 
that f(M) ≤ 0. We are done if f(M) = 0 so assume that f(M) < 0. We have that M < b 
and by continuity there exist a whole interval around M where f < 0. This contradict that 
M was the supremum of the set A. Showing the IVT. �
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Abstract metric space. 

Definition: Metric space A metric space is a set X with a function d : X × X → R with 
the following three properties: 

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y. (Distances ≥ 0.)
(2) d(x, y) = d(y, x). (Symmetric.)
(3) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality.)

Examples: 

(1) X = R and
d(x, y) = |x − y| . 

(2) X = R2 and for x = (x1, x2) and y = (y1, y2)

d(x, y) = 
p
|x1 − y1|2 + |x2 − y2|2 . 

(3) X = R3 and for x = (x1, x2, x3) and y = (y1, y2, y3)

d(x, y) = 
p
|x1 − y1|2 + |x2 − y2|2 + |x3 − y3|2 . 

Example: Continuous function on an interval [a, b]. Let X = C([a, b]) where C([a, b]) is the 
set of continuous functions on [a, b]. The distance between two continuous functions f and 
g is then 

d(f, g) = max |f(x − g(x)| . 
x∈[a,b] 

Since f − g is also a continuous function the EVT theorem guarantees that the max is 
achieved for some x ∈ [a, b]. 

Metric spaces plays the role of generalised real numbers. A lot of the discussion that we 
have had in the class holds also for metric spaces and this is useful in many circumstances. 
For instance, we will see in a later class that we can use it to solve ODEs. 

Sequences in a metric space: A sequence in a metric space (X, d) is a map f : N → X. 
We typically denote the image f(n) by xn. Similarly we define a subsequence as the 
composition of a strictly increasing map g : N → N with f and xnk = f(g(k)). 

It is not all results that we know from R that generalises to general metric spaces. For 
instance, in general there are no algebraic properties, no squeeze theorem, no monotone 
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convergence theorem. On the other hand the statement of both the Cauchy convergence 
theorem and the Bolzano-Weirstrass theorems makes sense in a general metric space. 

Example (Box distance): The space is X = R2 and if x = (x1, x2) and y = (y1, y2), then 

d(x, y) = |x1 − y1| + |x2 − y2| . 

Example (Strange metric on integers): The space is X = N and if m, n are integers, 
then 

1 1 
d(m, n) = − .

n m

Here is a wild example of a metric space: 

Example (French railway metric): The space is X = R2 and if x = (x1, x2) and 
y = (y1, y2), then ( 

|x − y| if x = c y or y = c x for some c ∈ R 
d(x, y) = . 

|x| + |y| otherwise 

Here 

|x − y| = 
p
(x1 − y1)2 + (x2 − y2)2 , 

and likewise for |x| and |y|. 

Definition: Convergent sequence in a metric space If (X, d) is a metric space and xn

is a sequence in X, then we say that xn converges to x and write xn → x or x = limn→∞ xn

if for all � > 0, there exists an N such that if n ≥ N , then 

d(x, xn) < � . 

This is equivalent to that the sequence d(xn, x∞) → 0. 

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and xn is a 
sequence in X, then we say that xn is a Cauchy sequence if for all � > 0, there exists an N , 
such that if m, n ≥ N , then 

d(xm, xn) < � . 
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Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence. 

Proof. So suppose that xn ∈ X is a sequence and xn → x. Given � > 0, convergence means 
that there exists N such that if n ≥ N , then d(x, xn) < 

2 
� . If both m, n ≥ N , then we have 

by the triangle inequality that 

� � 
d(xm, xn) ≤ d(xm, x) + d(x, xn) < + = � . 

2 2 

This show the theorem. �

The converse is not always the case: If X = (0, 1) ⊂ R with d(x, y) = |x − y|, then the 
sequence xn = 

n 
1 is a Cauchy sequence but since 0 is not in X, it is not convergent. We

sometimes express this by saying that in this case X is not Cauchy complete. 

Definition: Continuous function on a metric space (X, d) Suppose that F : X → R 
is a function. We say that f is continuous at x0 ∈ X, if for all � > 0, there exists a δ > 0, 
such that if x ∈ X with d(x, x0) < δ, then 

|F (x) − F (x0)| < � . 

Example: Let again X = C([0, 1]) be the set of continuous functions on [0, 1]. Equip X 
with the distance described above. So the distance between to continuous functions f and g 
is then 

d(f, g) = max |f(x − g(x)| . 
x∈[a,b] 

Define F on X to be the function F (f) = f(0) where f ∈ C([0, 1]). F is easily seen to be a 
continuous function on the metric space X. 

We can now extend one of the earlier lemmas to general metric spaces. 

Lemma: Let (X, d) be a general metric space. Suppose that f : X → R is a continuous 
function and xn is a sequence in X with xn → x∞, then f(xn) → f(x∞). 

Proof. To show that f(xn) → f(x∞) let � > 0 be given. Since f is continuous at x∞, there 
exists δ > 0 such that if d(x, x∞) < δ, then |f(x) − f(x∞)| < �. Since xn → x∞ there exists 
N such that if n ≥ N , then d(xn, x∞) < δ and therefore |f(xn) − f(x∞)| < �. This shows 
the lemma. �
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Lecture 12 

Review (discussed in lectures so far): 

(1) R is the complete ordered field that contains Q.
(2) Sequences and limits.
(3) Series.
(4) Continuous functions.
(5) Metric spaces.

Definition: Metric space. A metric space is a set X with a function d : X × X → R with 
the following three properties: 

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y. (Distances ≥ 0.)
(2) d(x, y) = d(y, x). (Symmetric.)
(3) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality.)

Examples (Euclidean distance): 

(1) X = R and
d(x, y) = |x − y| . 

(2) X = R2 and for x = (x1, x2) and y = (y1, y2)

d(x, y) = 
p
|x1 − y1|2 + |x2 − y2|2 . 

(3) X = R3 and for x = (x1, x2, x3) and y = (y1, y2, y3)

d(x, y) = 
p
|x1 − y1|2 + |x2 − y2|2 + |x3 − y3|2 . 

Example: Continuous function on an interval [a, b]. Let X = C([a, b]) where C([a, b]) is the 
set of continuous functions on [a, b]. The distance between two continuous functions f and 
g is then 

d(f, g) = max |f(x − g(x)| . 
x∈[a,b] 

Since f − g is also a continuous function the EVT theorem guarantees that the max is 
achieved for some x ∈ [a, b]. 
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Example (Box distance): The space is X = R2 and if x = (x1, x2) and y = (y1, y2), then 

d(x, y) = |x1 − y1| + |x2 − y2| . 

Sequences in a metric space: A sequence in a metric space (X, d) is a map f : N → X. 
We typically denote the image f(n) by xn. Similarly we define a subsequence as the 
composition of a strictly increasing map g : N → N with f and xnk = f(g(k)). 

It is not all results that we know from R that generalises to general metric spaces. For 
instance, in general there are no algebraic properties, no squeeze theorem, no monotone 
convergence theorem. On the other hand the statement of both the Cauchy convergence 
theorem and the Bolzano-Weirstrass theorems makes sense in a general metric space. 

Definition: Convergent sequence in a metric space If (X, d) is a metric space and xn

is a sequence in X, then we say that xn converges to x and write xn → x or x = limn→∞ xn

if for all � > 0, there exists an N such that if n ≥ N , then 

d(x, xn) < � . 

This is equivalent to that the sequence d(xn, x) → 0. 

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and xn is a 
sequence in X, then we say that xn is a Cauchy sequence if for all � > 0, there exists an N , 
such that if m, n ≥ N , then 

d(xm, xn) < � . 

Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence. 

Proof. So suppose that xn ∈ X is a sequence and xn → x. Given � > 0, convergence means 
that there exists N such that if n ≥ N , then d(x, xn) < 

2 
� . If both m, n ≥ N , then we have 

by the triangle inequality that 
� � 

d(xm, xn) ≤ d(xm, x) + d(x, xn) < + = � . 
2 2 

This show the theorem. �

The converse is not always the case: If X = (0, 1) ⊂ R with d(x, y) = |x − y|, then the 
sequence xn = 

n 
1 is a Cauchy sequence but since 0 is not in X, it is not convergent. We

sometimes express this by saying that in this case X is not Cauchy complete. 
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A metric space is said to be Cauchy complete if every Cauchy sequence is convergent. 

Definition: (metric) ball. If (X, d) is a metric space, x ∈ X and r > 0, then 

Br(x) = {y ∈ X | d(x, y) < r} 

is said to be the ball with center x and radius r. 

Definition: Bounded subset. If (X, d) is a metric space and A ⊂ X, then we say that A is 
bounded if A is contained in some metric ball Br(x). 

Theorem: In a metric space (X, d) any Cauchy sequence is bounded. 

Proof. Suppose that xn is a Cauchy sequence. By definition of a Cauchy sequence, there 
exists some N such that if m, n ≥ N , then 

d(xn, xm) < 1 . 

Set 
r = 1 + max{d(xN , xi) | i < N} . 

We claim that 
{xn} ⊂ Br(xN ) . 

Since r ≥ 1 and d(xN , xn) < 1 for n ≥ N we only need to see that xn ∈ Br(xN ) for n < N . 
This follows from that d(xN , xn) < r when n < N by definition of r. �

Bolzano - Weirstrass theorem: Any bounded sequence of real numbers have a convergent 
subsequence. This theorem does not hold for a general metric space but it holds if the metric 
space is compact. To discuss this we need the notion of what an open subset of a metric 
space is. 

Definition (Open subset): Let (X, d) be a metric space. We say that O is an open subset 
of X if for all x ∈ O, there exists an r > 0 such that Br(x) ⊂ O. 

Note that ∅ (the empty set) and X are both open. 

On subsets of a set X we have the following operations. 
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• Union of two or more subsets.
If U1 and U2 are subsets, then U1 ∪ U2 is the union. So

U1 ∪ U2 = {x ∈ X | x ∈ U1 or x ∈ U2 or both} . 
Similarly, for union of more than two subsets. 

• Intersection of two or more subsets.
If U1 and U2 are subsets, then U1 ∩ U2 is the intersection. So

U1 ∩ U2 = {x ∈ X | x ∈ U1 and x ∈ U2} . 
Similarly, for intersection of more than two subsets. 

• Complement of a subset U .
X \ U is all the elements of X that are not in U .

Example: X = R, A = (0, 3), B = (−1, 2) and C = (0, 2). 
A ∪ B = (0, 3). 
A ∩ B = (0, 2). 
X \ A = (−∞, 0] ∪ [3, ∞). 
C ⊂ B. 

Union and intersections of families of subsets 
• Union of families.
If Uα is a family of subsets, then ∪α Uα is the union of all the subsets. So

∪α Uα = {x ∈ X | x ∈ Uα for some α} . 
• Intersection of families.
If Uα is a family of subsets, then ∩α Uα is the intersection of all the subsets. So

∩α Uα = {x ∈ X | x ∈ Uα for all α} . 

Example: X = R, Un = (− 
n 
1 , 

n 
1 ), where n ∈ N, then

∪n Un = (−1, 1) and ∩n Un = {0} . 

Lemma: For a set X and subsets A, B we have A = B if and only if A ⊂ B and B ⊂ A. 

Lemma: For a set and subset A, B and Aα we have 
(1) X \ (X \ A) = A.
(2) X \ ∪αAα = ∩α(X \ Aα).
(3) X \ ∩αAα = ∪α(X \ Aα).
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Proof. To prove the first of these claim that X \ (X \ A) = A we need to show two directions. 
Suppose x ∈ A, then x ∈/ X \A and therefore x ∈ X \(X \A). Conversely, if x ∈ X \(X \A), 
then x ∈/ X \ A and therefore x ∈ A. 
To prove the second claim observe that if x ∈ X \∪αAα, then x /∈ ∪αAα so x is not in any 

of the Aα’s. Therefore x must be in all the X \ Aα and hence in the intersection of those 
so x ∈ ∩α(X \ Aα). This show that X \ ∩αAα ⊂ ∩α(X \ Aα). To show the other direction 
suppose that x ∈ ∩α(X \ Aα). This means that for all α we have that x ∈/ Aα. Therefore, 
x / This show the other direction. ∈ ∪αAα and hence x ∈ X \ (∪αAα) . 
Finally, to prove the third claim observe that if x ∈ X \ ∩αAα, then x ∈/ ∩αAα and so 

there exists some α so that x ∈ X \ Aα. In other words, x ∈ ∪α(X \ Aα). This show one 
direction. To see the other direction observe that if x ∈ ∪α(X \ Aα), then there exists some 
α so that x ∈ X \ Aα. It follows that x / ∈ ∩αAα but instead x ∈ X \∩αAα.∈ Aα and hence x / 
This show the other direction and completes the proof of the lemma. �

Lemma: In a metric space any ball Br(x) is an open subset. 

Proof. Suppose that y ∈ Br(x), and let s = r − d(x, y). Note that since y ∈ Br(x) we have 
that d(x, y) < r and so s > 0. We will show that Bs(y) ⊂ Br(x). To see that assume that 
z ∈ Bs(y) we then have that d(y, z) < s and so by the triangle inequality 

d(z, x) ≤ d(z, y) + d(y, x) < s + d(y, x) = (r − d(x, y)) + d(y, x) = r . 

This shows the claim. �

Lemma: In a metric space if Oα are open subsets, then 

∪αOα 

is open. 

Proof. See Pset. �

Lemma: In a metric space if O1, · · · , On are finitely many open subsets, then 

O1 ∩ · · · ∩ On

is open. 

Proof. Suppose that x ∈ O1∩· · ·∩On, then x lies in each Oi. For each i, there exists an ri > 0, 
such that Bri (x) ⊂ Oi. Let r = min ri, then for each i we have that Br(x) ⊂ Bri (x) ⊂ Oi so 
Br(x) is a subset of each Oi and hence Br(x) ⊂ O1 ∩ · · · ∩ On. This shows the claim. �

Warning: Intersection of infinitely many open subsets may not be open!!!! 

64



          

6 TOBIAS HOLCK COLDING 

Example: X = R and for each natural number let On be the open set On = (− 
n 
1 , 

n 
1 ), then

∩n On = {0} . 
So the intersection of these infinitely many open subsets is not open. 
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Lecture 13 

Definition (Closed subsets): Let (X, d) be a metric space. We say that C is a closed subset 
of X if the complement X \ C is open. 

Note that ∅ (the empty set) and X are both closed. 

Examples: 
• (0, 1) is not a closed subset of R.
• {0} is a closed subset of R.
• [0, 1] is a closed subset of R.
• [0, 1] × [0, 1] is a closed subset of R2 .

Lemma: Let (X, d) be a metric space and r > 0, then 

Ar = {y | d(x, y) > r}
¯is open. Equivalently, Br(x) = {y | d(x, y) ≤ r} is closed. 

Proof. Suppose that y ∈ Ar, then d(y, x) > r and if we set s = d(y, x) − r, then s > 0. 
Moreover, if z ∈ Bs(y), then by the triangle inequality 

d(x, y) ≤ d(y, z) + d(z, x) . 

So 
r < r + s − d(y, z) ≤ d(x, y) − d(y, z) ≤ d(z, x) . 

This show that Bs(z) ⊂ Ar and so Ar is open. �

There is an equivalent way of defining closed subsets and that comes from the next theorem. 

Theorem: A subset C of a metric space (X, d) is closed if and only if for all convergent 
sequences xn with all xn in C also the limit is in C. 
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Proof. Suppose first that A is closed and let xn be a convergent sequence is A with limit x 
we need to show that x ∈ A. Since A is closed the complement is open and if x ∈ X \ A, 
then there exists some r > 0 so Br(x) ⊂ X \ A and therefore for all y ∈ A we would have 
that d(y, x) ≥ r. This contradict that xn → x and xn ∈ A. 

We also need to show the converse. So suppose that A is a subset with the property that 
for all sequences in A that are convergent in X the limit is in A. We will show that A is 
closed or equivalent that the complement is open. If the complement is not open, then there 
exists an x ∈ X \ A such that no ball around x is entirely contained in the complement. 
Therefore for each n there exists an xn ∈ A. This sequence converges to x which was assumed 
not to be in A contradicting that A contained all limits of sequences in A and therefore the 
complement must be open and A itself closed. �

For union and intersection of closed subsets we have the following: 

Theorem: 

• Union: If Cα is a family of closed subsets, then ∩α Cα is also closed.
• Intersection: If C1, · · · , Cn are closed subsets, then C1 ∪ · · · ∪ Cn is also closed.

Proof. There are several ways of proving this. The easiest is probably straight from the defi-
nition using the operations on sets. For the first claim we need to show that the complement 
of ∩α Cα is open. Using the operations of sets we have that 

X \ ∩α Cα = ∪α(X \ Cα) . 

Since each X \ Cα are open this is the union of open sets and therefore open. This shows 
the first claim. 

To see the second claim we argue similarly. We want to show that C1 ∪ · · · ∪ Cn is closed 
or, equivalently, X \ (C1 ∪ · · · ∪ Cn) is open. However, 

X \ (C1 ∪ · · · ∪ Cn) = (X \ C1) ∩ · · · ∩ (X \ Cn) , 

where the last is the intersection of finitely many open sets and therefore open. This show 
the second claim. �

Warning: Union of infinitely many closed sets may not be closed!!! 

Definition (Cover, open cover and finite sub-cover): If A is a subset of X, then a cover of 
A is a collection collection of subsets Uα of X so that 

A ⊂ ∪αUα . 

We say that a Uα1 , · · · , Uαn is a finite sub-cover if also {Uαi }i is a cover. 

If (X, d) is a metric space and all the Uα are open, then we say that {Uα}α is an open cover. 
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Example: If X = R × R, then An = (−n, n) × (−n, n) is an open cover of X. 

Example: Note that in the example where X = R × R and An = (−n, n) × (−n, n) is an 
open cover, then there is no finite sub-cover. On the other hand if A ⊂ R × R is bounded, 
then for n sufficiently large A ⊂ An so for A, there is a finite sub-cover of this cover. 

Definition (Compact subset): If (X, d) is a metric space and A is a subset, then we say 
that A is compact if each open cover has a finite sub-cover. 

Example: If (X, d) is R with the usual metric and A = (0, 1), then An = (
n 
1 , 1) is an open

cover of A but there is no finite sub-cover of {An}n that covers A. 

Theorem: [a, b] ⊂ R is compact. 

Proof. We will show this next time. �

Theorem: If (X, d) is a metric space and A a compact subset, then A is closed and bounded. 

Proof. Suppose first that A is not closed. We will show that this leads to a contradiction. If 
it is not closed, then there exists a convergent sequence xn ∈ A with limit x not in A. Set � � 

1 
On = y | d(x, y) > 

n 

. By the earlier lemma these are open sets. Since ∪nAn = X \ {x} and x is assumed not 
to be in A we indeed have that An is an open cover of A. Since An ⊂ An+1 any finite cover 
of An’s would be contained in AN for some large N but this would imply that for all y ∈ A 
we would have that d(x, y) > 

N 
1 contradicting that xn ∈ A and xn → x. This show that the

limit x is in A. 
Since A is compact, 

X = ∪yBr(y) 

and each B1(x) is open, then finitely many of these covers A. Say A ⊂ B1(y1) ∪ · · ·∪ B1(yn). 
Set r = 1 +maxi{d(y1, yi)}. It follows by the triangle inequality that A ⊂ Br(y1). Hence, A 
is bounded. �

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces 
that are not compact. 
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If (X, d) = (0, 1) with the usual metric, then X is closed and bounded but it is not compact. 

Here is a more illuminating example: 

Example: Let X = C([0, 1]) be the set of continuous functions on the unit interval [0, 1]. 
We equip X with the metric where 

d(f, g) = max |f(x) − g(x)| . 
x 

Let fn(x) be the sequence of continuous functions on [0, 1] given by that ⎧⎪1 if 0 ≤ x ≤ 
n+1⎨ 
1 � � 

fn(x) = 1 − n (n + 1) x − 1 if 1 ≤ x ≤ 1 
n+1 n+1 n⎪⎩0 otherwise 

We have the fn is a bounded sequence. After all they all lies in the metric ball B2(0) 
where 0 is the zero function. That is, the function on [0, 1] that is identically equal to zero. 
However, the sequence fn does not have a convergent subsequence (and does not even have 
a subsequence that is a Cauchy sequence). Indeed, for any m 6= m we have that 

d(fm, fn) = 1 . 

¯Note also that the (closed) ball A = B1(0) is closed and bounded but not compact. It is not 
compact because for the balls ∪f B 1 

2
(f) finitely many does not cover A. If finitely many did 

cover A, then for one such ball say B 1 
2
(f) infinitely many fn’s would lie in it but any two 

elements in such a ball would have distance < 1 showing that there could at most be one fn
in such a ball. 

Theorem: If (X, d) is a metric space and A a compact subset, then any closed subset C 
contained in A is also compact. 

Proof. Let Oα be a open cover of C. Since C is closed X \ C is open and so {Oα} together 
with X \ C is an open cover of A and hence finitely many of those say O1, · · · , On, X \ C 
covers A. Since X \ C contains no elements in C it follows that C ⊂ O1 ∪ · · · ∪ On and thus 
C is compact. �

Bolzano-Weirstrass theorem for metric spaces. 

Theorem: If (X, d) is a metric space and A a compact subset, then any sequence in A has 
a convergent subsequence. 
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Proof. We will show this next time. �
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Lecture 14 

Definition (Compact subset): If (X, d) is a metric space and A is a subset, then we say 
that A is compact if each open cover has a finite sub-cover. 

Theorem 0: If (X, d) is a metric space and A a compact subset, then A is closed and 
bounded. 

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces 
that are not compact. 

Example: If (X, d) = (0, 1) with the usual metric, then X is closed and bounded but it is 
not compact. 

Here is a more illuminating example: 

Example: Let X = C([0, 1]) be the set of continuous functions on the unit interval [0, 1]. 
We equip X with the metric where 

d(f, g) = max |f(x) − g(x)| . 
x 

Let fn(x) be the sequence of continuous functions on [0, 1] given by that ⎧⎪ 11 if 0 ≤ x ≤⎨ n+1� � 
fn(x) = 1 − n (n + 1) x − 1 if 1 ≤ x ≤ 1 

n+1 n+1 n⎪⎩0 otherwise 

We have the fn is a bounded sequence. After all they all lies in the metric ball B2(0) 
where 0 is the zero function. That is, the function on [0, 1] that is identically equal to zero. 
However, the sequence fn does not have a convergent subsequence (and does not even have 
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a subsequence that is a Cauchy sequence). Indeed, for any m 6= m we have that 

d(fm, fn) = 1 . 

¯Note also that the (closed) ball A = B1(0) is closed and bounded but not compact. It is not 
compact because for the balls ∪f B 1 

2
(f) finitely many does not cover A. If finitely many did 

cover A, then for one such ball say B 1 
2
(f) infinitely many fn’s would lie in it but any two 

elements in such a ball would have distance < 1 showing that there could at most be one fn
in such a ball. 

Using what we have shown in earlier lectures one can show the following: 

Theorem 1: In Rn , a subset is compact if and only if it is closed and bounded. 

In a general metric space this is not the case as the above examples shows. 

We won’t show this theorem here but instead we will show a version of the Bolzano-Weirstrass 
theorem for metric spaces. This is the next theorem. 

Theorem 2: If (X, d) is a metric space and A a compact subset, then any sequence in A 
has a convergent subsequence. 

Before proving Theorem 2 we will need some results: 

Lemma: Let (X, d) be a compact metric space if Cα is a family of closed (decreasing) nested 
subsets. That is, closed subsets so that Cn+1 ⊂ Cn. If all Cn are non-empty, then 

∩nCn =6 ∅ . 

Proof. Set Oα = X \ Cα, then each Oα is open. If ∩nCn =6 ∅, then 

∪nOα = X . 

Therefore, finitely many of the On’s cover X by compactness. Denote these by Oi for 
i = 1, · · · , k. Since 

O1 ∪ · · · ∪ Ok = X 

it follows that 
C1 ∩ · · · ∩ Ck = ∅ . 
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However, by the nested property one of these k closed subsets is the smallest, say Ck and 
therefore C1 ∩ · · · ∩ Ck = Ck. Contradicting that the intersection is empty. �

¯Before stating the next results recall that in a metric space (X, d) the set Br(x) = {y ∈ 
X | d(x, y) ≤ r} is closed and is referred to as the closed ball. The above lemma gives the 
following useful corollary: 

Corollary: Let (X, d) be a compact metric space and suppose that Brn (xn) is a family of 
¯ ¯balls with centres xn and radii rn > 0, where rn → 0 and Brn (xn). ThenBrn+1 (xn+1) ⊂ 

¯∩nBrn (xn) = {x} . 

That is, the intersection is non-empty and consists of a single point. 

Proof. Set 
¯A = ∩nBrn (xn) . 

Observe first that for each n we have that xn ∈ B̄ 
rn (xn) so from the lemma above we have 

that A is non-empty. We claim that A consists of just one element. Suppose that x, y ∈ A, 
for any integer n we have that 

¯ x, y ∈ Brn (xn) , 

and so by the triangle inequality 

d(x, y) ≤ d(x, xn) + d(xn, y) ≤ rn + rn = 2 rn . 

Since this holds for all n we see that d(x, y) = 0 and so there is at most one such point. �

Proof. (of Theorem 2.) Suppose that xn is a sequence in a compact subset A of a metric 
space. Fix r > 0 and write 

A ⊂x∈A Br(x) . 

Since A is compact finitely many of these cover A. This means that in one of these balls, 
say Br(y1), there are infinitely many xn’s. From here on and out we will focus on this ball. 

¯Since A ∩ B̄ 
r(y) is a closed subset of a compact set we can now cover Br(y) by balls of radius 

r 
4 . By compactness finitely many of these sub-balls cover the ball B̄ 

r(y). In one of those 
B̄ rsub-balls there are also infinitely many xn’s. Fix such a sub-ball and call it (y2). We have 

4 

that 
B̄ r ¯(y2) ⊂ 

2 
B2 r(y1) 

and that infinitely many xn’s belongs to B r (y2). If the original r = 1 gives after repeating 
4 

this process i times balls B41−i (yi) so that 

¯ ¯ ¯ · · · ⊂ B2 41−i (yi) ⊂ · · · B2 4−1 (y2) ⊂ B2(y1) . 
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where each of these balls contains infinitely many elements from the original sequence. Since 
the radii of this sequence converges to zero this sequence satisfies the assumptions of the 
corollary we have from the corollary that 

∩B2 41−i (yi) = {x} . 
Moreover, we can pick a subsequence xnk of the original sequence such that 

¯ xnk ⊂ B2 41−k (yk) . 

It follows that this subsequence converges to x. �
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Lecture 15 

Definition: If f : R → R is a function, then we say that f is differentiable at x0 if the limit 

f(x) − f(x0)
lim 
x→x0 x − x0 

exists. (Note that in this fraction x is assumed to be 6= x0.) When the limit exists, then we 
say that the function f is differentiable at x0 and that its derivative at x0 is the limit. In 
this case we denote the derivative at x0 by f 0(x0). 

Examples: 

(1) Constant functions. Suppose that f(x) = c for some constant c ∈ R, then

f(x) − f(x0) c − c 
= = 0 . 

x − x0 x − x0 

It follows that the limit exists and is zero and so f is differentiable at all points and 
the derivative is zero. 

(2) Linear functions. Suppose that f(x) = x, then

f(x) − f(x0) x − x0 
= = 1 . 

x − x0 x − x0 

It follows that the limit exists and is one and so f is differentiable at all points and 
the derivative is one. 

These are just two examples where we computed the derivative directly from the definition. 
How do we compute the derivative of a general function? 

For that there are some tools: 

• Sum rule.
• Product rule.
• Quotient rule.
• Chain rule.
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Once we know how to compute the derivative of a function, then we would like to understand 
the function using information about its derivative. For that we have the following tools: 

• Mean value theorem.
• L’Hopital’s rule.
• Taylor expansion.

Before getting to how to use the derivative we need to be able to compute it. For that it 
will be useful to note the following: 

Lemma: If f is differentiable at x0, then f is continuous at x0. 

Proof. Since f is differentiable at x0 we have that 

f(x) − f(x0) → f 0(x0) .
x − x0 

Therefore, there exist δ1 > 0 such that if |x − x0| < δ1, then 

f(x) − f(x0) − f 0(x0) < 1 
x − x0 

or, equivalently, 
|f(x) − f(x0) − f 0(x0) (x − x0)| < |x − x0| . 

Therefore, for |x − x0| < δ1 we have 

|f(x) − f(x0)| < (|f 0(x0)| + 1) |x − x0| . 

Given � > 0, set � � 
� 

δ = min δ1, . 
|f 0(x0)| + 1 

It follows that if |x − x0| < δ, then 

|f(x) − f(x0)| < � . 

This show that f is continuous at x0. �

Example: On the real line suppose that f is the function given by that f(0) = 0 and for 
all other x 

1 
f(x) = x sin . 

x 
This is an example of a function that is continuous at zero but not differentiable at zero. 
It is not differentiable at zero because it fluctuate too much near zero. To see that it is 
continuous at zero we will use that | sin t| ≤ 1 for all t. Indeed using that it is easy to see 
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that f is continuous at zero. Next we will see that it is not differentiable at zero. To see 
that we look at the difference quotient 

f(x) − f(0) x sin 
x 
1 − 0 1 

= = sin . 
x − 0 x − 0 x 

As x → 0 this function fluctuate between −1 and 1 so it does not have a limit and therefore 
the original function f is not differentiable at zero. 

Example: If we dampen the fluctuation of the function given in the previous example 
further, then we get a differentiable function at zero even if it still fluctuate but just not as 
much. This is done in the following example. Suppose that f is the function that is given 
by that f(0) = 0 and for all other x 

1 
f(x) = x 2 sin . 

x 
Again we form the difference quotient 

f(x) − f(0) x2 sin 1 − 0 1 
= x = x sin . 

x − 0 x − 0 x 

In this case we see that as x → 0, then x sin 
x 
1 → 0 and so the function is differentiable at

zero and the derivative there is zero. 

The following is very useful to compute the derivative of many functions: 

Theorem: If f , g are functions on R that both are differentiable at x0, then 

• (Sum rule.)
(f + g)0(x0) = f 0(x0) + g 0(x0) . 

• (Leibniz’s rule.)

(f g)(x0) = f 0(x0) g(x0) + f(x0) g 0(x0) . 

• (Quotient rule.) If also g(x0) 6= 0, then� �0
f f 0(x0) g(x0) − f(x0) g0(x0)

(x0) = . 
g g2(x0) 

Proof. To prove the sum rule consider the difference quotient 

(f + g)(x) − (f + g)(x0) f(x) − f(x0) g(x) − g(x0) 
= + → f 0(x0) + g 0(x0) 

x − x0 x − x0 x − x0 

This show the sum rule. 
To prove the Leibniz rule we form the difference quotient 

(f g)(x) − (f g)(x0) 
. 

x − x0 
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We rewrite this using a trick we have used before in other settings. Namely, we can write 
this as 

(f g)(x) − (f g)(x0) f(x) g(x) − f(x) g(x0) + f(x) g(x0) − f(x0) g(x0) 
= 

x − x0 x − x0 

g(x) − g(x0) f(x) − f(x0) 
= f(x) + g(x0) → f(x0) g 0(x0) + f 0(x0) g(x0) . 

x − x0 x − x0 

(Here we used that by the continuity lemma above f(x) → f(x0).) This proves Leibniz’s 
rule. 

Finally, to prove the quotient rule we observe first that since g is differentiable at x0 it is 
continuous at x0 and therefore (since g(x0) =6 0) when x is close to x0 we have that g(x) =6 0. 
Moreover, we have that 

f(x) − f (x0) 
g(x) g(x0) f(x) g(x0) − f(x0) g(x) 

= 
x − x0 (x − x0) g(x) g(x0) 

f(x) g(x0) − f(x0) g(x0) f(x0) g(x0) − f(x0) g(x) 
= + 

(x − x0) g(x) g(x0) (x − x0) g(x) g(x0) 

1 f(x) − f(x0) f(x0) g(x) − g(x) 
= + 

g(x) x − x0 g(x) g(x0) x − x0 

f 0(x0) f(x0) g0(x0)→ + . 
g(x0) g2(x0) 

From this the claim easily follows. �

Leibniz’s rule is named after Gottfried Wilhelm Leibniz (1646 - 1716). Leibniz [from 
Wikipedia] was a German polymath active as a mathematician, philosopher, scientist and 
diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition 
to many other branches of mathematics, such as binary arithmetic and statistics. Leibniz has 
been called the ”last universal genius” due to his vast expertise across fields, which became 
a rarity after his lifetime with the coming of the Industrial Revolution and the spread of 
specialised labor. 

Theorem: (Chain rule.) If f : [a, b] → [c, d] and g : [c, d] → R are functions, where 
f is differentiable at x0 and g differentiable at y0 = f(x0), then the composition g ◦ f is 
differentiable at x0 and the derivative at x0 is 

(g ◦ f)0(x0) = g 0(y0) f
0(x0) . 

Proof. Set y = f(x) and y0 = f(x0). Assume first that f 0(x0) =6 0. In this case for x 6= x0 

but close to x0 we have that y =6 y0 and we can write the difference quotient as follows. We 
have that 

g(f(x)) − g(f(x0)) g(y) − g(y0) f(x) − f(x0) 
= . 

x − x0 y − y0 x − x0 

78



SPRING 2025 - 18.100B/18.1002 5 

Since f is differentiable at x0 as x → x0 we have that 

f(x) − f(x0) → f 0(x0) . 
x − x0 

Moreover, when x → x0 we have that f(x) = y → f(x0) = y0 by the continuity lemma 
above. It follows that when x → x0 we have that 

g(y) − g(y0) → g 0(y0) . 
y − y0 

Combining this gives that 

g(f(x)) − g(f(x0)) g(y) − g(y0) f(x) − f(x0) 
= → g 0(y0) f

0(x0) .
x − x0 y − y0 x − x0 

This proves the chain rule when f 0(x0) 6= 0. When f 0(x0) = 0 we argue as above but have 
to be more careful as in this case we can have that y = y0 even when x 6= x0. For x where 
y = y0 the difference quotient is zero and where y 6= y0 we can argue as above and rewrite 
the difference quotient as the product of two factors. In either case we get that the limit is 
zero proving the remaining case of the chain rule. �

Lemma: Let f : [a, b] → R be a differentiable function and suppose that a < x0 < b and 
that f has a local maximum or minimum at x0, then 

f 0(x0) = 0 . 

Proof. Suppose that x0 is a local maximum. The proof when x0 is a local minimum. It 
follows from the assumption that for all x near x0 

f(x) − f(x0) ≤ 0 . 

Therefore, when x > x0 we have that 

f(x) − f(x0) ≤ 0 ,
x − x0 

whereas when x < x0 we have that for the difference quotient 

f(x) − f(x0) ≥ 0 .
x − x0 

Since the limit is the same whether x converges to x0 from the the left (negative side) or 
from the right (positive side) it follows that f 0(x0) = 0 as claimed. 

�

Theorem: (Rolle’s theorem.) Let f : [a, b] → R be a differentiable function with f(a) = 
f(b), then there exists a x0 between a and b such that 

f 0(x0) = 0 . 

Proof. There are three cases to consider: 
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(1) f is constant equal to f(a).
(2) For some x between a and b we have that f(x) > f(a).
(3) For some x between a and b we have that f(x) < f(a).

In the first case the function is constant and the derivate is zero everywhere. The second 
and third cases are similar so we will just argue in the second case. In the second case by 
the extreme value theorem there exists some x0 such that f(x0) = max f > f(a). It now 
follows from the previous lemma that f 0(x0) = 0. �

Theorem: (Mean value theorem.) Let f : [a, b] → R be a differentiable function, then there 
exists a x0 between a and b such that 

f(b) − f(a)
f 0(x0) = . 

b − a 
. 

Proof. Consider the function g given by 

f(b) − f(a) 
g(x) = f(x) − (x − a) . 

b − a 
Observe that for g we have g(a) = g(b) and so Rolle’s theorem applies and we have that 
there exists some x0 where g0(x0) = 0. Since 

f(b) − f(a) 
g 0(x) = f 0(x) − ,

b − a 
the claim follows. �
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Lecture 16 

Last time we defined what it means for a function to be differentiable. This is the following: 

Definition: If f : R → R is a function, then we say that f is differentiable at x0 if the limit 

f(x) − f(x0)
lim 
x→x0 x − x0 

exists. (Note that in this fraction x is assumed to be 6= x0.) When the limit exists, then we 
say that the function f is differentiable at x0 and that its derivative at x0 is the limit. In 
this case we denote the derivative at x0 by f 0(x0). 

One of the first things we showed about differentiable function was that they are continuous: 

Lemma: If f is differentiable at x0, then f is continuous at x0. 

We also established some very useful rules for computing the derivative of functions that are 
constructed from other functions whose derivative we know: 

Theorem: If f , g are functions on R that both are differentiable at x0, then 

• (Sum rule.)

(f + g)0(x0) = f 0(x0) + g 0(x0) . 

• (Leibniz’s rule.)

(f g)(x0) = f 0(x0) g(x0) + f(x0) g 0(x0) . 

• (Quotient rule.) If also g(x0) 6= 0, then� �0
f f 0(x0) g(x0) − f(x0) g0(x0)

(x0) = . 
g g2(x0) 
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Finally, for the composition of functions we have the chain rule: 

Theorem: (Chain rule.) If f : [a, b] → [c, d] and g : [c, d] → R are functions, where 
f is differentiable at x0 and g differentiable at y0 = f(x0), then the composition g ◦ f is 
differentiable at x0 and the derivative at x0 is 

(g ◦ f)0(x0) = g 0(y0) f
0(x0) . 

Now that we know how to compute the derivative of many functions we will be interested 
in using the derivative to describe the growth or decay of a function. The first step towards 
this is the next lemma. 

Before stating it recall that a function f : R → R has a local maximum at x0 if there exists 
a δ > 0 such that 

f(x0) = max f , 
[x0−δ,x0+δ] 

and similarly for a local minimum. 

Lemma: Let f : [a, b] → R be a differentiable function and suppose that a < x0 < b and 
that f has a local maximum or minimum at x0, then 

f 0(x0) = 0 . 

Proof. Suppose that x0 is a local maximum. The proof when x0 is a local minimum is similar. 
It follows from the assumption that for all x near x0 

f(x) − f(x0) ≤ 0 . 

Therefore, when x > x0 we have that 

f(x) − f(x0) ≤ 0 ,
x − x0 

whereas when x < x0 we have that for the difference quotient 

f(x) − f(x0) ≥ 0 .
x − x0 

Since the limit is the same whether x converges to x0 from the the left (negative side) or 
from the right (positive side) it follows that f 0(x0) = 0 as claimed. �

We can now use this lemma to establish the following very useful result: 
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Theorem: (Rolle’s theorem.) Let f : [a, b] → R be a differentiable function with f(a) = 
f(b), then there exists a x0 between a and b such that 

f 0(x0) = 0 . 

Proof. There are three cases to consider: 

(1) f is constant equal to f(a).
(2) For some x between a and b we have that f(x) > f(a).
(3) For some x between a and b we have that f(x) < f(a).

In the first case the function is constant and the derivate is zero everywhere. The second 
and third cases are similar so we will just argue in the second case. In the second case by 
the extreme value theorem there exists some x0 such that f(x0) = max f > f(a). It now 
follows from the previous lemma that f 0(x0) = 0. �

Rolle’s theorem can then be used to show both the mean value theorem and the Cauchy 
mean value theorem: 

Theorem: (Mean value theorem.) Let f : [a, b] → R be a differentiable function, then there 
exists a x0 between a and b such that 

f(b) − f(a)
f 0(x0) = . 

b − a 
. 

Proof. Consider the function g given by 

f(b) − f(a) 
g(x) = f(x) − (x − a) . 

b − a 

Observe that for g we have g(a) = g(b) and so Rolle’s theorem applies and we have that 
there exists some x0 where g0(x0) = 0. Since 

f(b) − f(a) 
g 0(x) = f 0(x) − ,

b − a 
the claim follows. �

Theorem: (Cauchy mean value theorem.) Let f , g : [a, b] → R be differentiable functions, 
then there exists a x0 between a and b such that 

f 0(x0) [g(b) − g(a)] = g 0(x0) [f(b) − f(a)] . 

In particular, if g(b) − g(a) 6= 0, then 

f 0(x0) f(b) − f(a) 
= . 

g0(x0) g(b) − g(a) 
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Proof. Consider the function 

h(x) = f(x) [g(b) − g(a)] − g(x) [f(b) − f(a)] . 

Note that 

h(a) = f(a) [g(b) − g(a)] − g(a) [f(b) − f(a)] = f(a) g(b) − g(a) f(b) . 

h(b) = f(b) [g(b) − g(a)] − g(b) [f(b) − f(a)] = f(a) g(b) − g(a) f(b) . 

Therefore, by Rolle’s theorem, there exists x0 between a and b such that h0(x0) = 0. Since 

h0(x) = f 0(x) [g(b) − g(a)] − g 0(x) [f(b) − f(a)] 

this shows the claim. �

We observe that the Cauchy mean value theorem implies the earlier mean value theorem. 
Namely, if we let the second function g be g(x) = x, then g0(x) = 1 and g(b) − g(a) = b − a. 
Therefore, the Cauchy mean value theorem becomes 

f 0(x0) (b − a) = f 0(x0) (g(b) − g(a)) = g 0(x0) (f(b) − f(a)) = f(b) − f(a) , 

which is the earlier mean value theorem. 

The next two rules are useful to establishing the limit of a faction of function when the 
denominator either tend to zero or infinity. 

Theorem: (L’Hopital’s rule, version 1.) Let f , g : (a, b) → R be differentiable functions 
with g(x) =6 0 and g0(x) 6= 0 for all x, assume that 

lim f(x) = lim g(x) = 0 . 
x→a x→a 

If 
f 0(x)

lim 
x→a g0(x) 

exists, then 
f(x) f 0(x)

lim = lim . 
x→a g(x) x→a g0(x) 

Proof. We will see that this is an easy consequence of the Cauchy mean value theorem. By 
assumption given � > 0, there exists δ > 0 such that if a < x < δ, then 

f 0(x) − L < � .
g0(x) 

By the Cauchy mean value theorem we have for any y with a < y < x that there exist z 
with y < z < x so that 

f(x) − f(y) f 0(z) 
= . 

g(x) − g(y) g0(z) 
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We therefore have that 
f(x) − f(y) − L < � .
g(x) − g(y) 

By letting y → 0 we see that 
f(x) − L ≤ � .
g(x) 

Since this holds for all � we get that 

f(x)
lim = L 
x→a g(x) 

as claimed. �

Theorem: (L’Hopital’s rule, version 2.) Let f , g : (a, b) → R be differentiable functions 
with g(x) =6 0 and g0(x) 6= 0 for all x, assume that 

lim f(x) = lim g(x) = ∞ . 
x→a x→a 

If 
f 0(x)

lim 
x→a g0(x) 

exists, then 
f(x) f 0(x)

lim = lim . 
x→a g(x) x→a g0(x) 

Proof. Given � > 0, since f
0(x) → L as as x → a we have that there exists a δ > 0 such that 

g0(x) 

if a < x < a + 2 δ, then 
f 0(x) − L < � .
g0(x) 

Set x1 = a + δ. For a given x ∈ (a, x1), there exists x0 ∈ (x, x1) such that 

f 0(x0) f(x1) − f(x) 
= . 

g0(x0) g(x1)− g(x) 

It follows that 
f(x1) − f(x) − L < � .
g(x1) − g(x) 

By dividing the nominator and denominator of the fraction in this expression by g(x) we get 
f(x) − f (x1) 
g(x) g(x) − L < � .
1 − g(x1) 

g(x) 

This implies that � � � � 
f(x) f(x1) g(x1) g(x1)− − L 1 − < � 1 − . 
g(x) g(x1) g(x) g(x) 
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Since this holds for all x ∈ (a, a + δ) and g(x) → ∞ as x → a we have that for x > a but 
sufficiently close to a that 

f(x) − L ≤ � .
g(x) 

Since this holds for all � we see that 

f(x)
lim = L 
x→a g(x) 

This proves the claim. �

Finally, we have the following key fact that show that any differentiable function can be 
approximated by a polynomial and give a way of estimate the difference between the function 
and the approximating polynomial. 

Theorem: (Taylor expansion.) Let f : [a, b] → R be a function and k a positive integer. 
Assume that f , f 0, f (2), · · · , f (k−1) exists on [a, b] and are continuous and that f (k) is defined 
on (a, b), then there exists c between a and b such that 

f (2)(a) f (k−1)(a)
f(b) = f(a) + f 0(a) (b − a) + (b − a)2 + · · · + (b − a)k−1 

2 (k − 1)! 

f (k)(c)
+ (b − a)k .

(k)!

Proof. Define the Taylor polynomial by 

f (2)(a) f (k−1)(a)
P (x) = f(a) + f 0(a) (x − a) + (x − a)2 + · · · + (x − a)k−1 

2 (k − 1)! 

and define a number M by that 

f(b) = P (b) + 
M 

(b − a)k . 
k! 

We want to show that there exists some c between a and b such that 

M = f (k)(c) . 

To do that we set 

R(x) = f(x) − P (x) − 
M 

(x − a)k . 
k! 

We have that R(a) = R(b) = 0 and so by Rolle’s theorem, there exists some c1 between a and 
b with R0(c1) = 0. Next observe that R0(a) = R0(c1) = 0 and so again by Rolle’s theorem, 
there exists c2 between a and c1 with R(2)(c2) = 0. Since R(i)(a) = 0 for i = 0, · · · , k − 1 
we can continue this process k times and find some c = ck such that R(k)(c) = 0. However, 
0 = R(k)(c) = fk(c) − M Therefore, M = f (k)(c) as claimed. �
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Lecture 17 

Recall that last time we showed the Taylor expansion theorem: 

Theorem: (Taylor expansion.) Let f : [a, b] → R be a function and k a positive integer. 
Assume that f , f 0, f (2), · · · , f (k−1) exists on [a, b] and are continuous and that f (k) is defined 
on (a, b), then there exists c between a and b such that 

f (2)(a) f (k−1)(a)
f(b) = f(a) + f 0(a) (b − a) + (b − a)2 + · · · + (b − a)k−1 

2 (k − 1)! 

f (k)(c)
+ (b − a)k .
(k)!

For and infinitely differentiable function f on R we define the (k − 1) Taylor polynomial at 
a by 

f (2)(a) f (k−1)(a)
Pk−1(x) = f(a) + f 0(a) (x − a) + (x − a)2 + · · · + (x − a)k−1 . 

2 (k − 1)! 

Question: One naturally wonders how well does this polynomial approximate f when x is 
near a? 

Answer: This depend on the value of the remainder 

f (k)(c)
Rk(x) = (x − a)k . 

k! 
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xExample 1: Suppose that f(x) = e so f (k)(x) = f(x) for all k. This means that the Taylor 
expansion near a = 0 becomes 

k−1X ix 
Pk−1(x) = . 

i! 
i=0 

By the Taylor expansion theorem we have that 

f (k)(c)
f(x) = Pk−1(x) + x k . 

k! 

Since f (k)(x) = f(x) for all k, it follows from the Taylor expansion theorem that we have 

e|x||f(x) − Pk−1(x)| ≤ . 
k! 

We conclude that for k large the polynomial Pk−1 gives a pretty good approximation to f . 
For instance, if |x| ≤ 1, then we have that 

e |f(x) − Pk−1(x)| ≤ . 
k! 

Example 2: On R define a function f by( 
0 if x ≤ 0 

f(x) = − 1 

e 2 otherwisex 

It is easy to see that f is infinitely differentiable and that f (k)(0) = 0 for all k. It follows 
that for all k the Taylor polynomial at 0 is Pk−1 ≡ 0. Thus in this case f(x) = Rk(x). 

Riemann integrals 

Partition: Let [a, b] be an interval. A partition P of the interval [a, b] is a number of 
sub-divisions xi such that 

a = x0 < x1 < x2 < · · · < xn = b . 

The partition is then the sub-intervals [xi−1, xi]. We will set Δ xi = xi − xi−1. 

Upper and lower sums: Suppose now that f : [a, b] → R is a bounded function and that 
P = {xi} is a partition of the interval [a, b]. We define upper and lower sums as follows. Set 

Mi = sup f , 
[xi−1,xi] 

mi = inf f , 
[xi−1,xi] 
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and upper U(f, P) and lower sums L(f, P) by 
nX

U(f, P) = Mi Δ xi , 
i=1 

nX
L(f, P) = mi Δ xi . 

i=1 

Example 3: Suppose that the function is f(x) = x2 + 1 on the interval [−2, 2] and that the 
partition is P is {−2, −1, 0, 1, 2}. We have 

m1 = 2 and M1 = 5 , 

m2 = 1 and M2 = 2 , 

m3 = 1 and M3 = 2 , 

m4 = 2 and M4 = 5 . 

For the lower and upper sums we have 

L(f, P) = 2 + 1 + 1 + 2 = 6 , 
U(f, P) = 5 + 2 + 2 + 5 = 14 . 

The following lemma is immediate (from that Mi ≥ mi): 

Lemma 1: We always have that 

U(f, P) ≥ L(f, P) . 

Sub-partition: Let [a, b] be an interval and P1 and P2 two partitions of the interval [a, b]. 
We say that P2 is a sub-partition (or refinement) of P1 if all the dividing points in P1 are 
also in P1 (and then presumable some additional dividing points). 

Example 4: Suppose that the interval is [−2, 2] and the given partition P1 is 

{−2, −1, 0, 1, 2} . 
Then the partition � � 

1 1 P2 = −2, −1 , −1, 0, , 1, 2 
2 2 

is a refinement (or sub-division) of P1. Indeed, P2 has the same dividing points as P1 in 
addition to some more. 
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We now have the following: 

Lemma 2: Suppose now that f : [a, b] → R is a bounded function and that P1 is a partition 
of the interval [a, b] and P2 is a refinement of P1, then 

L(f, P1) ≤ L(f, P2) ≤ U(f, P2) ≤ U(f, P1) . 

Proof. The middle inequality is the previous lemma. The inequality to the right follows from 
that if P2 is a subdivision of P1. Namely, suppose that a = x0 < x1 < · · · < xn = b are the 
dividing points for P1 and that between say xi−1 and xi there is an extra dividing point in 
P2 say y so xi−1 < y < xi, then we have 

sup f ≤ Mi
[xi−1,y] 

and 

sup f ≤ Mi
[y,xi] 

so 

[ sup f ] (y − xi−1) + [sup f ] (xi − y) ≤ Mi Δ xi . 
[xi−1,y] [y,xi] 

From this it follows easily that 

U(f, P2) ≤ U(f, P1) . 

Similarly, for the inequality to the left. �

Upper and lower integrals: Suppose now that f : [a, b] → R is a bounded function. 
Define the upper Riemann integral of f by Z b

f dx = inf U(f, P) . 
P a 

Here the infimum is taken over all partitions of [a, b]. Likewise, we define the lower Riemann 
integral by Z b

f dx = sup L(f, P) . 
a P 

Riemann integral: Suppose that f : [a, b] → R is a bounded function, then we say that f 
is Riemann integrable if Z b Z b

f dx = f dx . 
a a 
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If the function is Riemann integrable, then the Riemann integral is 

Z b Z b Z b
f dx = f dx = f dx . 

a a a 

The Riemann integrable functions is denoted by R ([a, b]). 

From Wikipedia: Georg Friedrich Bernhard Riemann (1826 – 1866) was a German math-
ematician who made profound contributions to analysis, number theory, and differential 
geometry. Riemann held his first lectures in 1854, which founded the field of Riemannian 
geometry and thereby set the stage for Albert Einstein’s general theory of relativity. In the 
field of real analysis, he is mostly known for the first rigorous formulation of the integral, 
the Riemann integral, and his work on Fourier series. His contributions to complex anal-
ysis include most notably the introduction of Riemann surfaces, breaking new ground in 
a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting 
function, containing the original statement of the Riemann hypothesis, is regarded as a foun-
dational paper of analytic number theory. He is considered by many to be one of the greatest 
mathematicians of all time. 

Example 5: Let f : [0, 1] → R be given by ( 
0 if x ∈ [0, 1] ∩ Q

f(x) = 
1 otherwise 

For this function and all partitions P we have that 

L(f, P) = 0 and U(f, P) = 1 . 

Thus, f is not Riemann integrable. 

We will be interested in the questions: ”What kind of functions are Riemann integrable?” 

.... and ”How do we compute the integral?” 

The answer to the second question will be the fundamental theorem of calculus. This will 
be the topic of a later lecture. 
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Lemma 3: Suppose now that f : [a, b] → R is a bounded function, then f ∈ R ([a, b]) if 
and only if for all � > 0, there exists a partition P such that 

U(f, P) − L(f, P) < � . 

Proof. Suppose that f ∈ R ([a, b]), then ZZ b b 

sup L(f, P) = f dx = f dx = inf U(f, P) . 
PP a a 

This means that given � > 0, there exists partitions P1 and P2 such that Z b � 
f dx − < L(f, P1) 

a 2 

and Z b � 
U(f, P2) ≤ f dx + . 

a 2 
Let P be the partition that has all the dividing points of both P1 and P2. So P is a refinement 
of both P1 and P2. It follows that Z b Z b� � 

a 
f dx − < L(f, P1) ≤ L(f, P) ≤ U(f, P) ≤ U(f, P2) ≤ 

2 a 
f dx + . 

2 

This proves the claim. 
To see the converse, suppose that for some � > 0, there exists a partition P such that 

U(f, P) − L(f, P) < � . 

Since Z b
L(f, P) ≤ f dx 

a 

and Z b
f dx ≤ U(f, P) 

a 

we have that Z b Z b
f dx − f dx ≤ U(f, P) − L(f, P) < � . 

a a 

Since this holds for all � > 0 we get the claim. �

We now get to a key theorem that gives a simple criterium for a function to be Riemann 
integrable: 

Theorem: Any continuous function on [a, b] is in R ([a, b]). 

Proof. We will show this next time once we have shown that a continuous function on a 
closed and bounded interval is, in fact, uniformly continuous. �
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The proof of this theorem needs the following key concept. 

Definition: Uniformly continuous. Suppose that f : I → R is a function, where I is an 
interval. We say that f is uniformly continuous if for all � > 0, there exists a δ > 0 such that 

|f(x) − f(y)| < � if |x − y| < δ . 

Note that being uniformly continuous is stronger than being continuous. It means that for 
a given � > 0, the same δ can be used for all x. 
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Lecture 18 

continuous, then there would exists δ > 0 such that 

f(x + δ) − f(x) < � , 

for all x. This would mean that 
22 δ x < (x + δ)2 − x < � 

for all x, which is clearly not the case. 

Example 2: Suppose that 
1 

f(x) = 
x 

on (0, 1], then f is NOT uniformly continuous. To see this, consider xn = 1 
n and yn = 1 ,

2 n 
then 

and 

|f(xn) − f(yn)| = n 

1 |xn − yn| < 
n 
. 

From this it easily follows that f is not uniformly continuous. 

Definition: Uniformly continuous. Suppose that f : I → R is a function, where I is an 
interval. We say that f is uniformly continuous if for all � > 0, there exists a δ > 0 such that 

|f(x) − f(y)| < � if |x − y| < δ . 

Note that being uniformly continuous is stronger than being continuous. It means that for 
a given � > 0, the same δ can be used for all x. 

Example 1: Suppose that 
f(x) = x 2 

on R, then f is NOT uniformly continuous. To see this, let � > 0 be given if f was uniformly 

Theorem 1: Any continuous function on [a, b] is uniformly continuous. 
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Proof. Suppose not; then there exists � > 0 such that for all n > 0, there are xn and yn with 

1 |xn − yn| < 
n 

and so that 
|f(xn) − f(yn)| ≥ � . 

Since the interval [a, b] is compact we can choose a subsequence of xn say xnk so that 

xnk → x . 

Since 
|x − ynk | ≤ |x − xnk | + |xnk − ynk | 

we have that ynk → x as well. Since f is continuous we have that f(xnk ) → f(x) and 
f(ynk ) → f(x). However, this contradict that 

|f(xnk − f(ynk )| ≥ � , 

. �

We now get to a key theorem that gives a simple criterium for a function to be Riemann 
integrable: 

Theorem 2: Any continuous function on [a, b] is in R ([a, b]). 

Proof. Given � > 0, since f is uniformly continuous by Theorem 1 it follows that there exists 
δ > 0 such that if |x − y| < δ, then 

� |f(x) − f(y)| < . 
b − a 

Let P be a partition so that for all i we have Δ xi < δ, then on each interval of the partition 
of the form [xi−1, xi] we have that 

� 
Mi − mi < . 

b − a 

It follows that X X 
U(f, P) − L(f, P) = Mi Δ xi − mi Δ xi

i i X X� 
= [Mi − mi] Δ xi < Δ xi = � . 

b − a 
i i 

Since this holds for all � > 0 we have that f is integrable. �

Basic properties of integrals. 
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Theorem 3: We have the following basic formulas for integrals: 

(1) If f ∈ R ([a, b]) and c ∈ R, then c f ∈ R ([a, b]) andZ b Z b
(c f) dx = c f dx . 

a a 

(2) If f , g ∈ R ([a, b]), then f + g ∈ R ([a, b]) and ZZ b Z b b 

(f + g) dx = f dx + g dx . 
a a a 

(3) If f , g ∈ R ([a, b]) and f ≤ g, thenZ b Z b
f dx ≤ g dx . 

a a 

(4) If f ∈ R ([a, b]) and c ∈ (a, b), then f ∈ R ([a, c]) and f ∈ R ([c, b]) andZ c Z b Z b
f dx + f dx = f dx . 

a c a 

Proof. The first claim follow from that if P is a partition, then 

L(c f, P) = c L(f, P) 
and 

U(c f, P) = c U(f, P) . 
To prove the second claim. Given � > 0, let P1 and P2 be partitions so that 

� 
U(f, P1) − L(f, P1) < 

2 
and 

� 
U(g, P2) − L(g, P2) < . 

2 
Let P be the partition that has the combined dividing points of P1 and P2. It follows that 

� 
U(f, P) − L(f, P) < 

2 
and 

� 
U(g, P) − L(g, P) < . 

2 
Therefore, 

� � 
U(f + g, P) − L(f + g, P) < + = � . 

2 2 
From this the second claim follows. 
To see the third claim let P be any partition of [a, b]. It follows that 

U(g, P) ≤ U(f, P) . 
Since Z b

g dx = inf U(g, P)
P a 

and likewise for f the claim now follows. 
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Finally, to see the fourth claim. Let P be any partition of [a, b] and let P0 be the refinement 
of P that in addition to the dividing points of P also have c as a dividing point. It follows 
that 

U(f, P0 ∩ [a, c]) + U(f, P0 ∩ [c, b]) = U(f, P0) . 
Likewise, 

L(f, P0 ∩ [a, c]) + L(f, P0 ∩ [c, b]) = L(f, P0) . 
Therefore, 

U(f, P0 ∩ [a, c]) − L(f, P0 ∩ [a, c]) + U(f, P0 ∩ [c, b]) − L(f, P0 ∩ [c, b]) 

= U(f, P0) − L(f, P0) . 
From this the fourth claim easily follows. �

Corollary: Suppose that f , |f | ∈ R ([a, b]), then ZZ b b 

f dx ≤ |f | dx . 
x a 

Proof. This follows from the lemma since f ≤ |f | and −f ≤ |f |. Namely, from the first of 
these inequalities together with the lemma we get that ZZ b b 

f dx ≤ |f | dx , 
a a 

whereas from the second we get that Z Zb Z b b 

− f dx = (−f) dx ≤ |f | dx . 
a a a 

Together these gives the claim. �

Fundamental theorem of calculus, version 1: Let f be a continuous function on [a, b] 
and define F on [a, b] by Z x 

F (x) = f(s) ds . 
a 

The function F is differentiable with derivative f . 

Proof. Fix x0 ∈ [a, b] and assume first that x > x0. We then have that Z Z Z Z x x0 x x 

F (x) = f(s) ds = f(s) ds + f(s) ds = F (x0) + f(s) ds . 
a a x0 x0 

It follows that Z x 

F (x) − F (x0) = f(s) ds . 
x0 

Therefore, 
(x − x0) min f ≤ F (x) − F (x0) ≤ (x − x0) max f 

[x0,x] [x0,x] 
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and hence 
F (x) − F (x0)

min f ≤ ≤ max f . 
[x0,x] x − x0 [x0,x] 

Since f is continuous at x0 as x → x0 both the left and right hand side of this string of 
inequalities converges to f(x0). This proves the claim when x > x0. When x < x0 we can 
write F (x) as Z x0 

F (x) + f(s) ds = F (x0) . 
x 

Therefore, Z x0 

F (x) − F (x0) = − f(s) ds . 
x 

Arguing as above gives the claim also in this case. �

Fundamental theorem of calculus, version 2: Suppose that F : [a, b] → R is differen-
tiable and that F 0 = f ∈ R ([a, b]), then Z b

F (b) − F (a) = f(s) ds . 
a 

Proof. Since f is integrable, then for all � > 0, there exists a partition P of [a, b] such that 

U(f, P) − L(f, P) < � . 

For a given partition P with dividing points xi we have X 
L(f, P) = mi (xi − xi−1) , 

i X
U(f, P) = Mi (xi − xi−1) ,

i 

Moreover, by the mean value inequality 

F (xi) − F (xi−1) = f(yi) (xi − xi−1) . 

We now have that 

mi (xi − xi−1) ≤ F (xi) − F (xi−1) ≤ Mi (xi − xi−1) . 

It follows that 
nX

L(f, P) ≤ [F (xi) − F (xi−1)] ≤ U(f, P) . 
i=1 

Finally, the claim follows from the above by observing that 
nX

F (b) − F (a) = [F (xi) − F (xi−1)] . 
i=1 
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Example 3: To compute Z 1 

x 2 dx , 
0 

we use the second version of the fundamental theorem of calculus. Namely, observe that the 
derivative of the function 

3x 
F (x) = 

3 
is x2 and therefore, by the second version of the fundamental theorem of calculus we have 
that Z 1 

x 2 dx = F (1) − F (0) = 
1 − 0 = 1 . 
3 30 
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Lecture 19 

Question: What kind of functions are integrable? 

Theorem: Any continuous function on [a, b] is in R ([a, b]). 

Basic properties of integrals. 

Theorem: We have the following basic formulas for integrals: 

(1) If f ∈ R ([a, b]) and c ∈ R, then c f ∈ R ([a, b]) andZZ b b 

(c f) dx = c f dx . 
a a 

(2) If f , g ∈ R ([a, b]), then f + g ∈ R ([a, b]) and ZZ b Z b b 

(f + g) dx = f dx + g dx . 
a a a 

(3) If f , g ∈ R ([a, b]) and f ≤ g, thenZ b Z b
f dx ≤ g dx . 

a a 

(4) If f ∈ R ([a, b]) and c ∈ (a, b), then f ∈ R ([a, c]) and f ∈ R ([c, b]) andZ c ZZ b b 

f dx + f dx = f dx . 
a c a 

Corollary: Suppose that f , |f | ∈ R ([a, b]), then Z b Z b
f dx ≤ |f | dx . 

x a 
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Fundamental theorem of calculus, version 1: Let f be a continuous function on [a, b] 
and define F on [a, b] by Z x 

F (x) = f(s) ds . 
a 

The function F is differentiable with derivative f . 

Fundamental theorem of calculus, version 2: Suppose that F : [a, b] → R is differen-
tiable and that F 0 = f ∈ R ([a, b]), then Z b

F (b) − F (a) = f(s) ds . 
a 

Application of integrals: arclength. 

Suppose that f and g : [a, b] → R are differentiable functions and their derivatives are 
continuous, then we define the arclength of the curve 

s → (f(s), g(s)) 

by Z b p
L = (f 0(s))2 + (g0(s))2 ds . 

a 

Example 1: Suppose that f(s) = s and g(s) = s2 , then f 0 = 1 and s0 = 2 s. Therefore, the 
arclength of the curve (s, s2), where s ∈ [0, 1] is Z 1 Z 1p √

L = 1 + (2 s)2 ds = 1 + 4 s2 ds . 
0 0 

Improper integrals. 

Unbounded interval. 

Suppose that f ∈ R([a, b]) for all b > a. If Z b
lim f(x) dx 
b→∞ a 
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exists, then we say that the improper integralZ ∞
f(x) dx 

a 

exists and that Z ∞ Z b
f(x) dx = lim f(x) dx 

b→∞ a a 

Example 2: On [1, ∞), set 
1 

f(x) = 
2 
, 

x 
then Z c �1� 

1 1 1 
dx = − = − + 1 . 

2x x c1 c 

Since −1 
c + 1 → 1 as c →∞, the improper integralZ ∞ 1

dx 
2x1 

exist and is equation to 1. 

Example 3: On [1, ∞), set 
1 

f(x) = , 
x 

then Z c 1
dx = [log x]c 

1 = log c .
x1 

The improper integral Z ∞ 1
dx 

x1 

does not exist. 

Unbounded function. 

Suppose that f ∈ R([c, b]) for all c > a. If Z b
lim f(x) dx 
c→a c 

exists, then we say that the improper integralZ b
f(x) dx 

a 
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exists and that Z b Z b
f(x) dx = lim f(x) dx 

c→a a c 

Example 4: On (0, 1], set 
1 

f(x) = √ , 
x 

then Z 1 1 � √ �1 √ 
√ dx = 2 x = 2 − 2 c . 
x c 

√ 
c 

Since 2 − 2 c → 2 as c → 0, the improper integral exists and is equal to Z 1 1 √ dx = 2 .
x0 

Example 5: On (0, 1], set 
1 

f(x) = , 
x 

then Z 1 1 
dx = [log x]1 

c = − log c . 
xc 

Note that − log c →∞ as c → 0 so the improper integral does not exist. 

Question: How do we define angle? 

Answer: We define it through arclength. 

On the unit circle 

{(x, y) | x 2 + y 2 = 1} 
we define angle and the arclength. That is, suppose that (x, y) lies on the unit circle. The 
angle θ between (1, 0) and (x, y) is the arclength of the part of the unit circle from (1, 0)√ 
to (x, y). This part of the circle is parametrized by (f(s), g(s)) = (s, 1 − s2) and where 

s x ≤ s ≤ 1. Since f 0(s) = 1 and g0(s) = −√ 
2 we get that 1−s rZ 1 s2 

Z 1 1 
θ = 1 + ds = √ ds .

2 
x 1 − s x 1 − s2 
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The function arcsin x is defined by Z x 1 
arcsin x = √ ds .

0 1 − s2 
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Application of integrals: arclength. 

Suppose that f and g : [a, b] → R are differentiable functions and their derivatives are 
continuous, then we define the arclength of the curve 

s → (f(s), g(s)) 

by Z b p
L = (f 0(s))2 + (g0(s))2 ds . 

a 

Example 1: Suppose that f(s) = s and g(s) = s2 , then f 0 = 1 and s0 = 2 s. Therefore, the 
arclength of the curve (s, s2), where s ∈ [0, 1] is Z 1 Z 1p √

L = 1 + (2 s)2 ds = 1 + 4 s2 ds . 
0 0 

Question: How do we define angle? 

Answer: We define it through arclength. 

On the unit circle 
{(x, y) | x 2 + y 2 = 1} 

we define angle and the arclength. That is, suppose that (x, y) lies on the unit circle. The 
angle θ between (1, 0) and (x, y) is the arclength of the part of the unit circle from (1, 0)√ 
to (x, y). This part of the circle is parametrized by (f(s), g(s)) = (s, 1 − s2) and where 

s x ≤ s ≤ 1. Since f 0(s) = 1 and g0(s) = −√ 
2 we get that 1−s rZ 1 s2 

Z 1 1 
θ = 1 + ds = √ ds .

2 2 
x 1 − s x 1 − s

106



2 TOBIAS HOLCK COLDING 

The function arccos x is defined by Z 1 1 
arccos x = √ ds .

x 1 − s2 

By the fundamental theorem of calculus we see that 

1 
arccos x = −√ . 

1 − x2 

Pointwise convergence: Suppose that fn is a sequence of functions on an interval I, then 
we say that fn convergences pointwise to a function f if for all x we have 

fn(x) → f(x) . 

Example 1: Suppose that fn(x) = xn on [0, 1], then fn converges pointwise to f where ( 
0 if 0 ≤ x < 1 

f(x) = 
1 if x = 1 . 

Suppose first that 0 ≤ x < 1, then fn(x) = xn → 0. If x = 1, then fn(x) = 1 for all n and 
so fn(x) → 1. This show the claim. 

P nExample 2: If En(x) = xk 
, then En(x) → exp x pointwise. We have already proven k=0 k! 

that the radius of convergence for the power series 
∞X kx 

k! 
k=0 

is infinity. From this the claim follows. 

Uniform convergence: Suppose that fn is a sequence of functions on an interval I, then 
we say that fn convergences uniformly to a function f if for all � > 0, there exists an N such 
that if n ≥ N , then for all x 

|f(x) − fn(x)| < � . 

Lemma 1: Suppose that I is an interval and fn is a sequence of functions on I that converges 
uniformly to a function f , then fn also converges pointwise to f . 
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Proof. This is immediate from the definition of uniform convergence. �

Example 1A: Suppose again that fn(x) = xn on [0, 1], then fn converges pointwise but 
NOT uniformly to f where ( 

0 if 0 ≤ x < 1 
f(x) = 

1 if x = 1 . 

To see this observe that for each n,since fn is continuous by the intermediate value theorem 
there exists xn with 0 < xn < 1 such that fn(x) = 1

2 . It now follows that 

1 
= |f(xn) − fn(xn)| ≤ sup |f(x) − fn| . 

2 x∈[0,1] 

Thus we see that the convergence is not uniform. We already saw in Example 1 that the 
convergence is pointwise. 

xExample 2A: If En(x) = 
P n k 

, then En(x) → exp x uniformly on any interval of thek=0 k! 
form [−L, L]. This will be a consequence of of Weirstrass M -test that we will discuss next. 

Lemma 2 [Weirstrass M -test]: Suppose that I is an interval and fn is a sequence of functions 
on I. Suppose also that Mn is a sequence of non-negative numbers with 

|fn(x)| ≤ Mn for all x ∈ I . 

If the series 
∞X

Mn

n=1 

converges, then the sequence of functions 
nX

Sn(x) = fk(x) 
k=0 

converges uniformly. 

Proof. For each fixed x we have that that the sequence 
∞X

fk(x) 
k=0 

converges. Moreover, we have that for all x and m < n we have 

|Sn(x) − Sm(x)| ≤ |fn(x)| + |fn−1(x)| + · · · + |fm+1(x)| ≤ Mn + · · · + Mm+1 . 
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For m fixed and since Sn(x) → S(x) it follows that 

∞X
|S(x) − Sm(x)| ≤ Mk . 

k=m+1 P 
Since k=0Mk is convergent it implies that given � > 0, there exists N such that if m ≥ N ,P∞then Mk < �. Therefore, for m ≥ N and all xk=m+1 

|S(x) − Sm(x)| < � . 

This proves the claim. �

Example 2A: On the interval I = [−L, L] suppose 
nx 

fn = . 
n! 

Then 
Ln

|fn| ≤ . 
n! 

Since X Ln

n! 
n 

is convergent Weirstrass M -test gives that the series 

∞X
fn

n=0 

converges uniformly on I. 

Theorem: If 
∞X

k ak x 
k=0 

is a power series and R is its radius of convergence. Then it converges uniformly on any 
(finite) interval of the form [−L, L] where L < R. 

Proof. Recall that if M = lim supn→∞ |an|n
1 
, then the radius of convergence is R = 

M 
1 . It

follows that if |x| ≤ L < R, then 

nlim sup |an x n|n
1 
= |x| lim sup |an| 

1 
≤ LM < 1 . 

Choose 1 > α > LM . For n sufficiently large |an x
n| ≤ Mn = αn . Since the geometric seriesP 

n α
n is convergent, Weirstrass M -test gives the claim. �
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Example 3: The geometric power series 
∞X

k x 
k=0 

converges uniformly to 
1− 
1 
x on all intervals of the form [−L, L] where L < 1. Since the radius

of convergence of the power series is one the claim therefore follows from the theorem above. 
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Lecture 21 

Theorem 1: Suppose that I is an interval and fn is a sequence of continuous functions on 
I. If fn converges uniformly to f , then f is also continuous.

Proof. Let x0 in I be arbitrary but fixed. We will show that f is continuous at x0. Given 
� > 0, since fn → f uniformly, there exists a N such that if n ≥ N , then for all x in I

� |f(x) − fn(x)| < . 
3 

Since fN is continuous at x0, there exists δ > 0 such that if |x − x0| < δ, then 

� |fN (x) − fN (x0)| < . 
3 

Combining this gives that for |x − x0| < δ 

� � � |f(x) − f(x0)| ≤ |f(x) − fN (x)| + |fN (x) − fN (x0)| + |fN (x0) − f(x0)| < + + = � . 
3 3 3 

This gives the claim. �

Example 1: Set 
nX kx 

En(x) = ,
k! 

k=0 

∞X kx 
E(x) = . 

k! 
k=0 

In the previous lecture we showed that Weirstrass M -test implies that En → E uniformly 
on [−L, L]. Since each En is continuous we have from Theorem 1 that E is continuous. 

Here is another useful way of thinking of uniform convergence. Recall that on the space of 
continuous functions C(I) on an interval I = [a, b] there is a natural metric given by that 

d(f, g) = max {|f(x) − g(x)| | x ∈ I} . 
x∈I 
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We have the following: 

Proposition: Let I be an interval [a, b] and fn, f ∈ C(I), then fn → f in the metric space 
if and only if fn converges to f uniformly. 

Proof. To see this note that 

|f(x) − fn(x)| ≤ � for all x ∈ I 

if and only if 
d(f,fn) ≤ � . 

To say that fn → f uniformly is therefore equivalent to that d(f, fn) → 0 giving the claim. 
�

From this we get: 

Corollary: C([a, b]) is Cauchy complete. 

Proof. Suppose that fn is a Cauchy sequence in C([a, b]) we need to find a f ∈ C([a, b]) such 
that fn → f uniformly. For each x fixed, the sequence fn(x) is a Cauchy sequence in R. 
This follows since 

|fn(x) − fm(x)| ≤ d(fn, fm) . 

Therefore, since R is Cauchy complete, for each x there exists a f(x) such that fn(x) → f(x). 
This defines the function f and show that fn → f converges pointwise. We need to show 
that the convergence is uniform. To see that observe that given � > 0 since fn is a Cauchy 
sequence, there exists N such that if n and m ≥ N , then 

� |fn(x) − fm(x)| < for all x ∈ I . 
2 

Therefore, for f(x) = limm→∞ fm(x) we have 
� |fn(x) − f(x)| ≤ < � for all x ∈ I . 
2 

This show that the convergence is uniform. �

Theorem 2: If fn ∈ R ([a, b]) and fn → f uniformly, then f ∈ R ([a, b]) and Z b Z b
fn dx → f dx . 

a a 

Proof. We need to first show that f ∈ R ([a, b]) and so we need to show that given � > 0, 
there exists a partition P of the interval [a, b] such that 

U(f, P) − L(f, P) < � . 
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Since fn → f uniformly we have that there exists a N such that if n ≥ N , then 
� |f(x) − fn(x)| < . 

3 (b − a) 

We have therefore that for any partition P that 
�|m fn ≤ m f | ≤ ,i i 3 (b − a) 
� |M fn ≤ Mi

f | ≤ ,i 3 (b − a) 
It follows that for any partition when n ≥ N , then 

� |U(f, P) − U(fn, P)| < ,
3 
� |L(f, P) − L(fn, P)| < . 
3 

We can now use that since fN ∈ R ([a, b]) we have that there exists a partition P such that 
� 

U(fN , P) − L(fN , P) < . 
3 

Combining it all gives that 

U(f, P) − L(f, P) < U(f, P) − U(fN , P) + U(fN , P) − L(fN , P) + L(fN , P) − L(f, P) 
� � � 

< + + .
3 3 3 

This show that f ∈ R ([a, b]). We also need to see that Z b Z b
f dx = lim fn dx . 

n→∞ a a 

This, however, follows from that Z b
L(f, P) ≤ f dx ≤ U(f, P) , Z 

a

b

L(fn, P) ≤ fn dx ≤ U(fn, P) . 
a 

and that for n ≥ N 
� |U(f, P) − U(fn, P)| < ,
3 
� |L(f, P) − L(fn, P)| < . 
3 

Namely, we now have that also Z b� � 
L(f, P) − ≤ fn dx ≤ U(f, P) + 

3 a 3 

and therefore Z b Z b
f dx − f dx < � . 

a a 
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Example 1A: Set 
n kX x 

En(x) = ,
k! 

k=0 
∞X kx 

E(x) = . 
k! 

k=0 

Then we have from Example 1 that En → E uniformly on [−L, L]. We now have from 
Theorem 2 that 

n Z 1 Z 1X kx 
dx → E(x) dx . 

k!0 0k=0 

Theorem 3: Suppose that fn are differentiable functions on [a, b] and x0 ∈ [a, b]. If 
• fn(x0) → c,
• fn 

0 → g uniformly,
• fn 

0 are continuous on [a, b],
then there exists a differentiable function f with 

• fn → f uniformly,
• fn 

0 → f 0 uniformly.

Proof. Define a function F on [a, b] by Z x 

f(x) = c + g dx , 
x0 

and note since fn 
0 are continuous and that fn 

0 → g uniformly, it follows from Theorem 1 that 
g is also continuous. Therefore, by the fundamental theorem of calculus f is differentiable 
and f 0 = g. Moreover, by the fundamental theorem of calculus we have thatZ x 

f 0(x0) + dx .fn(x) = fn n 
x0 

We are done provided we can show that fn → f . To see that note that Z Z x x 

|f(x) − fn(x)| = c + g dx − fn(x0) − f 0 dxn 
x0 x0Z x Z x 

≤ |c − fn(x0)| + (g − f 0 ) dx ≤ |c − fn(x0)| + |g − f 0 | dxn n 
x0 x0 

≤ |c − fn(x0)| + (b − a) d(g, f 0 ) .n 

The claim now follows since fn(x0) → c and d(g, fn 
0 ) → 0. �

Example 1B: Set 
n kX x 

En(x) = ,
k! 

k=0 
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∞X kx 
E(x) = . 

k! 
k=0 

Then 
n n−1X k−1 X k−1x x 

E 0 n = k = = En−1 . 
k! (k − 1)!

k=1 k=0 

From Example 1 that En−1 → E uniformly on [−L, L] and each En are continuous. Moreover, 
for all n we have that 

En(0) = 1 = E(0) . 
It follows therefore from Theorem 3 that 

E 0 = En−1 → E 0 n 

uniformly and since En 
0 = En−1, then we have that E 0 = E. 
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Lecture 22 

Suppose that an is a sequence and 
∞X

an x n , 
n=0 

is a power series, the radius of convergence R is 

1 1 
R = where M = lim sup |an|n . 

M 

Lemma: The radius of convergence is the same for the power series 
∞X

an x n

n=0 

as the power series 
∞X

n−1 n an x . 
n=1 

. 

Proof. Since 
1 log n 

n−1 n−1n = e → 1 , 

and 
1 1 
n n−1lim sup |an| = lim sup |an|

n→∞ n→∞ 

we have that 
1 1 

n−1lim sup |n an| = lim sup |an|n . 
n→∞ n→∞ 

From this the claim follows. �

Iterating this gives: 
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Corollary: The power series 
∞X

an x n

n=0 

has the same radius of convergence as the power series 
∞X n! n−k an x . 

(n − k)!
n=k 

We now get the following: 

Theorem: Suppose that 
∞X

f(x) = an x n , 
n=0 

is a power series with radius of convergence R, then X 
f (k)(x) = 

∞ 
n! 

an x n−k 

(n − k)! 
n=k 

and Z ∞X an−1 nf(x) dx = x . 
n 

n=1 

Proof. Let us first argue for = 1. We will see that this is a consequence of Theorem 3 from 
Lecture 21. Set 

nX
fn(x) = ak x k 

k=0 

and 
∞X

f(x) = ak x k . 
k=0 

Moreover, let R be the radius of convergence for the power series f . We have the following 
three properties 

(1) 
fn(0) = a0 = f(0) . 

(2) On each interval [−L, L], where L < R, we have uniform convergence
∞X

f 0 k−1 
n → k ak x . 

k=1 

(3) Each fn 
0 is continuous.
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We see that Theorem 3 applies and show that 
∞X

f 0 k−1 = k ak x . 
k=1 

Iterating this gives the claim for all k. Finally, the claim about the integral Z 
f(x) dx 

follows easily from Theorem 2 from Lecture 21. �

Ordinary differential equations: A differential equation is an equation that involves an 
unknown function and its derivative. 

Example: Here are some examples of differential equations 

f 0(x) = x . 

f 0(x) − f 2(x) = 0 . 

f(x) f 0(x) f 00(x) = 1 . 
For the first of these and each constant c, the function 

fc(x) =
1 
x 2 + c 

2 
is a solution. For the second 

1 
f(x) = 

1 − x 
is a solution. For the third y = 0 is a solution and so is y = x. 

We will be interested in an ordinary differential equation (ODE) of the form 

y 0 = f(y) + g(x) . 

Here y = y(x) is the unknown function and f , g are given functions. Note that while g only 
depend on x the function f also depend on the unknown function y. 

We are interested in whether there exist solutions and when they exist if they are unique. 

More precisely, suppose that we have the following: 
• f be a continuously differentiable function on R.
• g be a continuous function on R.
• a is a real number.
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We are intersted in existence and uniqueness of the ODE:( 
y0(x) = f(y(x)) + g(x) 

y(0) = a . 

We will show next time the following: 

Picard-Lindelöf theorem: There exists δ > 0 such that there is a unique solution to this 
ODE on (−δ, δ). 
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Lecture 23 

Ordinary differential equations: A differential equation is an equation that involves an 
unknown function and its derivative. 

Suppose that we have the following: 
• f be a continuously differentiable function on R.
• g be a continuous function on R.
• a is a real number.

We will be intersted in existence and uniqueness of the ODE:( 
y0(x) = f(y(x)) + g(x) ,

(†) 
y(0) = a . 

We say that this is a first order equation since it only involves the function and its derivative 
and not higher derivatives. 

The following theorem gives a satisfying answer to the question of existence and uniqueness 
for this ODE: 

Picard-Lindelöf theorem: There exists δ > 0 such that there is a unique solution to (†) 
on (−δ, δ). 

Before we prove this theorem let us recall a result that we have proven earlier. Suppose that 
[a, b] is an interval and let C([a, b]) be the space of continuous functions on [a, b]. We equip 
this space with the metric d given by that if h1, h2 ∈ C([a, b]), then 

d(h1, h2) = max |h1(x) − h2(x)| . 
x∈[a,b] 

We proved earlier the following theorem: 
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Theorem 1: The metric space (C([a, b]), d) is Cauchy complete. 

We will also need to recall what it means for a map from a metric space to itself is contracting. 
A map T is a contracting map on a metric space (X, d) if for some c < 1 and all x, y ∈ X 

d(T (x), T (y)) ≤ c d(x, y) . 

We shall also use that we have proven the following fact: 

Theorem 2: If (X, d) is a Cauchy complete metric space and T : X → X is a contracting 
map, then T has a unique fix point. 

Indeed this theorem was proven by showing that for any x ∈ X, the sequence x, T (x), T 2(x), 
T 3(x), · · · is a Cauchy sequence and the limit is the unique fix point of T . The proof of this 
used that 

d(T n+1(x), T n(x)) ≤ c n d(T (x), x) , 

and therefore by the triangle inequality 
kX

d(T n+k(x), T n(x)) ≤ d(T i+n(x), T i−1+n(x)) ≤ c i−1+n d(T (x), x) . 
i=1 

Which is easily seen to imply that the sequence T n(x) is a Cauchy sequence. 

We will also use the following lemma: 

Lemma 1: Suppose that u1 and u2 are continuous functions on an interval I. Assume also 
that 

• u1(x0) = u2(x0).
• If u1(x) = u2(x), then u1 = u2 in a neighborhood of x.

then u1 = u2. 

Proof. Let 
J+ = {z ∈ I | z ≥ x0 and u1(x) = u2(x) for all x ∈ [x0, z]} . 

Then x0 ∈ J+ so J+ 6= ∅. Let z0 = sup J+, if z0 ∈ I, then u1(z0) = u2(z0) by continuity. 
Since also u1 and u2 agrees in a neighborhood of z0 it follows that z0 must be the right end 
point of I. Similarly one can show that u1 = u2 everywhere to the left of z0. This proves 
the lemma. �
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Finally, in the proof of the Picard-Lindelöf theorem we will also need the next lemma. In 
this lemma f is a function on R as above, so f differentiable and the derivative of f is 
continuous and g will be a continuous function on R. For δ > 0, on the space of continuous 
functions on [−δ, δ] we define a map T on functions y as follows Z x 

T (y)(x) = a + [f(z(s)) + g(s)] ds . 
0 

Note that when y is continuous, then so is T (y). 

Lemma 2: Let a be a constant and set R = |a| + 2. There exists a δ > 0 such that: 
• The map T maps the ball (in the metric space (C([−δ, δ]), d)) of radius R and with
center the constant function zero into itself. We write BR(0) for this ball and so have
that T : BR(0) → BR(0).

• The map T is contracting on BR(0).

Proof. Let 
L1 = max |f(z)| , 

|z|≤R 

L2 = max |g(x)| . 
|x|≤1 

We will first show that if that if we choose δ0 > 0 small enough, then T maps BR(0) into 
itself. That is, we will show that if |y| ≤ R on [−δ0, δ0], then 

|T (y)| ≤ R . 

To see this set � � 
1 1 

δ0 = min 1, , . 
L1 + 1 L2 + 1 

Now suppose that |y| ≤ R and |x| ≤ δ0, then Z x Z x 

|T (y)(x)| ≤ |a| + |f(y(s))| ds + |g(s)| ds 
0 0 

≤ |a| + δ0 L1 + δ0 L2 ≤ |a| + 2 = R . 
This show that T maps BR(0) into itself. 
Next set 

M = max |f 0(z)| , 
|z|≤R 

and � � 
1 

δ = min δ0, . 
2 M + 1 

Suppose that y1 and y2 are two continuous functions on [−δ, δ] in BR(0), then Z x 

|T (y1)(x) − T (y2)(x)| = [f(y1(s)) − f(y2(s))] ds . 
0 

By the mean value theorem applied to f for each s we have a zs between y1(s) and y2(s) 
such that 

f(y1(s)) − f(y2(s)) = f 0(zs) (y1(s) − y2(s)) . 
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Since |yi| ≤ R we have that we have that for each s 

|f(y1(s)) − f(y2(s))| ≤ M |y1(s) − y2(s)| ≤ M max |y1 − y2| = M d(y1, y2) , 

and therefore Z x 1 |T (y1)(x) − T (y2)(x)| = [f(y1(s)) − f(y2(s))] ds ≤ M δ d(y1, y2) < d(y1, y2) . 
20 

�

We are now ready to show the Picard-Lindelöf theorem: 

Proof. (of the Picard-Lindelöf theorem.) Let T be defined as above and R and δ > 0 be given 
by Lemma 2. A fixed point for T is a function y such that T (y) = y. By the fundamental 
theorem of calculus if y is a fix point of T , then we have that 

y 0(x) = (T (y))0(x) = f(y(x)) + g(x) . 

Moreover, y(0) = a. In other words any fix point of T is a solution to the ODE. 
We need to show that the solution is unique. Suppose that y ∗ is any other solution, then 

by the fundamental theorem of calculusZ x 

y ∗ (x) = a + (y ∗ )0(s) ds = T (y ∗ (s)) . 
0 

Note that this holds even if the interval I that y ∗ is defined on (containing 0) is different 
from [−δ, δ]. We have from this that any solution is a fix point of T . Since T is contracting 
on BR(0) it follows that for any fix point with |y| ≤ R, then y is unique. In general, suppose 
that y1 and y2 are two solutions defined on intervals I1 and I2 both containing 0. We have 
from the above that they agree in a neighborhood of 0. The argument in Lemma 2 that 
proved uniqueness in a small neigborhood of 0 works equally well in a neighborhood of any 
other point. It now follow from Lemma 1 that y1 and y2 agrees everywhere. �
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