18.100B Spring 2025 Problem Set 1

Problem 1 (10pt). Let \mathbb{F} be an ordered field with $1 \neq 0$. Show that 1 > 0. You can find the axioms of an ordered field on the next page. Hint: Show (-1)(-1) = 1 first.

solution 1. Since $1 \neq 0$, we know either 1 > 0 or 0 > 1 occurs from (O1)

Problem 2 (10pt). Recall that two rational numbers $\frac{n_1}{m_1}$ and $\frac{n_2}{m_2}$ are the same, denoted by $\frac{n_1}{m_1} = \frac{n_2}{m_2}$, if $n_1 m_2 = n_2 m_1$. Show that the addition

$$\frac{n}{m} + \frac{p}{q} := \frac{nq + mp}{mq}$$

is well-defined. That is, if $\frac{n_1}{m_1} = \frac{n_2}{m_2}$ and $\frac{p_1}{q_1} = \frac{p_2}{q_2}$, then

$$\frac{n_1}{m_1} + \frac{p_1}{q_1} = \frac{n_2}{m_2} + \frac{p_2}{q_2}.$$

Problem 3 (10pt). Find sup E and inf E for the following sets E:

- (1) $E = \{ n \in \mathbb{Z} \mid n < \sqrt{12} \}$
- (2) $E = \{r \in \mathbb{Q} \mid r < \sqrt{12}\}\$ (3) $E = \{x \in \mathbb{R} \mid x^2 x 1 < 0\}$ (4) $E = \{\frac{n^2 + n}{n^2 + 1} \mid n \in \mathbb{N}\}$

No proof is needed for the answer.

Problem 4 (10pt). Let M be the set of polynomials with integer coefficients.

$$\mathbb{M} := \{ f(x) = a_0 + a_1 x + a_2 x^2 + \dots a_n x^n \mid a_i \in \mathbb{Z} \}.$$

Define the relation 0 < f if 0 < f(x) for x large enough. To be more precise, we say 0 < fif there exists M>0 such that f(x)>0 for all x>M. Then define $f\prec g$ if $0\prec g-f$. Show that (M, \prec) is an ordered set. You can find the axioms for an ordered set (O1) and (O2) on the next page.

You can use the following fact directly (without proving it):

If $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ with $0 < a_n$, then 0 < f(x) for x large enough.

Problem 5 (10pt). Let (\mathbb{M}, \prec) be the ordered set defined in Problem 4. Show that (\mathbb{M}, \prec) doesn't satisfy the Archimedean property.

Problem 6 (10pt). The greatest lower bound of a set E is defined to be the number β which has the following properties:

- For all $x \in E$, $\beta < x$.
- Suppose $\alpha \leq x$ for all $x \in E$. Then $\beta \geq \alpha$.

Show that for any non-empty set $E \subset \mathbb{R}$ which is bounded from below, E has the greatest lower bound.

Problem 7 (20pt). Show that for all real number $x \in \mathbb{R}$, there exists a real number $y \in \mathbb{R}$ such that $y^3 = x$. Hint: start with the case x > 0.

An ordered field \mathbb{F} is a set with two operations, addition + and multiplication \cdot , and one relation <, which satisfy the following axioms:

(A) Axioms for addition

- (A1) If $x \in \mathbb{F}$ and $y \in \mathbb{F}$, then $x + y \in \mathbb{F}$.
- (A2) x + y = y + x for all $x, y \in \mathbb{F}$.
- (A3) (x+y)+z=x+(y+z) for all $x,y,z\in\mathbb{F}$.
- (A4) There exists an element $0 \in \mathbb{F}$ such that 0 + x = x for all $x \in \mathbb{F}$.
- (A5) For all $x \in \mathbb{F}$, there exists an element $-x \in \mathbb{F}$ such that x + (-x) = 0.

(M) Axioms for multiplication

- (M1) If $x \in \mathbb{F}$ and $y \in \mathbb{F}$, then $xy \in \mathbb{F}$.
- (M2) xy = yx for all $x, y \in \mathbb{F}$.
- (M3) (xy)z = x(yz) for all $x, y, z \in \mathbb{F}$.
- (M4) There exists an element $1 \in \mathbb{F}$ such that $1 \cdot x = x$ for all $x \in \mathbb{F}$.
- (M5) For all $x \in \mathbb{F}$ and $x \neq 0$, there exists an element $1/x \in \mathbb{F}$ such that $x \cdot (1/x) = 1$.
- **(D)** Axiom of distribution x(y+z) = xy + xz for all $x, y, z \in \mathbb{F}$.
- (O) Axioms of order
 - (O1) If $x \in \mathbb{F}$ and $y \in \mathbb{F}$, then one and only one of the statement

$$x < y, \ x = y, \ y < x$$

is true.

- (O2) If x < y and y < z, then x < z.
- (OA) Axiom of order and addition If y < z, then y + x < z + x.
- (OM) Axiom of order and multiplication If 0 < x and 0 < y, then 0 < xy.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.