Problem Set 4

Problem 1 (10pt). Give an example of a sequence a_n that satisfies the following two conditions.

- a_n is divergent.
- For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_{n+1} a_n| < \epsilon$ for all $n \ge N$.

Problem 2 (10pt). Let p > 0 be a positive number. Consider the p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

In the lecture we proved that the series diverges for p=1 and converges for p=2. Show that the series converges for p > 1 and diverges for 0 .

Problem 3 (15pt). Let r > 0 be a positive number. Determine whether the series $\sum a_n$ converges or diverges for the following cases.

- (1) $a_n = \sqrt{n+r} \sqrt{n}$ (2) $a_n = n^3 r^n$
- (3) $a_n = \frac{1}{n!}r^n$

The answer may depend on the value of r.

Problem 4 (20pt). Let b_n be a sequence of non-negative numbers which decreases to zero. That is,

$$b_1 \ge b_2 \ge b_3 \ge \cdots \ge 0$$
 and $\lim_{n \to \infty} b_n = 0$.

Let $a_n = (-1)^{n-1}b_n$. The purpose of this problem is to show that $\sum_{n=0}^{\infty} a_n$ converges. This is called the alternating series test. Let

$$s_n = \sum_{k=1}^n a_k.$$

- (1) Show that s_{2k+1} is decreasing and that s_{2k} is increasing.
- (2) Show that s_{2k+1} is bounded from below and that s_{2k} is bounded from above.
- (3) Show that both $\lim_{k\to\infty} s_{2k+1}$ and $\lim_{k\to\infty} s_{2k}$ exist and are identical.
- (4) Show that $\sum_{n=1}^{\infty} a_n$ converges.

Problem 5 is on the next page

Problem 5 (20pt). For any real number $x \in \mathbb{R}$, let $\lfloor x \rfloor$ be the largest integer which is less or equal to x. Equivalently, $\lfloor x \rfloor$ is the integer such that

$$0 \le x - \lfloor x \rfloor < 1.$$

For example |1.3| = 1, |-3| = -3 and $|\sqrt{5}| = 2$. Define a sequence

$$a_n = \sqrt{2}n - \lfloor \sqrt{2}n \rfloor.$$

- (1) Show that a_n has a convergent subsequence.
- (2) Let $N \in \mathbb{N}$ be an integer. Suppose $0 < a_m < 1/N$ for some integer m. Show that there exists $n \in \mathbb{N}$ such that

$$a_n > 1 - \frac{1}{N}.$$

Hint: Consider n = km for integers k.

(3) Show that for all $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that

$$a_n > 1 - \frac{1}{N}$$

Hint: Applying the following fact to a_n . Suppose $a_1, a_2, \dots a_{N+1}$ are N+1 numbers contained in [0,1). Then there exist two distinct numbers k and ℓ such that $|a_k - a_{\ell}| < \frac{1}{N}$.

(4) Let $E := \{a_n \mid n \in \mathbb{N}\}$. Show that there exists a sequence $b_k \in E$ such that

$$\lim_{k \to \infty} b_k = 1.$$

We remark that b_k is **not** required to be a subsequence of a_n and that b_k are **not** required to be distinct between different k's.

The purpose of (2), (3) and (4) in Problem 5 is to prepare ingredients that eventually show that a_n has a subsequence which converges to 1. The last piece of ingredient is the following lemma.

Lemma 1. Let a_n be a sequence of real numbers and $E := \{a_n \mid n \in \mathbb{N}\}$. Suppose there exists a sequence $b_k \in E$ such that

$$\lim_{k \to \infty} b_k = L.$$

Further assume that $L \notin E$. Then a_n has a subsequence a_{n_k} such that

$$\lim_{k \to \infty} a_{n_k} = L.$$

The proof can be found on the next page.

Proof. Take $n_1 = 17$. (17 is arbitrary) Set $\epsilon_1 > 0$ be the minimum among $1, |L - a_1|, |L - a_2|, \dots |L - a_{n_1}|$. Here we used $L \notin E$ to ensure $\epsilon_1 > 0$. Because

$$\lim_{k \to \infty} b_k = L,$$

there exists $n_2 \in \mathbb{N}$ such that $|a_{n_2} - L| < \epsilon_1$. Since for all $j = 1, 2, \dots, n_1$,

$$|a_{n_2} - L| < \epsilon_1 \le |a_j - L|,$$

we must have $n_2 > n_1$.

Set $\epsilon_2 > 0$ be the minimum among $1/2, |L - a_1|, |L - a_2|, \dots |L - a_{n_2}|$. Here we used $L \in E$ to ensure $\epsilon_2 > 0$. Because

$$\lim_{k \to \infty} b_k = L,$$

there exists $n_3 \in \mathbb{N}$ such that $|a_{n_3} - L| < \epsilon_2$. Since for all $j = 1, 2, \dots, n_2$,

$$|a_{n_3} - L| < \epsilon_2 \le |a_j - L|,$$

we must have $n_3 > n_2$. Inductively we obtain $n_1 < n_2 < n_3 < \dots$ and

$$|a_{n_k} - L| < \epsilon_k \le \frac{1}{k} \to 0$$

. This finishes the proof.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.