Problem Set 5

Problem 1 (10pt). Let a_n , b_n be two sequences of real numbers and x be a real number. The *Fourier series* is

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx).$$

Suppose that $\sum_{n=1}^{\infty} (|a_n| + |b_n|)$ converges, show that the above Fourier series converges for all $x \in \mathbb{R}$.

Problem 2 (20pt).

- (1) Give an example of a function f(x) defined on [-1,1] with the following property: $(f(x))^2$ is continuous on [-1,1] but f(x) is **not** continuous on [-1,1].
- (2) Suppose that f(x) is a function defined on an interval I and that $(f(x))^3$ is continuous on I. Show that f(x) is also continuous on I.

Hint: In problem 2 of Pset 2, we showed that the function $g(x) := x^{1/3}$ is defined. Show that this is a continuous function. You can use the fact that $x < y \Rightarrow x^3 < y^3$ without proof.

Problem 3 (10pt). Recall that for $x \in \mathbb{R}$, $\lfloor x \rfloor$ is the largest integer which is less or equal to x. Equivalently, $\lfloor x \rfloor$ is the integer such that

$$|x| \le x < 1 + |x|.$$

Determine at which points the function f(x) = |x| is continuous or discontinuous.

Problem 4 (10pt). Let f(x) and g(x) be two continuous functions defined on \mathbb{R} with f(x) = g(x) for all $x \in \mathbb{Q}$. Show that f(x) = g(x) for all $x \in \mathbb{R}$.

Problem 5 is on the next page

Problem 5 (20pt). Recall that

$$E(x) := 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

In Pset 4 and the lecture, we showed the series is convergent for all $x \in \mathbb{R}$ and hence E(x) is defined for all $x \in \mathbb{R}$.

(1) For $k \in \mathbb{N}$, define

$$E_k(x) := 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} = \sum_{n=0}^k \frac{x^n}{n!}.$$

Show that for any $k \in \mathbb{N}$, $E_k(x)$ is a continuous function on \mathbb{R} .

Hint: Use the fact that x^k are continuous.

(2) Let M>0 be a fixed number. Show that for all $\epsilon>0$, there exists $N\in\mathbb{N}$ such that

$$|E_k(x) - E(x)| < \epsilon$$

for all $k \geq N$ and for all $x \in [-M, M]$.

Remark: We require that a **single** number N works **for all** $x \in [-M, M]$.

Hint: Show that $|E_k(M) - E(M)| \ge |E_k(x) - E(x)|$.

(3) Show that E(x) is continuous on \mathbb{R} .

Hint: To show E(x) is continuous at x_0 , consider

$$|E(x) - E(x_0)| \le |E(x) - E_k(x)| + |E_k(x) - E_k(x_0)| + |E_k(x_0) - E(x_0)|.$$

Then apply the results in part (1) and part (2).

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.