Problem Set 6

Problem 1 (10pt). Let $X = \{\text{continuous functions defined on } [0,1]\}$ and $d: X \times X \to \mathbb{R}$ be defined by

$$d(f,g) = \max_{x \in [0,1]} f(x) - g(x) .$$

Show that d satisfies the triangle inequality. In other words, for all continuous functions f(x), g(x) and h(x)

$$d(f,h) \le d(f,g) + d(g,h).$$

Problem 2 (10pt). Let $X = \mathbb{N} = \{1, 2, 3, \dots\}$ and $d: X \times X \to \mathbb{R}$ defined by

$$d(n,m) = \frac{1}{n} - \frac{1}{m} .$$

- (1) Show that the sequence $x_n = 5n$ is a Cauchy sequence.
- (2) Show that the sequence $x_n = 5n$ doesn't converge.

As a result, this metric space is not Cauchy complete.

Problem 3 (20pt). In this problem we consider the metric space with $X = \mathbb{R}^2$ and

$$d\bigg((x_1,y_1),(x_2,y_2)\bigg) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}.$$

- (1) Let (x_n, y_n) be a sequence in \mathbb{R}^2 . Show that (x_n, y_n) converges if and only if both x_n and y_n converge as sequences of \mathbb{R} .
- (2) Let (x_n, y_n) be a sequence in \mathbb{R}^2 . Show that (x_n, y_n) is a Cauchy sequence if and only if both x_n and y_n are Cauchy sequences of \mathbb{R} .
- (3) Show that \mathbb{R}^2 is Cauchy complete.

Problem 4 (10pt). Let $A_j, j \in \mathbb{N}$ be open sets in a metric space (X, d).

- (1) Show that $\bigcup_{j=1}^{\infty} A_j$ is open. (2) Show that $\bigcap_{j=1}^{\infty} A_j$ may not be open. Hint: Consider $X = \mathbb{R}$ and $A_j = (0, 1 + \frac{1}{j})$.

Problem 5 is on the next page

Problem 5 (20pt). Let (X, d) be a metric space, K be a compact set in X and $A_j, j \in \mathbb{N}$ be closed sets in X. Suppose for all $k \in \mathbb{N}$,

$$K \cap \left(\bigcap_{j=1}^k A_j\right)$$
 is non-empty.

Show that

$$K \cap \left(\bigcap_{j=1}^{\infty} A_j\right)$$
 is non-empty.

Hint: Consider open sets $B_j = A_j^c$. Express $\bigcap_{j=1}^{\infty} A_j$ and $\bigcap_{j=1}^k A_j$ in terms of B_j . Then use the definition of a compact set.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.