Problem Set 7

Problem 1 (20pt). Consider the set

$$X := \left\{ (a_1, a_2, a_3, \dots) \quad \sum_{j=1}^{\infty} a_j^2 \text{ converges} \right\}.$$

Define the function $d: X \times X \to \mathbb{R}$ as the following. For $x = (a_1, a_2, a_3, \dots)$ and $y = (b_1, b_2, b_3, \dots)$ in X,

$$d(x,y) := \sqrt{\sum_{j=1}^{\infty} (a_j - b_j)^2}.$$

(1) Show that the function d is well-defined. Equivalently, show that for $x = (a_1, a_2, a_3, \dots)$ and $y = (b_1, b_2, b_3, \dots)$ in X,

$$\sum_{j=1}^{\infty} (a_j - b_j)^2 \text{ converges.}$$

(2) Show that the function d satisfies the triangle inequality. You can use the following triangle inequality in \mathbb{R}^n without proof. For all $n \geq 1$,

$$\sqrt{\sum_{j=1}^{n} (a_j - c_j)^2} \le \sqrt{\sum_{j=1}^{n} (a_j - b_j)^2} + \sqrt{\sum_{j=1}^{n} (b_j - c_j)^2}.$$

(3) Consider a sequence in X as $x_1 = (1, 0, 0, 0, \dots)$, $x_2 = (0, 1, 0, 0, \dots)$, and so on. In general, $x_n = (0, \dots, 0, 1, 0, \dots)$. Show that x_n has no convergent subsequence.

Problem 2 (10pt). Let (X,d) be a metric space and x_n be a sequence in X. Denote $E = \{x_1, x_2, x_3, \dots\}$. Suppose x_n has no convergent subsequence. Show that for all $k \in \mathbb{N}$, there exists $r_k > 0$ such that

$$B(x_k, r_k) \cap E = \{x_k\}.$$

You can use the following fact without proof. Fix $x \in X$. Suppose for all r > 0, there are infinite many elements in $E \cap B(x, r)$. Then x_n has a subsequence which converges to x.

Remark: You might find it easier to first show this when $(X, d) = \mathbb{R}$ and then adapt your argument to a general metric space (X, d).

1

Problem 3 (10pt). Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that f(x) is differentiable on $(-\infty,0)\cup(0,\infty)$ and that $\lim_{x\to 0}f'(x)$ exits. Show that f(x) is differentiable at x = 0 and that $f'(0) = \lim_{x \to 0} f'(x)$. Hint: See the Mean Value Theorem on the last page.

Problem 4 (10pt). Use $\frac{d}{dx}e^x = e^x$ to show that $e^x \ge 1 + x$ for all $x \in \mathbb{R}$. Hint: Apply the Mean Value Theorem with x and 0 being the endpoints.

Problem 5 (20pt). Let $X = \{\text{continuous functions defined on } [0,1] \}$ and $d: X \times X \to \mathbb{R}$ be defined by

$$d(f,g) = \max_{x \in [0,1]} f(x) - g(x)$$
.

Suppose $f_n \in X$ is a Cauchy sequence.

- (1) Fix an arbitrary $x_0 \in [0,1]$. Show that $\lim_{n\to\infty} f_n(x_0)$ exists.
- (2) Define the function $f:[0,1]\to\mathbb{R}$ by

$$f(x) := \lim_{n \to \infty} f_n(x).$$

Show that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$f_n(x) - f(x) \le \epsilon$$

for all $x \in [0,1]$ and for all $n \geq N$.

(3) Show that f(x) is continuous on [0,1]. Equivalently, show that $f \in X$. Hint: To show f(x) is continuous at x_0 , consider

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|.$$

(4) Show that $\lim_{n\to\infty} f_n = f$ as a sequence in X.

Theorem. (Mean Value Theorem)

Let $f:[a,b]\to\mathbb{R}$ be a function. Suppose f(x) is continuous on [a,b] and is differentiable on (a,b). Then there exists a number $c\in(a,b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.