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TOBIAS HOLCK COLDING
Review for the Final

Definition (Closed subsets): Let (X, d) be a metric space. We say that C is a closed subset
of X if the complement X \ C' is open.

Note that @) (the empty set) and X are both closed.

Lemma: Let (X, d) be a metric space and r > 0, then

Ar = {y | d<$’y) > T}
is open. Equivalently, B,(x) = {y|d(z,y) < r} is closed.

Theorem: A subset C' of a metric space (X,d) is closed if and only if for all convergent
sequences x, with all x,, in C' also the limit is in C'.

Theorem:

e Union: If C,, is a family of closed subsets, then N, C,, is also closed.
e Intersection: If C1,--- ,C, are closed subsets, then C; U---U (C, is also closed.

Warning: Union of infinitely many closed sets may not be closed!!!

Definition (Cover, open cover and finite sub-cover): If A is a subset of X, then a cover of
A is a collection collection of subsets U, of X so that

A CUU,.
We say that a U,,, -+ ,U,, is a finite sub-cover if also {U,, }; is a cover.

If (X, d) is a metric space and all the U, are open, then we say that {U,}, is an open cover.

Definition (Compact subset): If (X,d) is a metric space and A is a subset, then we say
that A is compact if each open cover has a finite sub-cover.

Theorem: (Heine-Borel.) [a,b]" C R" is compact.
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Theorem: If (X, d) is a metric space and A a compact subset, then A is closed and bounded.

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces
that are not compact.

Theorem: If (X,d) is a metric space and A a compact subset, then any closed subset C
contained in A is also compact.

Theorem: If (X, d) is a metric space and A a compact subset, then any sequence in A has
a convergent subsequence.

Definition: If f : R — R is a function, then we say that f is differentiable at z if the limit

o @) = flw)

T—rx0 Xr — :L'O

exists. (Note that in this fraction z is assumed to be # xy.) When the limit exists, then we
say that the function f is differentiable at xy and that its derivative at xy is the limit. In
this case we denote the derivative at z by f'(z).

Lemma: If f is differentiable at xg, then f is continuous at z;.

Theorem: If f, g are functions on R that both are differentiable at z(, then

e (Sum rule.)
(f +9)'(x0) = f'(z0) + g'(x0) -
e (Leibniz’s rule.)
(f 9)(wo) = f'(w0) g(wo) + f(20) g' (o) -

e (Quotient rule.) If also g(x¢) # 0, then

<[>/ (20) = f'(z0) g(x0) — f(20) §'(0)
g

9*(xo)

Theorem: (Chain rule.) If f : [a,b] — [c,d] and g : [¢,d] — R are functions, where
f is differentiable at zy and g differentiable at yo = f(x), then the composition g o f is
differentiable at xy and the derivative at zg is

(g0 f)(z0) = g'(y0) f'(0) .-



SPRING 2025 - 18.100B/18.1002 3

Lemma: Let f : [a,b] = R be a differentiable function and suppose that a < xy < b and
that f has a local maximum or minimum at xg, then

f(zg) =0.

Theorem: (Mean value theorem.) Let f : [a,b] — R be a differentiable function, then there
exists a o between a and b such that

oy FO = (@)

b—a

Theorem: (Cauchy mean value theorem.) Let f, g : [a,b] — R be differentiable functions,
then there exists a xy between a and b such that

f'(x0) [9(b) — g(a)] = g'(x0) [£(b) — f(a)].
In particular, if g(b) — g(a) # 0, then

f'(xo)  f(b) = f(a)
g'(xo)  g(b) —gla)

Theorem: (L’Hopital’s rule, version 1.) Let f, g : (a,b) — R be differentiable functions
with g(z) # 0 and ¢'(x) # 0 for all x, assume that

lim f(z) = lim g(x) = 0.

If
lim f/ (z)
T—a g (I)
exists, then
lim _f(m) = lim f'(z)

z—a g(gj)  2oa g’(;y) '

Theorem: (L’Hopital’s rule, version 2.) Let f, g : (a,b) — R be differentiable functions
with g(x) # 0 and ¢'(x) # 0 for all x, assume that

lim f(z) = lim g(z) = 0.
T—a r—a

' f'()
"(x
ra /()
exists, then
lim @) = lim J'(@)

r—a g(x) T—a g’(g}) '
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Theorem: (Taylor expansion.) Let f : [a,b] — R be a function and k a positive integer.

Assume that f, f/, f® ... f*=1 exists on [a, b] and are continuous and that f*) is defined
on (a,b), then there exists ¢ between a and b such that
) (k=1)
10 = @)+ @ -0+ I o ap s B 0o

For and infinitely differentiable function f on R we define the (k — 1) Taylor polynomial at

a by

f?(a)
2

f*V(a)
(k—1)!

Pea(@) = f(a) + f'(a) (¢ — a) + (r—a) 4+ (x—a)".

Riemann integrals

Partition: Let [a,b] be an interval. A partition P of the interval [a,b] is a number of
sub-divisions x; such that

Aa=Tg< T <Xy<---<x,=>.

The partition is then the sub-intervals [z; 1, z;]. We will set Az; = z; — x; 1.

Upper and lower sums: Suppose now that f : [a,b] — R is a bounded function and that
P = {x;} is a partition of the interval [a,b]. We define upper and lower sums as follows. Set

M;= sup f,
[ 1,24

m; = inf f,
[i—1,m4]

and upper U(f,P) and lower sums L(f, P) by

Upper and lower integrals: Suppose now that f : [a,b] — R is a bounded function.
Define the upper Riemann integral of f by

5
/fngvmm.
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Here the infimum is taken over all partitions of [a, b]. Likewise, we define the lower Riemann
integral by

b
/fdx:supL(f,P).
L P

Riemann integral: Suppose that f : [a,b] — R is a bounded function, then we say that f

is Riemann integrable if
b b
/ fdxr = / fdx.

If the function is Riemann integrable, then the Riemann integral is

/abfdx:/abfdx:/abfdx.

The Riemann integrable functions is denoted by R ([a, b]).
Theorem: Any continuous function on [a,b] is in R ([a, b]).

Definition: Uniformly continuous. Suppose that f : I — R is a function, where [ is an
interval. We say that f is uniformly continuous if for all € > 0, there exists a 6 > 0 such that

f(z) = fy)] <eif [z —y[ < 4.

Note that being uniformly continuous is stronger than being continuous. It means that for
a given € > 0, the same d can be used for all x.

Basic properties of integrals.

Theorem: We have the following basic formulas for integrals:

(1) If f € R(]a,b]) and ¢ € R, then ¢ f € R ([a,b]) and

/ab(cf)dx:c/abfd:v.

(2) If f, g € R([a,b]), then f + g € R ([a,b]) and

/ab(f+g)dx:/abfdx+/abgdx.

(3) If f, g € R(Ja,b]) and f < g, then

b b
/fda:ﬁ/gdx.
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(4) If f € R ([a,b]) and ¢ € (a,b), then f € R([a,c]) and f € R ([c,b]) and
/fdx—i—/fdx—/fdx

Corollary: Suppose that f, |f| € R ([a,b]), then

/:fda: §/ab\f\dw.

Fundamental theorem of calculus, version 1: Let f be a continuous function on |[a, b|
and define F' on [a, b] by
- [ #eas

The function F' is differentiable with derivative f.

Fundamental theorem of calculus, version 2: Suppose that F : [a,b] — R is differen-
tiable and that F' = f € R ([a,b]), then
b
= / f(s)ds

Suppose that f and ¢ : [a,b] — R are differentiable functions and their derivatives are
continuous, then we define the arclength of the curve

s = (f(s).9(s))
by

L= [ VIO G ds.

Improper integrals.

Unbounded interval.

Suppose that f € R([a,b]) for all b > a. If

b
i [ s

exists, then we say that the improper integral

/aoo f(z)dx
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/:O f(x)da = lim /abf(x) dz

b—o0

exists and that

Unbounded function.

Suppose that f € R([¢c,b]) for all ¢ > a. If

lim b f(x)dx

c—a c

exists, then we say that the improper integral

/abf(a:) dx

/ f(z)dx =1lim [ f(x)dz

c—a c

exists and that

Pointwise convergence: Suppose that f, is a sequence of functions on an interval I, then
we say that f,, convergences pointwise to a function f if for all x we have

fu(@) = f(z).

Uniform convergence: Suppose that f, is a sequence of functions on an interval I, then
we say that f, convergences uniformly to a function f if for all € > 0, there exists an N such
that if n > N, then for all x

[f(x) = fulz)] <e.

Lemma 1: Suppose that [ is an interval and f,, is a sequence of functions on I that converges
uniformly to a function f, then f,, also converges pointwise to f.

Lemma [Weirstrass M-test]: Suppose that [ is an interval and f,, is a sequence of functions
on I. Suppose also that M, is a sequence of non-negative numbers with

|fu(z)| < M, forallz € I.

If the series
o0
> M,
n=1
converges, then the sequence of functions

Su(@) = 3 Jule)
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converges uniformly.

Theorem: If

o0

E akxk

k=0

is a power series and R is its radius of convergence. Then it converges uniformly on any
(finite) interval of the form [—L, L] where L < R.

Theorem: Suppose that I is an interval and f,, is a sequence of continuous functions on I.
If f,, converges uniformly to f, then f is also continuous.

Proposition: Let I be an interval [a,b] and f,, f € C(I), then f, — f in the metric space
(C(I),d) if and only if f,, converges to f uniformly.

Corollary: C([a,b]) is Cauchy complete.

Theorem: If f,, € R ([a,b]) and f,, — f uniformly, then f € R ([a,b]) and

/abfndxé/abfd:p.

Theorem: Suppose that f,, are differentiable functions on [a, b] and zy € [a, b]. If

[} fn(xo) — C,
e [/ — g uniformly,
e fI are continuous on [a, bl

then there exists a differentiable function f with

e f, — f uniformly,
o [/ — f’ uniformly.

Suppose that a, is a sequence and

oo
g ap x",
n=0

is a power series, the radius of convergence R is

1
n

R = i where M = limsup |a,
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Corollary: The power series

[e.9]
>
n=0
has the same radius of convergence as the power series
: —k
an "
— (n—k)!
Theorem: Suppose that
o0
f(x) = Z an ",
n=0
is a power series with radius of convergence R, then
®) () = — a2
n==k
and
[e'¢) a1
x)dr = iy
Jrwa=3

Ordinary differential equations: Sppose that we have the following:

e f be a continuously differentiable function on R.
e g be a continuous function on R.
e ¢ is a real number.

We are intersted in existence and uniqueness of the ODE:

y'(x) = flyz)) +g(x)
y(0) =a.

Picard-Lindelof theorem: There exists 6 > 0 such that there is a unique solution to this
ODE on (—6,0).
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