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TOBIAS HOLCK COLDING 

Review for the Final 

Definition (Closed subsets): Let (X, d) be a metric space. We say that C is a closed subset 
of X if the complement X \ C is open. 

Note that ∅ (the empty set) and X are both closed. 

Lemma: Let (X, d) be a metric space and r > 0, then 

Ar = {y | d(x, y) > r} 
¯is open. Equivalently, Br(x) = {y | d(x, y) ≤ r} is closed. 

Theorem: A subset C of a metric space (X, d) is closed if and only if for all convergent 
sequences xn with all xn in C also the limit is in C. 

Theorem: 

• Union: If Cα is a family of closed subsets, then ∩α Cα is also closed. 
• Intersection: If C1, · · · , Cn are closed subsets, then C1 ∪ · · · ∪ Cn is also closed. 

Warning: Union of infinitely many closed sets may not be closed!!! 

Definition (Cover, open cover and finite sub-cover): If A is a subset of X, then a cover of 
A is a collection collection of subsets Uα of X so that 

A ⊂ ∪αUα . 

We say that a Uα1 , · · · , Uαn is a finite sub-cover if also {Uαi }i is a cover. 
If (X, d) is a metric space and all the Uα are open, then we say that {Uα}α is an open cover. 

Definition (Compact subset): If (X, d) is a metric space and A is a subset, then we say 
that A is compact if each open cover has a finite sub-cover. 

Theorem: (Heine-Borel.) [a, b]n ⊂ Rn is compact. 
1 
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Theorem: If (X, d) is a metric space and A a compact subset, then A is closed and bounded. 

Warning: The converse is not the case!!! There are closed a bounded subsets of metric spaces 
that are not compact. 

Theorem: If (X, d) is a metric space and A a compact subset, then any closed subset C 
contained in A is also compact. 

Theorem: If (X, d) is a metric space and A a compact subset, then any sequence in A has 
a convergent subsequence. 

Definition: If f : R → R is a function, then we say that f is differentiable at x0 if the limit 

f(x) − f(x0)
lim 
x→x0 x − x0 

exists. (Note that in this fraction x is assumed to be 6= x0.) When the limit exists, then we 
say that the function f is differentiable at x0 and that its derivative at x0 is the limit. In 
this case we denote the derivative at x0 by f 0(x0). 

Lemma: If f is differentiable at x0, then f is continuous at x0. 

Theorem: If f , g are functions on R that both are differentiable at x0, then 

• (Sum rule.) 

(f + g)0(x0) = f 0(x0) + g 0(x0) . 

• (Leibniz’s rule.) 

(f g)(x0) = f 0(x0) g(x0) + f(x0) g 0(x0) . 

• (Quotient rule.) If also g(x0) 6= 0, then � �0
f f 0(x0) g(x0) − f(x0) g0(x0)

(x0) = . 
g g2(x0) 

Theorem: (Chain rule.) If f : [a, b] → [c, d] and g : [c, d] → R are functions, where 
f is differentiable at x0 and g differentiable at y0 = f(x0), then the composition g ◦ f is 
differentiable at x0 and the derivative at x0 is 

(g ◦ f)0(x0) = g 0(y0) f
0(x0) . 
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Lemma: Let f : [a, b] → R be a differentiable function and suppose that a < x0 < b and 
that f has a local maximum or minimum at x0, then 

f 0(x0) = 0 . 

Theorem: (Mean value theorem.) Let f : [a, b] → R be a differentiable function, then there 
exists a x0 between a and b such that 

f(b) − f(a)
f 0(x0) = 

b − a 
. 

. 

Theorem: (Cauchy mean value theorem.) Let f , g : [a, b] → R be differentiable functions, 
then there exists a x0 between a and b such that 

f 0(x0) [g(b) − g(a)] = g 0(x0) [f(b) − f(a)] . 

In particular, if g(b) − g(a) 6= 0, then 

f 0(x0) f(b) − f(a) 
= . 

g0(x0) g(b) − g(a) 

Theorem: (L’Hopital’s rule, version 1.) Let f , g : (a, b) → R be differentiable functions 
with g(x) =6 0 and g0(x) =6 0 for all x, assume that 

lim f(x) = lim g(x) = 0 . 
x→a x→a 

If 
f 0(x)

lim 
x→a g0(x) 

exists, then 
f(x) f 0(x)

lim = lim . 
x→a g(x) x→a g0(x) 

Theorem: (L’Hopital’s rule, version 2.) Let f , g : (a, b) → R be differentiable functions 
with g(x) =6 0 and g0(x) =6 0 for all x, assume that 

lim f(x) = lim g(x) = ∞ . 
x→a x→a 

If 
f 0(x)

lim 
x→a g0(x) 

exists, then 
f(x) f 0(x)

lim = lim . 
x→a g(x) x→a g0(x) 
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Theorem: (Taylor expansion.) Let f : [a, b] → R be a function and k a positive integer. 
Assume that f , f 0, f (2), · · · , f (k−1) exists on [a, b] and are continuous and that f (k) is defined 
on (a, b), then there exists c between a and b such that 

f (2)(a) f (k−1)(a)
f(b) = f(a) + f 0(a) (b − a) + (b − a)2 + · · · + (b − a)k−1 

2 (k − 1)! 

f (k)(c)
+ (b − a)k . 
(k)! 

For and infinitely differentiable function f on R we define the (k − 1) Taylor polynomial at 
a by 

f (2)(a) f (k−1)(a)
Pk−1(x) = f(a) + f 0(a) (x − a) + (x − a)2 + · · · + (x − a)k−1 . 

2 (k − 1)! 

Riemann integrals 

Partition: Let [a, b] be an interval. A partition P of the interval [a, b] is a number of 
sub-divisions xi such that 

a = x0 < x1 < x2 < · · · < xn = b . 

The partition is then the sub-intervals [xi−1, xi]. We will set Δ xi = xi − xi−1. 

Upper and lower sums: Suppose now that f : [a, b] → R is a bounded function and that 
P = {xi} is a partition of the interval [a, b]. We define upper and lower sums as follows. Set 

Mi = sup f , 
[xi−1,xi] 

mi = inf f , 
[xi−1,xi] 

and upper U(f, P) and lower sums L(f, P) by 
nX 

U(f, P) = Mi Δ xi , 
i=1 

nX 
L(f, P) = mi Δ xi . 

i=1 

Upper and lower integrals: Suppose now that f : [a, b] → R is a bounded function. 
Define the upper Riemann integral of f by Z b 

f dx = inf U(f, P) . 
P a 
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Here the infimum is taken over all partitions of [a, b]. Likewise, we define the lower Riemann 
integral by Z b 

f dx = sup L(f, P) . 
a P 

Riemann integral: Suppose that f : [a, b] → R is a bounded function, then we say that f 
is Riemann integrable if Z b Z b 

f dx = f dx . 
a a 

If the function is Riemann integrable, then the Riemann integral is Z b Z b Z b 

f dx = f dx = f dx . 
a a a 

The Riemann integrable functions is denoted by R ([a, b]). 

Theorem: Any continuous function on [a, b] is in R ([a, b]). 

Definition: Uniformly continuous. Suppose that f : I → R is a function, where I is an 
interval. We say that f is uniformly continuous if for all � > 0, there exists a δ > 0 such that 

|f(x) − f(y)| < � if |x − y| < δ . 

Note that being uniformly continuous is stronger than being continuous. It means that for 
a given � > 0, the same δ can be used for all x. 

Basic properties of integrals. 

Theorem: We have the following basic formulas for integrals: 

(1) If f ∈ R ([a, b]) and c ∈ R, then c f ∈ R ([a, b]) and Z b Z b 

(c f) dx = c f dx . 
a a 

(2) If f , g ∈ R ([a, b]), then f + g ∈ R ([a, b]) and ZZ b Z b b 

(f + g) dx = f dx + g dx . 
a a a 

(3) If f , g ∈ R ([a, b]) and f ≤ g, then Z b Z b 

f dx ≤ g dx . 
a a 
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(4) If f ∈ R ([a, b]) and c ∈ (a, b), then f ∈ R ([a, c]) and f ∈ R ([c, b]) and Z c ZZ b b 

f dx + f dx = f dx . 
a c a 

Corollary: Suppose that f , |f | ∈ R ([a, b]), then Z b Z b 

f dx ≤ |f | dx . 
x a 

Fundamental theorem of calculus, version 1: Let f be a continuous function on [a, b] 
and define F on [a, b] by Z x 

F (x) = f(s) ds . 
a 

The function F is differentiable with derivative f . 

Fundamental theorem of calculus, version 2: Suppose that F : [a, b] → R is differen-
tiable and that F 0 = f ∈ R ([a, b]), then Z b 

F (b) − F (a) = f(s) ds . 
a 

Suppose that f and g : [a, b] → R are differentiable functions and their derivatives are 
continuous, then we define the arclength of the curve 

s → (f(s), g(s)) 

by Z b p
L = (f 0(s))2 + (g0(s))2 ds . 

a 

Improper integrals. 

Unbounded interval. 

Suppose that f ∈ R([a, b]) for all b > a. If Z b 

lim f(x) dx 
b→∞ a 

exists, then we say that the improper integralZ ∞ 

f(x) dx 
a 
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exists and that Z ∞ Z b 

f(x) dx = lim f(x) dx 
b→∞ a a 

Unbounded function. 

Suppose that f ∈ R([c, b]) for all c > a. If Z b 

lim f(x) dx 
c→a c 

exists, then we say that the improper integralZ b 

f(x) dx 
a 

exists and that Z b Z b 

f(x) dx = lim f(x) dx 
c→a a c 

Pointwise convergence: Suppose that fn is a sequence of functions on an interval I, then 
we say that fn convergences pointwise to a function f if for all x we have 

fn(x) → f(x) . 

Uniform convergence: Suppose that fn is a sequence of functions on an interval I, then 
we say that fn convergences uniformly to a function f if for all � > 0, there exists an N such 
that if n ≥ N , then for all x 

|f(x) − fn(x)| < � . 

Lemma 1: Suppose that I is an interval and fn is a sequence of functions on I that converges 
uniformly to a function f , then fn also converges pointwise to f . 

Lemma [Weirstrass M -test]: Suppose that I is an interval and fn is a sequence of functions 
on I. Suppose also that Mn is a sequence of non-negative numbers with 

|fn(x)| ≤ Mn for all x ∈ I . 

If the series 
∞X 

Mn 

n=1 

converges, then the sequence of functions 
nX 

Sn(x) = fk(x) 
k=0 
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converges uniformly. 

Theorem: If 
∞X 

k ak x 
k=0 

is a power series and R is its radius of convergence. Then it converges uniformly on any 
(finite) interval of the form [−L, L] where L < R. 

Theorem: Suppose that I is an interval and fn is a sequence of continuous functions on I. 
If fn converges uniformly to f , then f is also continuous. 

Proposition: Let I be an interval [a, b] and fn, f ∈ C(I), then fn → f in the metric space 
(C(I), d) if and only if fn converges to f uniformly. 

Corollary: C([a, b]) is Cauchy complete. 

Theorem: If fn ∈ R ([a, b]) and fn → f uniformly, then f ∈ R ([a, b]) and Z b Z b 

fn dx → f dx . 
a a 

Theorem: Suppose that fn are differentiable functions on [a, b] and x0 ∈ [a, b]. If 

• fn(x0) → c, 
• fn 

0 → g uniformly, 
• fn 

0 are continuous on [a, b], 

then there exists a differentiable function f with 

• fn → f uniformly, 
• fn 

0 → f 0 uniformly. 

Suppose that an is a sequence and 

∞X 
an x n , 

n=0 

is a power series, the radius of convergence R is 

1 1 
nR = where M = lim sup |an| . 

M 
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Corollary: The power series 
∞X 

an x n 

n=0 

has the same radius of convergence as the power series 
∞X n! n−k an x . 
(n − k)!

n=k 

Theorem: Suppose that 
∞X 

f(x) = an x n , 
n=0 

is a power series with radius of convergence R, then 
∞X 

f (k)(x) = 
n! 

an x n−k 

(n − k)! 
n=k 

and Z ∞X an−1 nf(x) dx = x . 
n 

n=1 

Ordinary differential equations: Sppose that we have the following: 
• f be a continuously differentiable function on R. 
• g be a continuous function on R. 
• a is a real number. 

We are intersted in existence and uniqueness of the ODE:( 
y0(x) = f(y(x)) + g(x) 

y(0) = a . 

Picard-Lindelöf theorem: There exists δ > 0 such that there is a unique solution to this 
ODE on (−δ, δ). 

MIT, Dept. of Math., 77 Massachusetts Avenue, Cambridge, MA 02139-4307. 
E-mail address: colding@math.mit.edu 

mailto:colding@math.mit.edu
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