SPRING 2025 - 18.100B/18.1002

TOBIAS HOLCK COLDING

Review for Midterm

Least upper bound of a bounded set and greatest lower bound of a bounded set.

A sequence of real numbers is a function $f: \mathbb{N} \to \mathbb{R}$.

We usually use the notation $a_n = f(n)$.

Example 1: $\sqrt{2}$ is the limit of $a_1 = 1$, $a_2 = 1.4$, $a_3 = 1.41$, $a_4 = 1.414$ etc.

Example 2: The sequence $a_n = \frac{1}{n}$ has zero as its limit.

Limit: Let a_n be a sequence and a a real number. We say that a_n converges to a if for all $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$|a_n - a| < \epsilon$$
.

If this is the case, then we also say that a is the limit of the sequence and we say that the sequence is convergenet.

A sequence that is not covergent is said to be divergent.

Theorem If a_n is a convergent sequence, then the set $\{a_n\}$ is a bounded subset of \mathbf{R} .

Basic algebraic properties of limits:

Theorem Suppose that a_n and b_n are convergence sequences with $\lim a_n = a$, $\lim b_n = b$ and $C \in \mathbb{R}$, then

- (1) $c_n = C a_n$ is convergenet and $\lim_{n\to\infty} c_n = C a$.
- (2) $c_n = a_n + b_n$ is convergent and $\lim_{n\to\infty} c_n = a + b$.
- (3) $c_n = a_n b_n$ is convergent with $\lim_{n\to\infty} c_n = a b$.
- (4) If $b_n \neq 0$, $b \neq 0$ and $c_n = \frac{a_n}{b_n}$, then c_n is convergent and $\lim_{n \to \infty} c_n = \frac{a}{b}$.

Subsequence: Recall that a sequence a_n is a function $f: \mathbf{N} \to \mathbf{R}$ where we set $a_n = f(n)$. A subsequence b_n of a_n is a composition of functions $f \circ g$ where $g: \mathbf{N} \to \mathbf{N}$ is a strictly increasing function. So $b_n = f(g(n))$. Sometimes a subsequence of the sequence a_n also denoted by a_{n_k} .

Theorem: A sequence a_n is convergent with limit a if and only if all subsequences of a_n are also convergent with limit a.

Monotone convergence theorem:

• Increasing version. Let a_n be a monotone increasing sequence so with $a_n \leq a_{n+1}$. If the sequence is bounded from above, then a_n is convergent and

$$\lim_{n\to\infty} a_n = \sup\left\{a_n\right\}.$$

• Decreasing version. Let a_n be a monotone decreasing sequence so with $a_{n+1} \leq a_n$. If a_n is bounded from below, then a_n converges and

$$\lim_{n \to \infty} a_n = \inf \left\{ a_n \right\}.$$

Cauchy sequence: A sequence a_n is said to be a Cauchy sequence if for all $\epsilon > 0$, there exists an N such that if $m, n \geq N$, then

$$|a_n - a_m| < \epsilon$$
.

(Tail of the sequence bunch together.)

Definition A contracting map is a map $T : \mathbf{R} \to \mathbf{R}$ such that there exists c < 1 so for all $x, y \in \mathbf{R}$ we have that

$$|T(x) - T(y)| \le c |x - y|.$$

(Points are squeezed together under the map.)

Theorem (Cauchy convergence theorem): A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Definition A contracting map is a map $T: \mathbf{R} \to \mathbf{R}$ such that there exists c < 1 so for all $x, y \in \mathbf{R}$ we have that

$$|T(x) - T(y)| \le c |x - y|.$$

(Points are squeezed together under the map.)

Contracting mapping theorem: Any contracting map has a fixed point.

Bolzano - Weirstrass theorem: Any bounded sequence of real numbers has a convergent subsequence.

A function $f: \mathbf{R} \to \mathbf{R}$ is said to be continuous at a point $x_0 \in \mathbf{R}$, if for all $\epsilon > 0$, there exists a $\delta > 0$ such that if

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$
.

A function is said to be continuous if it is continuous at all points in the domain.

Theorem: If $f: \mathbf{R} \to \mathbf{R}$ is continuous and x_n is a sequence with $x_n \to x_0$, then $f(x_n) \to f(x_0)$.

Algebraic properties of continuous functions:

- If f and g are continuous functions, then so is f + g.
- If f is continuous and c is a constant, then cf is continuous.
- If f and g are continuous, then f g is also continuous.
- If f is continuous and $f \neq 0$, then $\frac{1}{f}$ is continuous.
- If f(x) and g(x) are continuous, then f(g(x)) is continuous.

Theorem: All polynomials are continuous.

Extreme Value Theorem: Suppose that $f:[a,b] \to \mathbf{R}$ is a continuous function, then there exist $x_M \in [a,b]$ such that $f(x_M) \geq f(x)$ for all $x \in [a,b]$. Similarly, there exists $x_m \in [a,b]$ such that $f(x_m) \leq f(x)$ for all $x \in [a,b]$.

Intermediate Value Theorem: Suppose that $f : [a, b] \to \mathbf{R}$ is a continuous function, then for all y between f(a) and f(b), there exists $x \in [a, b]$ such that f(x) = y.

Series: Suppose that a_n is a sequence, we can form a new sequence s_n by setting

$$s_n = a_1 + \dots + a_n = \sum_{i=1}^n a_i$$
.

A series $\sum_{i=1}^{\infty} a_i$ converges if the sequence s_n converges and if it do we also write $\sum_{i=1}^{\infty} a_i$ for the limit.

Geometric series: Suppose now that $a_n = c^n$ so the series is

$$s_n = \sum_{i=0}^n c^i.$$

This is the geometric series. It is convergent precisely when |c| < 1. Moreover, when |c| < 1, then the limit (infinite sum) is

$$\sum_{i=0}^{\infty} c^i = \frac{1}{1-c} \,.$$

and diverges if $|c| \geq 1$.

Harmonic series: The series $\sum_{i=1}^{\infty} \frac{1}{2}$ is called the harmonic series. This series is divergent.

Absolutely convergent; We say that a series

$$\sum_{n=0}^{\infty} a_n$$

is absolutely convergent if the series

$$\sum_{n=0}^{\infty} |a_n|$$

is convergent. Absolutely convergent implies convergent but not the other way around.

5

Theorem: A series of non-negative numbers

$$\sum_{i=0}^{\infty} a_i,$$

where $a_n \geq 0$, is convergent if and only if the sequence s_n is bounded from above.

Example: The series

$$\sum_{i=1}^{\infty} \frac{1}{i^2}$$

is convergent.

To help determine whether or not a series converges there are a number of tests:

- Comparison test.
- Ratio test.
- Root test.

Comparison test:

- Version 1: Suppose that a_n and b_n are two sequences with 0 ≤ a_n ≤ b_n. If ∑_{n=1}[∞] b_n is convergent, then so is ∑_{n=1}[∞] a_n.
 Version 2: Suppose that a_n and b_n are two sequences with b_n ≠ 0 and lim_{n→∞} a_n/b_n =
- $L \neq 0$, The series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\sum_{n=1}^{\infty} b_n$ is.

Ratio test: Let $a_n \geq 0$ and assume that $\frac{a_{n+1}}{a_n} \to a$. If

- a < 1, then the series $\sum a_n$ is convergent. a > 1, then the series $\sum a_n$ is divergent.
- a=1, it is inconclusive.

Root test: Let $a_n \geq 0$ be a sequence of non-negative numbers. Suppose $\lim_{n\to\infty} (a_n)^{\frac{1}{n}} = r$.

- r < 1, then the series $\sum_{n=0}^{\infty} a_n$ is convergent. r > 1, then the series $\sum_{n=0}^{\infty} a_n$ is divergent.
- r = 1, then it is inconclusive.

Power series: Let c_n be a sequence, then $\sum_{n=0}^{\infty} c_n x^n$ is a power series.

lim sup and lim inf of a sequence.

Let a_n be a sequence. If it is not bounded from above, then we set $\limsup a_n$ to be ∞ . Otherwise we will define a new sequence b_n from a_n as follows.

$$b_n = \sup \{a_n, a_{n+1}, a_{n+2}, \cdots \}$$
.

Note that since we are assuming that the a_n 's are bounded from above the b_n 's are real numbers and the sequence b_n is decreasing. – It is decreasing since

$$b_n = \sup \{a_n, a_{n+1}, a_{n+2}, \dots\} \ge \sup \{a_{n+1}, a_{n+2}, \dots\} = b_{n+1}.$$

(For b_{n+1} supremum is taken over a smaller set.) Since the sequence b_n is decreasing it is converging with limit b that possibly could be $-\infty$ if the sequence b_n is not bounded from below.

Definition (of lim sup):

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} b_n = b.$$

Definition: (of radius of convergence). If $\sum_{n=0}^{\infty} a_n x^n$ is a power series. Set

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}}.$$

R is said to be the radius of convergence.

Convention: If $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} = 0$, then the radius of convergence is said to be ∞ . If $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} = \infty$, then we set R = 0.

From the root test one can now show the following:

The power series in convergent if |x| < R and divergent if |x| > R.

The case of where |x| = R has to be examined on a case by case basis.

Exponential map as a power series: Define E(x) as the power series

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \,.$$

Definition: Metric space A metric space is a set X with a function $d: X \times X \to \mathbf{R}$ with the following three properties:

(1)
$$d(x,y) \ge 0$$
 for all $x, y \in X$ and $d(x,y) = 0$ if and only if $x = y$. (Distances ≥ 0 .)

- (2) d(x,y) = d(y,x). (Symmetric.)
- (3) $d(x,z) \le d(x,y) + d(y,z)$. (Triangle inequality.)

Examples:

(1) $X = \mathbf{R}$ and

$$d(x,y) = |x - y|.$$

(2) $X = \mathbb{R}^2$ and for $x = (x_1, x_2)$ and $y = (y_1, y_2)$

$$d(x,y) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2}.$$

(3) $X = \mathbb{R}^3$ and for $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$

$$d(x,y) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + |x_3 - y_3|^2}.$$

Example: Continuous function on an interval [a, b]. Let X = C([a, b]) where C([a, b]) is the set of continuous functions on [a, b]. The distance between two continuous functions f and g is then

$$d(f,g) = \max_{x \in [a,b]} |f(x - g(x))|.$$

Sequences in a metric space: A sequence in a metric space (X, d) is a map $f : \mathbf{N} \to X$. We typically denote the image f(n) by x_n . Similarly we define a **subsequence** as the composition of a strictly increasing map $g : \mathbf{N} \to \mathbf{N}$ with f and $x_{n_k} = f(g(k))$.

Definition: Convergent sequence in a metric space If (X, d) is a metric space and x_n is a sequence in X, then we say that x_n converges to x and write $x_n \to x$ or $x = \lim_{n \to \infty} x_n$ if for all $\epsilon > 0$, there exists an N such that if $n \ge N$, then

$$d(x,x_n)<\epsilon$$
.

This is equivalent to that the sequence $d(x_n, x_\infty) \to 0$.

Definition: Cauchy sequence in a metric space If (X, d) is a metric space and x_n is a sequence in X, then we say that x_n is a Cauchy sequence if for all $\epsilon > 0$, there exists an N, such that if $m, n \geq N$, then

$$d(x_m, x_n) < \epsilon.$$

Theorem: In any metric space (X, d) a convergent sequence is also a Cauchy sequence.

The converse is not always the case: If $X = (0,1) \subset \mathbf{R}$ with d(x,y) = |x-y|, then the sequence $x_n = \frac{1}{n}$ is a Cauchy sequence but since 0 is not in X, it is not convergent. We sometimes express this by saying that in this case X is not Cauchy complete.

Examples of problems that you could be asked on the midterm:

For the midterm you are allowed one page of notes. However, the use of any outside material such as notes, calculators, and electronic devices is **not** allowed. Please show your work, and present your arguments in a **coherent**, **legible** manner. Unsupported and illegible arguments may not receive full credit.

Example 1: Show that the Box distance (from lecture 11) on \mathbb{R}^2 gives a metric space? What does it mean that a sequence is a Cauchy sequence in the Box metric?

Example 2: What is the radius of convergence of the power series

$$\sum_{n=0}^{\infty} n^5 x^n ?$$

What is the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{n^5 x^n}{n!} ?$$

Example 3: Suppose that a sequence is given recursively by $x_1 = a$ and

$$x_{n+1} = \frac{x_n}{n}.$$

For what a is the sequence convergent? When the sequence is convergent what is the limit?

Example 4: Suppose that

$$\sum_{n=1}^{\infty} a_n$$

is a series and

$$|a_n| < \frac{1}{n^2} \, .$$

Either show that the series is convergent or give an example of such a series that is divergent.

MIT, DEPT. OF MATH., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307.

MIT OpenCourseWare https://ocw.mit.edu

18.100B Real Analysis Spring 2025

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.