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[SQUEAKING] [RUSTLING] [CLICKING]

PROFESSOR: OK, so let's get started. This is the first lecture for the course-- Introduction to Functional Analysis. OK, so let me
give you a brief preview or a few words about what functional analysis is or initially aimed to do.

So by this point, you've taken-- or at least what the prerequisites are supposed to be, you've taken linear
algebra. You've taken calculus. And what these subjects allow you to do is solve problems where you have
finitely many independent variables, if you like. You're working in finite dimensions.

So you always have-- for example, in calculus, you're trying to find the min or max of a function of 1, 2, 3, or 4
variables, right? Or in linear algebra, you're trying to solve a linear-- set of linear equations, but there's five
equations and five unknowns. So there's always finitely many independent variables.

Now, that allows you to solve a lot of fun problems of how fast water is leaking from a cone. I think that's one of
the problems you solve or something of that sort. But then when you move on in life, you come across ODEs and
PDEs and other types of minimization, maximization problems where now, if you'd like, the set of independent
variables is no longer a finite dimensional, OK?

So let's think of the number of-- or your independent variable as being a member of some vector space. So when
we were talking about calculus, functions of 1, 2, or 3 variables, these are functions of R, R2, R3, so and so on.
But it turns out that if you want to consider, for example, what's the shortest curve between two points, this is a
natural functional, meaning-- well, this is terminology that means now the argument is a function, that the points,
your independent variables, are curves, are functions.

For a vector in R3, say, it takes three numbers to specify a vector, the three coordinates. How many numbers do
you need to specify, say, a continuous curve on the interval, say, 0, 1? Well, you need infinitely many numbers.
You need to know the graph of that curve.

So functional analysis, in short, was built to be able to start solving problems where the vector spaces are not
necessarily finite dimensional. And as we'll see in the problems that we work through and the situations that pop
up, this arises quite naturally for very particular-- I mean, not particular, but for concrete problems. This is not
just some sort of academic exercise.

This whole subject grew out of trying to understand particular concrete problems involving PDEs, and
minimization, and optimization of now functions of functions. That was the original terminology, functions of
functions, where now the vector space is some space of functions, not just spaces of, say, three-dimensional
vectors or two-dimensional vectors, and thus the name functional.

OK, so that's a few words about how this subject grew, what's the point. So let's start getting into specifics. So
again, I'm going to be using a lot of terminology that comes from linear algebra and the Real Analysis course,
18.100B. But at the start, I'll be reminding you of what some of these terms that I'm using mean. But as the
course goes on, I will stop redefining terms that you should have seen in Real Analysis or Linear Algebra and just
use them.

OK, so the first topic that we're going to deal with-- so our norm spaces, these are the central objects and/or
starting point in functional analysis, which are the analog of our R2, R3, and so on.



So what's the setup? Let V be vector space over R or even C. So it could be a complex vector space. And either of
these spaces we'll usually denote by a boldface K.

So what does this mean? So again, this is one of those points where I'll just quickly remind you what a vector
space is. Then V comes with two operations-- plus and scalar multiplication. So plus, going from V cross V into V,
which we denote-- if I have two vectors in V, they get mapped to the new vector, which I denote V1 plus V2. And
then I have scalar multiplication from the set of scalars cross V into V. And this goes alpha-- V gets mapped to
alpha times V.

All right, so you have these two operations. And they satisfy certain conditions, assumptions, relations between
them, which are part of the axioms of a vector space, which you can read in the last section of the notes, if you
want to refresh your memory. And so V as a vector space has these two operations satisfying a certain set of
axioms.

And so for example-- familiar old examples-- R2, Rn, and then, of course, C, the set of n tuples of R or C. But
here's another simple example-- C 0, 1, which I'll remind you this notation here means the set of functions from
0, 1 into-- let's say their complex value, just to fix a field of scalars to work with, such that f is continuous,
meaning it's continuous at every point.

This is also a vector field because the sum of two continuous functions is continuous. And if I take a scalar
multiple of a continuous function, then that's also continuous. And then these operations satisfy the axioms that
you need for vector space.

But there really is a big-- pun intended-- difference between these spaces here and these spaces here-- or that
space there. And what is the difference? The size, OK?

Now, in analysis, size was-- you had maybe one or two different notions of size you were introduced to,
depending on how much analysis you've seen, but one was cardinality. That's not what I'm talking about when I
mean size. What I mean is the following-- I mean the dimension of these spaces.

So let me recall the following definition, that we say a vector space V is finite dimensional-- and these were a lot
of the vector spaces you were first introduced to-- if every linearly independent set is, in fact, a finite set. And so
let me again-- since I'm using some of these words to help you recall, what does this mean? In math, this means
for every set E that is linearly independent, meaning which have the following properties so that if I take any
elements in E that-- so E satisfies that if I take any finitely many elements of E, the assumption that there's a
linear combination of them giving 0 implies that all of these scalars must be 0.

OK, so this here is the definition of being linearly independent. For all E satisfying this condition-- so this is poorly
written, but I hope you follow. This is the definition of linearly independence. Then for every set that's linearly
independent, then the set E is finite in the sense of cardinality, in the sense there's only 100 elements in there or
not.

So this is finite dimensional. And say V is infinite dimensional if V is not finite dimensional. So some of you I saw
have taken a course from me before. I tend to use a lot of abbreviations when I write. But typically, these
abbreviations are pretty clear what they mean, if you just sound it out.



So vector space V-- and these infinite dimensional guys, these are the guys we're going to be dealing with a lot in
this course. The finite dimensional ones you dealt with in linear algebra. Maybe you used a few-- you had a few
infinite dimensional examples if you were looking at examples of vector spaces.

But these infinite dimensional vector spaces, these are the type of guys or the type of vector spaces we're now
going to solve linear equations on and, in some sense, do calculus on. That's not quite true, but we're going to
use calculus and some tools to be able to say some things about linear equations on these infinite dimensional
spaces. But they won't just be any type of infinite dimensional space. And I'll say what type we're looking at in a
minute.

OK, so finite dimensional, infinite dimensional-- so the first set of examples-- R1, R2, Rn, Cn, and so on, those are
finite dimensional spaces. And the dimension is n, if I had to define what the dimension is. What is an example of
infinite dimensional? Well, you can probably guess since I led up to it with saying there's a big difference
between this one and-- Rn and Cn. The space of continues functions on the interval 0, 1, this is infinite
dimensional.

And why is that? This is because the set by like E given by the functions fn of x equals x to the n-- here, n is a
natural number or 0-- this is a linearly independent set. I'll let you think about why that is. And you see that it's
not a finite set. And it contains infinitely many different functions. So this is a linearly independent set, OK?

So like I said, what we're going to be dealing with is how to handle solving linear equations or questions about
analysis that we'll need to solve other problems on these infinite dimensional spaces, unlike in the past where we
did analysis on finite dimensional spaces. And the types of-- the types of things you proved in the analysis class
were something like the Heine-Borel theorem that closed and bounded subsets of Rn are compact, meaning
every bounded sequence has a convergent subsequence.

This is, in fact, something you prove to show that every continuous function on a closed-- on a closed and
bounded set has a min in a max in that set. But that statement that I just said about the Heine-Borel theorem,
that is not true once we get to infinite dimensions. And so we have to-- if we want to be able to solve problems,
we'll have to develop some machinery to get around that. It is one of the main issues that arise when you move
from doing analysis on finite dimensions to infinite dimensions.

So OK, mathematically, I haven't said much, but I have been trying to gin up the subject to make sure you stay
engaged.

All right, so we have vector spaces. But to do analysis, we need some notion of how close things are. And to do
that, we introduced the notion of a norm. So a norm on a vector space V-- if I don't write vector space V, you
should say to yourself, this capital V is a vector space.

A norm on a vector space V, this is a function. This is going to be an object that generalizes length. So it's a
function from V to the set of non-negative numbers with three properties that we associate to length, namely that
the norm of V is 0 implies-- well, I should say if and only if V equals 0. 2, if I take V and I multiply it by a scalar
and then I take its length, I should get something like that scalar times the length of the vector. If I take a vector,
multiply it by 2, I should get twice times the length of the vector. So this is expressed by this. And this is for all
lambda in my field of scalars and for all V in V.



So this property here is referred to as homogeneity. This property here is referred to as definiteness. Definite-- I
don't know if I'm spelling that right, but definiteness.

And then the third property is that it satisfies the triangle inequality. This is that for all V1, V2 in V, the norm of
V1 plus V2, this is less than or equal to the norm of V1 plus V2. And any vector space that has a norm on it we call
a norm space. With norm is what we call a norm space.

And this thing here, I usually-- so it's referred to as a triangle inequality. All right, so a vector space with a
function on it that satisfies these three properties we call a norm space.

And then so like I said in my past classes, whenever I see a-- or whenever you see a decent definition or
something with substance, you should do examples. We'll do that in just a minute after I give a few more
definitions. So let me just add to this one.

This was the definition of a norm. A semi-norm wants to be a norm, but it's not quite. This is a function, which I'll
also denote with these two parallel lines on each side. It's a function satisfying homogeneity and the triangle
inequality, but not necessarily positive-- or definiteness-- or positive definiteness is also what that goes by,
satisfying 2 and 3, but maybe not necessarily 1. Again, semi-norms pop up in a natural way. And I'll give you an
example in just a second.

So first off, we have this notion of length in a vector space, which is a norm. And if we're given a norm on a
vector space, we can associate a metric. So remember, a metric-- so from real analysis, I want you to recall that a
function d on a set-- if x is a set, a function d from x cross x into 0, infinity is a metric if you have three conditions
satisfied-- a, so the distance between a point in itself-- or let me write it this way, the distance between two
points is 0 if and only if x equals y.

b, for all x, y in the set X, dxy equals dyx-- this is symmetry of the distance. And you have the triangle inequality
for the distance for all xy in X, d. Or for all x, y, and z in x, dxy xy is less than or equal to the distance from x to z
plus the distance from z to y.

So if I have a vector space and I have a norm on it, I can turn that space now into a metric space. And this metric
that I'm about to write down is usually referred to as the metric induced by the norm. So our first little kind of
mini-theorem here-- if I have a norm on a vector space, then d of-- let me use the same-- if I define a function
dvw to be simply the length of v minus w-- so for elements of v and w in the vector space, defines metric on V.
And this metric we refer to as the metric induced by the norm, all right?

And this is not difficult to prove. Basically, 1, 2, and 3 imply respectively a, b, and c. 1, the first property of a
norm, implies a. This is pretty clear. The distance between vw is 0 if and only if v minus w equals 0, which is if
and only if v equals w. That gives us part a. b we get from 2, since by 2 v minus w is equal to minus 1 times w
minus v equals-- now, we pull the scalar out and take its absolute value.

So since by 2, we have the length of v minus w equals the length of w minus w, this implies b. And then c just
follows again immediately from the triangle inequality 3 by just adding and subtracting a third element. So let me
just write 3 implies c essentially immediately, all right?



OK, so when we have a norm, we get a notion of a metric, a notion of distance between two vectors in our vector
space by just taking the length of the difference of them. So again, this should sort of-- this is supposed to be an
analog of what we see in R and Rn in general.

So for example, let me just recall this. So now, let's look at a few norms. Instead of n tuples of Rn or Cn where we
have the Euclidean norm-- Euclidean norm, here, if I have an n-tuple given by x-- so let me put a 2 here to denote
this norm-- then the Euclidean norm of this vector-- so this guy is in Rn or Cn-- then its Euclidean norm is given
by the sum i equals 1 to n xi length squared 1/2. And that gives you the standard notion of length and distance
between points that you've dealt with in Euclidean space.

But that's not the only norm you could have on these spaces that you've dealt with before. Another one-- put an
infinity here. This norm is the max between 1 and n of xi. So to measure the length of a vector, I take this to be
the magnitude of the largest entry in that vector, OK?

And in general, there's a whole family of norms I could put on Rn or Cn. Let me put a p here. This is norm, the lp
norm, little lp norm, is the sum of the p-th power of the xi's raised to the 1 over p. Of course, you need this 1 over
p for homogeneity to work out and also the triangle inequality. And this is for 1 less than or equal to p less than
infinity. I didn't write Infinity there because that doesn't make sense, although you can actually prove that if I
take a fixed vector and I let p go to infinity, then this quantity here converges to this quantity. That's not hard to
show.

So let me quickly draw you a quick picture of what the unit balls look like-- R2, say, with the different norms. So
let me recall that if I have, in a metric space, a metric, then B x, r this is a set of all y in x so that the distance
from x to y is less than or equal to r. Now, you know what the ball looks like for the Euclidean norm. This is just a
circle and filled in, of course. I'm not going to fill this in.

So now, what I'm looking at is-- and I'll put a 2. This is the ball centered at 0 of radius 1, so everything inside.
What about for the infinity norm? Let's say I want to look at what does this look like. This, in fact, is square.

And what about-- let's do one more about the little l1 norm, which is just the length of the magnitude of the
entries, the length of the absolute value of the entries. So all these go through these points here on the axis. This
ball-- so first off, everything inside the blue is the l infinity ball. Everything inside the white is that little l2 ball.
The little l1 ball is everything inside of this square, which is now tilted.

And every other little lp ball is in between the yellow and the blue. And if you take p goes to infinity, then that
ball converges, in a certain sense, to this l infinity ball, which is in blue. So you see, changing the norm, even on
these finite dimensional spaces, changes the geometry of the balls, if you like, all right?

But not in two drastic of a way, meaning if I take a large enough B-- if I take a large enough l1 ball, that will
swallow up an l infinity ball. And therefore, the two balls are kind of an-- I can take the size of that ball to be
maybe of size 3. And so the balls are kind of the same. One can always be sandwiching the other. I'll talk a little
more about that when we talk about equivalent norms, at least in the problem sets.



So OK, so that's an example of norms on a finite dimensional vector space. Let's look at another norm. Let's take
a metric space so I remember we have a-- so this is just any old metric space. And now, I'm going to define a
vector space, C lower infinity x. This is defined to be the set of all continuous functions on this metric space--
remember, if we have a metric space, we have a notion of continuous functions on it-- such that-- what? So these
are-- so again, to fix this, let me just clarify where it's going. f goes from x to, let's say, C such that f is continuous
and f is bounded, meaning the image of x under f is a bounded subset of C, all right?

Just so you can connect this with something I just wrote down a minute ago, the set of all bounded functions,
continuous functions on 0, 1, this is just a set of continuous functions on 0, 1 because we know continuous
functions on a closed and bounded interval are bounded. So I don't have to say bounded whenever I write this.

OK, so I have this space of continuous functions on a metric space, which are bounded. And I'm going to define a
norm on this. So this is a vector space. Because any sum of two continuous functions is continuous, a scalar
multiple times a continuous function is continuous. And again, those two operations satisfy the axioms of a
vector space. And I can define a norm on this space.

Then I claim that-- what do I use here? Then if I define an infinity norm again, which will look similar to what I
wrote up there, as this is the sup of all x in capital X of u of x, then this is a norm on this space of continuous--
bounded continuous functions.

So 1 and 2 are pretty easy to see from the definition. So properties 1 and 2 are easy to see. For the triangle
inequality, well, that follows essentially from the triangle inequality for C. These are C-valued, complex valued
functions. If you like, replace it with real valued functions if that makes you feel better in the first lecture,
although we'll need complex numbers eventually.

So let's check that this function satisfies the triangle inequality and therefore is a norm. If u and v are two
bounded continuous functions on x, then for all x in X, if I take ux plus vx, this is less than or equal to, by the
triangle inequality for C, the absolute value of u of x plus v of x. Again, u of x is a complex number and so is v of
x So this is by triangle inequality.

But now, this, for any old x, is always bounded by the supremum of that over all values. So let me write-- OK? So
u of x for any fixed value of x is always bounded by the supremum over all x's is in the capital X, which is the
norm of u. So what I've shown is that for all x in capital X, the absolute value of u of x plus v of x is bounded by
this number. And therefore, this number is an upper bound for the set of absolute values of these guys and
therefore the supremum, which implies that-- which is the least upper bound of all these quantities as x ranges
over x is less than or equal to this number here.

And therefore, we have the triangle inequality for this function. And therefore, this defines a norm, which I'll often
refer to as the uniform norm or l infinity norm just because there's an infinity. But the content should be clear on
what I'm talking about. I mean, this is not inconsistent with what I wrote down because Rn, that's just a set of--
well, OK, never mind, let me stop talking before I get myself twisted in a knot.

So what does convergence mean in this norm here? We know what convergence means in the Euclidean or any
of these norms. It means the points are getting together. The fixed points in the plane are starting to get closer
and closer together, at least in R2 or C2. What about here?



So let me just note that-- so remember, un converges to u in this space of bounded continuous functions. What
does this mean. This means the distance between un and u goes to 0 as n goes to infinity. So here, I'm talking
about what does convergence of a sequence of elements of this space mean.

So that means that the distance between un and u goes to 0 as n goes to infinity. And the distance, remember, is
defined in terms of the norm. So convergence in the space of bounded continuous functions just means this.

But in terms of something covered in past analysis class, what is that equivalent to? I'll write it out. This means
for all epsilon positive, there exists a natural number n such that-- now, this is the sup of u of x for all-- or sup un
of x minus u of x for all x in X So I can write such that for all n bigger than or equal to n for all x in X, un of x
minus u of x is less than epsilon.

But that's just the definition of uniform convergence uniformly on x. So the point of this little note is that
convergence in this norm or in this metric-- I'm going to use norm and metric interchangeably because this
metric is induced by this norm. So convergence in norm in this space of bounded continuous functions is the
same as saying that this sequence of functions converges to this function uniformly on x So I hope that's clear.

So maybe I should say this now instead of in the eighth lecture. But really, take the time to actually watch these
lectures for two reasons. One, I'm actually here recording them. So instead of just saying read this and ask me if
you have any questions, I'm giving you some more insight than just what's in the notes. And two, it keeps you
engaged, OK? So you should treat these as you actually being there-- have your notebook, take notes as I
lecture. The great thing is that you can pause and rewind.

This space of continuous functions-- we have that norm. OK, so some more examples of norm spaces is-- so I was
calling that little lp norm. But the little is not necessarily little. So the actual little lp space that I will typically
refer to-- this is going to be the space of all-- this is the space of all sequences now.

So the vectors in this space are sequences. The points in this space are sequences, such that-- so call this thing
element a. So a is a sequence. So this is the set of all sequences that have lp norm that's finite. And what is the
lp norm in this case? Well, it's the natural generalization of that guy, where the lp norm is equal to the sum j
equals 1 to infinity for 1-- p between 1 and infinity. And then the l infinity norm is just the sup over . J

So little lp stands for the space of sequences with finite lp norm. Or you could say their lp is summable. Their p-th
power is summable. So let me just state a silly example. The sequence 1 over j, j equals 1 to infinity, this is in
little lp for all p bigger than 1, but not for p equals 1 because then we get the harmonic series.

Now, why? First off, why the triangle inequality holds even in the finitely many, in the finite dimensional case and
why this is a natural vector space is non-trivial. So you shouldn't be able to actually say, oh OK, that makes
sense. It satisfies the triangle inequality. It's not clear. It's non-trivial that this is, in fact, a norm.

This one's easier to see. But it's not clear for p bigger than 1 that this is a norm and that therefore little lp, and
that the sum of two guys in little lp are in lp so that this is an actual vector space, and then we have the triangle
inequalities so that this is a norm-- that will be in the exercises. But just take it as-- take me at my word that this
is indeed a vector space.

If I take two sequences that are in little lp, meaning their p-th power is summable, then their sum, entry by entry,
is also in little lp and so on, and that this function here defines a norm on this space little lp. So just accept that.



And so now, we're not interested-- so we've gone a little bit-- narrowed down our spaces we're interested in a
little bit more. So we've gone from general infinite dimensional vector spaces now to norm spaces being our
interest, what we're interested in. But we're not exactly interested in just any norm vector space. The central
objects and functional analysis that we're interested in are the analogs of Rn.

Now, what property that are in and Cn have is that their metric-- this metric that you have on these sets is
complete. The Cauchy sequences always converge. And this is our next narrowing down of the spaces we're
interested in. And these have a special name, so so-called Banach spaces after Stefan Banach.

So norm space, so a vector space with a norm, is a Banach space if is complete with respect to the metric
induced by the norm. So if we have a norm space, we have a metric that's associated to that by defining the
distance between two guys by that equation up there. And so we say it's a Banach space if that metric is
complete, meaning Cauchy sequences in that space with respect to this metric converge in the space.

Now, in first year analysis, you learn that instead of rational numbers, they are not complete. There are Cauchy
sequences which do not converge to a rational number. Every real number you can write as a limit as finitely
many decimals. So square root of 2 will be a number where you can form a Cauchy sequence of rational numbers
converging to it. But it's not a rational number, so the rational numbers are not complete.

But R is complete. And in general, we give a name to those norm linear spaces-- those norm spaces such that this
metric is complete. We call those Banach spaces.

So examples which you saw, at least for the Euclidean norm and should be able to prove on your own, assuming
the triangle inequality for the little lp norms, these are complete with respect to any of the little lp norms.

All right, now, let's do a non-trivial one. Let's show that the space of bounded continuous functions on a metric
space is complete. So let's make this a theorem. If x is a complete geometric space, then it is a Banach space.
BSP, that's my abbreviation for Banach space.

All right, so for a complete metric space, the space of bounded continuous functions on x is a Banach space.
We've already shown that that function over there defines a norm on it. So I'm saying it's complete with respect
to that norm. Cauchy sequences always converge in this space.

So let me just write this out. We want to show that every Cauchy sequence un in the space C bounded continuous
functions has a limit in the space of bounded continuous functions. All right, so let's take a Cauchy sequence. And
the way this proof is going to work is the way essentially really all of the proofs of showing something is a Banach
space works, is you take a Cauchy sequence. Then you'll be able to come up with a candidate for the limit. And
then your job is to show two things-- that that candidate is in the space itself, and then that the convergence
happens. And sometimes, those two come together or can be done at the same time.

And you'll see what I mean. Let un be a Cauchy sequence in C infinity, in the space of bounded continuous
functions. First off, I claim that this forms a bounded sequence in this space. This is a fact from metric space
theory, but I'll write it out again.

Then there exists natural number N0 such that for all n bigger than or equal to N0, the difference between u N0
and u-- so let me say for all nm bigger than or equal to N0, un minus um in the infinity norm is less than 1.



So what I'm first going to do-- I'm first going to show that this sequence of functions are bounded in this space.
Each of them are, of course, bounded. But I'm saying that they form a bounded sequence in the space.

Then let's see, rewrite this. For all n bigger than or equal to N0, un, the norm, this is less than or equal to un
minus u N0 plus u N0. And this is less than 1 plus u N0. So for all n bigger than or equal to this fixed number N0,
un and l infinity norm are bounded by 1 plus the norm of this fixed guy.

Then for all n, a natural number, the norm of un is less than or equal to-- if I put u1-- now, if n is bigger than or
equal to N0, then this is less than or equal to this guy. So it's certainly less than or equal to some non-negative
things plus this guy. Meanwhile, if n is less than N0, than the norm of it is less than or equal to one of these
norms that appear here, which is also, again, less than or equal to this entire number that I wrote down here.
And let me define that to be this number B.

So I've shown for all natural numbers n, the norm of un is bounded by B. So this forms a bounded sequence in the
space of bounded continuous functions. You have to keep track of where this bounded-- where I'm saying this
bounded is taking place. Each of these functions is bounded, is a bounded function. What I'm saying here is that
they form a bounded sequence in this space.

OK, so let me make a note of this. This is bounded by this. All right, now, what do we know? And let me-- in fact, I
should have written this out over here, but let me write it out again.

What does it mean for this sequence to be Cauchy in this space? This means for all epsilon positive, there exist a
natural number n such that for all nm bigger than or equal to N un minus um in this uniform norm is less than
epsilon.

Now, since for all x I have that un of x minus um of x in absolute value is less than or equal to the sup over all x's
in capital X, which is just the uniform norm, the l infinity norm on this space, and I am assuming it's Cauchy, so it
satisfies this property, I get that for all x in X, the sequence now of complex numbers un of x-- so this is now just
a sequence of complex numbers. It's the value. I take x. I stick it into u sub n. I have now a sequence of complex
numbers. This is the Cauchy sequence.

All of this may seem a little bit weird at first. But after I finish this proof, do it again now for little l infinity. And
you'll start getting the hang and seeing how the arguments go. All right, so for every x in capital X, un of x-- so
that's now a sequence of complex numbers. And yeah, I thought I didn't need it to be complete. I don't know why
I wrote it down. Any metric space, if x is a metric space then, OK?

All right, so for each x in the metric space, un of x, which is now forming a sequence of complex numbers, this is
a Cauchy sequence. But the space of complex numbers, this is a complete metric space. And therefore, for each
x, this sequence has a limit.

So by completeness of C for all x in capital X, this sequence, un of x, has a limit in C. And now, I define what will
be my candidate function, u of x, to be this pointwise limit, limit as n goes to infinity of u sub n of x. So in fact, in
a few words, if you remember what these words mean, what we've shown is that every Cauchy sequence in the
space of bounded continuous functions has a pointwise limit.



OK, then now what we're going to show is that this guy is, in fact, in the space of bounded continuous functions
and that we have convergence of this sequence of functions to u in the space C infinity x, in the space of bounded
continuous functions. We've only defined this guy as the pointwise limit-- so as the point wise limit of these guys,
OK?

Then for all x in capital X, the absolute value of u of x is equal to the limit as n goes to infinity, so the absolute
value of the limit. But since this converges, this is equal to the limit of the absolute values. And each of these
guys are bounded by B. They're bounded by the infinity norm, which is bounded by B. So this is less than or equal
to B.

And thus, so this is a bounded function at least on this metric space. So now, we're going to achieve two things
at once. We're going to show that it's continuous and that we have convergence in this space by showing it is--
by showing this l infinity norm of the difference goes to 0 of u minus un.

OK, so first, we're going to show that-- so think of this just now as a function, not necessarily a norm. OK, maybe
I'm being too careful. I'm just going to say now we're going to show that this quantity here goes to 0 as n goes to
infinity. And how do we do this?

Well, since we're just going to do this the old fashioned way of let epsilon be positive and show that we can
choose an n such that this is less than or equal to epsilon, I know in the definition you're supposed to have less
than epsilon. But less than or equal to is good enough. OK, so let epsilon be positive.

Since the sequence is Cauchy in this space, this implies there exists a natural number N such that for all nm
bigger than or equal to N, I have that un minus um l infinity is less than-- all right, let's make it epsilon over 2.
Then for all nm bigger than or equal to N, This means un of x-- so let x be in capital X.

We now want to show that for all little n bigger than or equal to capital N, in fact, un minus u in this norm is less
than or equal to epsilon over 2. For all nm bigger than or equal to N, I have that u, which is less than or equal to
un minus um-- and therefore, if I take the limit as m goes to infinity, remember, u of x is the pointwise limit. I
fixed x in capital X.

I get that for all n bigger than or equal to m, un of x minus u of x is less than or equal to epsilon over 2. So what
have I shown? I've shown for all n bigger than or equal to capital N-- and this capital N came from this condition,
not anything having to do with x. It came from this condition-- I have un of x minus u of x is less than or equal to
epsilon over 2. And therefore, the sup over all x's is less than or equal to epsilon over 2, which is less than
epsilon. Thus, un converges to u-- or I should say as n goes to infinity.

Now, what's the last step? I have this candidate, u. un's converged to u with respect to this sense. I need to
conclude also that u is an element of the space of bounded continuous functions. I know it's bounded. Why is it
continuous?

Well, since un minus u goes to 0, this implies that un-- by what we remarked a little bit earlier, it means un
converges to u uniformly on x. And since u is the uniform limit of a sequence of continuous functions, that implies
that u is continuous.



So let me just reiterate what we've done. In sequence, we've shown that ux is bounded. We've then shown that
the sup over all x in X-- so I should have put that in yellow. We've shown convergence to u with respect to this
norm. And we've shown u is, in fact, in the space. So therefore, u is in-- i.e., the space is complete, and therefore
a Banach space.

So the first time you see that proof-- and again, this is kind of how all the proofs of something being a Banach
space goes. When you see that for the first time, it's a little weird. And this will be in the exercise so that you can
get a jumpstart on that by looking at maybe the simplest one.

Well, I still have space over here. So little lp, this is a Banach space for all p between 1 and infinity. Another
space, which-- OK, maybe try your hand at this one instead of little l infinity because at least something's a little
different. Little c0, which is the set of sequences in little l infinity-- so each element of c0 is a sequence, a
bounded sequence such that limit j goes to infinity of aj equals 0. This is also a Banach space.

So I encourage you to take this example of bounded sequences that converge to 0. First off, it's pretty clear it's a
vector space. It's actually a subspace-- and I'll get to subspaces of Banach spaces next lecture. So it's a Banach
space with the l infinity norm.

So again, how would you prove that this is a Banach space? You would take a Cauchy. So you have to start
thinking of-- again, these Banach spaces, these spaces you're looking at can be made up of complicated things.
Little lp, this is a space of sequences. So each point in the space is a sequence. It's a sequence of numbers.

And here, so your sequence of points is a sequence of sequences, just like in the example we did here, your
sequence of points in your space of bounded continuous functions is a sequence of functions. Here, we have a
sequence of sequences, which again a sequence is just a function, so you shouldn't be too scared. But try your
hand at showing that this is a bonus space just from what we've done so far, following this kind of blueprint.

And again, it'll be kind of the same. You first show that a Cauchy sequence in here is, in fact, bounded. Then
show that pointwise each of the-- and here, pointwise should mean each of the entries of your sequence of
sequences-- forms a Cauchy sequence. Then that allows you to obtain a candidate sequence as the limit of your
sequence of sequences, all right? And then you have to show, again through this argument, that you do have
convergence with respect to this norm, that that sequence is bound it, and, in fact, that sequence satisfies this
condition in order to be in this space.

OK, so I think I'll stop there.


