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10. Sum-product theory 

Tues March 18 
The best bounds in projection theory are different in different fields. The best 

bounds for projections of balls in C2 are different than in R2 . The best bounds for 
projections in F2 

p are different than for Fp 
2 . Most of the recent work in projection 2 

theory is concerned with understanding these differences, and they are important for 
many applications. 
The key example is simplest in the finite field setting. It goes as follows. 

Example 10.1. Let p be a prime, q = p2 , X = F2 
p ⊂ F2 

q , D = Fp ⊂ Fq. For θ ∈ Fq, 
let πθ : F2 

q → Fq be defined by πθ(x1, x2) = x1 + θx2. Then set S = maxθ∈D |πθ(X)|. 
We have πθ(X) = Fp for all θ ∈ D, so S = p. Then we have |X| = p2 = q, S = 
|D| = p = q1/2 . 

So the sizes of the projections of X can be small even when X is large. However, 
the same cannot happen over Fp: 

sTheorem 10.2 (Bourgain-Katz-Tao). Let X ⊂ F2 with |X| = p for 0 ≤ s < 2. Let p 

D ⊂ Fp with |D| = pt for 0 < t ≤ 1. Then S = maxθ∈D |πθ(X)| ≥ ps/2+(s,t) where 
(s, t) > 0. 

There is an example in C2 which is analogous to Example 10.1. In this example 
X = R2 ⊂ C2 . And there is a theorem called the Bourgain projection theorem 
which says that no set in R2 can behave similarly to this example. We will dicuss 
the Bourgain projection theorem in detail in a few lectures. We begin with the finite 
field setting which is somewhat cleaner. The setting of balls in R2 is analogous with 
some additional issues. 
Note that the key difference between Fp and Fq that allows an example like Exam-

ple 10.1 to exist while no such example exists over Fp is the existence of a subfield 
Fq. A way to quantify the properties of a subfield is a set X with small sum and 
product sets. As such, we should study the sizes of such sets. This study is called 
sum-product theory. 
Sum-product theory uses tools from additive combinatorics. The set of tools that 

go into the proof of Theorem 10.2 is very different from the tools that we have studied 
in projection theory so far. In this lecture, we introduce sum-product theory and 
some of the key tools from additive combinatorics. This is the first of four lectures 
on this area. Over the four lectures we will flesh out the different tools from the area 
and use them to prove the BKT projection theorem. 

10.1. Sum-product theory. 
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Notation 10.3. For A ⊂ Fp, let 

A + A = {a1 + a2 : ai ∈ A}, A · A = {a1a2 : ai ∈ A}. 
Also, let A⊕n = A + A + · · · + A.   

n 

If A is an arithmetic progression, then its sumset is only a little bigger than A. 
If A is a geometric progression, then its product set is only a little bigger than A. 
Erdos and Szemeredi conjectured that for any set of numbers A, either the sumset 
or the product set is much bigger than A. This principle has turned out to be crucial 
for modern developments in projection theory. We introduce this subject, including 
a whole different set of tools from combinatorial number theory building on work of 
Plunnecke, Ruzsa and Edgar-Miller. 

Lemma 10.4. If A ⊂ Fp, then either 

(1) A−A = Fp, orA−A   (A·A)⊕3−(A·A)⊕3 

(2)  ≥ |A|2 .
A−A 

Remark. Some version of this trick goes back to the work of Edgar-Miller, and it 
was adapted by Bourgain-Katz-Tao and Garaev. 

Proof. First, note that if c ∈ A−A , then |A + cA| = |A|2 . Indeed, if this was not the
A−A 

   case then there would be some a1, a2, a1, a2 ∈ A with a1 + ca2 = a1 + ca2. But this 
 
1−a1 ∈ A−Aimplies c = a 

.a2−a2 A−A 

Next, note that if A−A = Fp then there is some b ∈ A−A with b +1 ∈ A−A . Indeed,
A−A A−A A−A 

\ A−A we can set b + 1 to be the smallest element of Fp , which would imply b ∈ A−A .
A−A A−A 

Now, if A
A 
−
− 
A
A = Fp, then we have     A − A  A + + 1 A ≥ |A|2 ,

A − A 

which implies 2 after putting the LHS over a common denominator.  

10.2. Freiman-Ruzsa theorem. One question to ask in sum-product theory is 
when the set A + A is small. 

Example 10.5. (1) If A = [L], then |A + A| ≤ 2|A|. 
(2) More generally, if A is an arithmetic progression A = {a + nd}n∈[L], then 

|A + A| ≤ 2|A|. 
(3) Even more generally, we can consider A = {a+n1d1 + · · ·+nrdr}ni∈[Li]. Then 

A + A ⊂ {2a + n1d1 + · · · + nrdr}2≤ni≤2Li , so |A + A| ≤ 2r|A|. In this case 
we call A a generalized arithmetic progression (GAP) of dimension r 
and volume L1 · · · Lr. 
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Theorem 10.6 (Freiman-Ruzsa). If A ⊂ Z and |A+A| ≤ K|A|, then A is contained 
in a GAP of dimension r(K) and vol ≤ V (K) · |A|. 

This is a deep theorem that we will not prove, and the quantitative bounds on 
r(K) and V (K) are weak. In the original paper, the bounds were of the form 
r(K) = exp(Kc), V (K) = exp(exp(Kc)), so the theorem is only meaningful if K is 
small. 

Conjecture 10.7. There is a meaningful bound if K = |A|δ for some δ > 0. 

10.3. Ruzsa triangle inequality. 

Theorem 10.8 (Ruzsa). Let Z be an abelian group and A, B, C ⊂ Z. Then |A||B − 
C| ≤ |A − B||A − C|. 

Corollary 10.9. If |A + A| ≤ K|A|, then |A − A| ≤ K2|A|. 

Proof. Use Ruzsa’s triangle inequality with A = A, B, C = −A. Then we have 

|B − C| = |(−A) − (−A)| = |A − A|, |A − B| = |A − C| = |A − (−A)| = |A + A|. 
So Ruzsa’s triangle inequality tells us that |A||A − A| ≤ |A + A|2 , which implies the 
corollary.  

Proof of Ruzsa triangle inequality. We will construct an injective map φ : A × (B − 
C) → (A − B) × (A − C). For all d ∈ B − C, fix some b(d) ∈ B, c(d) ∈ C with 
d = b(d) − c(d). Then set φ(a, d) = (a − b(d), a − c(d)). We need to show that φ 
is injective. Suppose φ(a, d) = (x, y). Then we will recover a, d from x, y and the 
choices of b(d), c(d). Note that we have y − x = b(d) − c(d) = d, so we can recover 
d. Then from d we know b(d), so we can recover a = x + b(d).  

10.4. Plunnecke inequality. 

Theorem 10.10 (Plunnecke). Let Z be an abelian group and A, B ⊂ Z with |A + 
B| ≤ K|A|. Then |B⊕m − B⊕n| ≤ Km+n|A|. 

Corollary 10.11. If |A + A| ≤ K|A| then |A − A| ≤ K2|A|, |A + A + A| ≤ K3|A|. 

Corollary 10.12. If |A − A| ≤ K|A| then |A + A| ≤ K2|A|. 

Proof. Use Plunnecke’s inequality with B = −A.  

sLemma 10.13. If A ⊂ Fp, |A| = p for 0 ≤ s < 1, then |A3 − A3| ≥ ps+(s) for some 
(s) > 0.  B  ≥Proof. Let B = (A2)⊕3 − (A2)⊕3, C = A − A. Then by Lemma 10.4 we have 

C 

ps+γ(s) for some γ > 0. Now, assume for contradiction that |A3 − A3| ≤ K|A| where 
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K  1. Then we have |A3| ≤ K|A|, and since |A| ≤ |A3|, we have |A3 −A3| ≤ K|A3|. 
Then Plunnecke’s inequality implies 

|(A3)⊕m − (A3)⊕n| ≤ Km+n|A3| ≤ Km+n+1|A|. 
In particular, this implies |B · C|, |A · B|, |A · C| ≤ KO(1)|A|. Then the Ruzsa triangle 
inequality (on Fp as a multiplicative set) implies  B  |A|   ≤ |A · B||A · C| ≤ KO(1)|A|2 ,C  
so we have ps+γ ≤ B  ≤ KO(1)|A| = KO(1)ps , which contradicts K  1. 

C 

In fact, there is actually a stronger statement: 
sTheorem 10.14 (Bourgain-Katz-Tao). If A ⊂ Fp with |A| = p , then max(|A · 

s+(s)A|, |A + A|) ≥ p . 

Notation 10.15. We define PolyK (A) = (A
K )⊕K − (AK )⊕K . 

Corollary 10.16. If 0 < s < t < 1, then there exists a K = K(s, t) such that for 
all A ⊂ Fp with |A| = ps , we have |PolyK (A)| ≥ pt . 

Proof. Apply Lemma 10.13 many times.  

The following proof is due to Petridis. 

Proof of Plunnecke’s inequality. The proof depends on a key lemma. 

Lemma 10.17. If |A + B| ≤ K|A|, then there exists a X ⊂ A such that for all 
C ⊂ Z we have 

|X + C + B| ≤ K. 
|X + C| 

|X+B|Proof. Choose X ⊂ A to minimize the value |X+B| . Then set = K ≤ K. We |X| |X|
|X+C+B|will show by induction on |C| that |X+C| ≤ K for all C ⊂ Z. 

|X+B|For the base case, when |C| = 1 we have |X 
|X 
+C 
+
+ 
C
B 
|
| = |X| = K. For the inductive 

step, let C  = C ∪ {c}, and assume that |X 
|X 
+C 
+
+ 
B
B 
|
| ≤ K. Then set 

Y = {x ∈ X : x + c + B ⊂ X + C + B}. 
Note that by construction we have Y + {c} + B ⊂ X + C + B. Now, let us bound 
|X + C  + B| and |X + C |. First, we have 

|X + C  + B| = |X + C + B| + |(X + {c} + B) \ (X + C + B)| 
≤ |X + C + B| + |(X + {c} + B \ (Y + {c} + B| 
= |X + C + B| + |X + B| − |Y + B|. 
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Next, we have 

|X + C | = |X + C| + |{x ∈ X : x + c ∈ X + C}| 
= |X + C| + |X| − |{x ∈ X : x + c ∈ X + C}| 
≥ |X + C| + |X| − |Y |. 

Recall that we have |X + C + B| ≤ K|X + C| and |X + B| = K|X|, and we also 
have |Y + B| ≥ K|Y | by the definition of X. So we have 

|X+C +B| ≤ |X+C+B|+|X+B|−|Y +B| ≤ K|X+C|+K|X|−K|Y | ≤ K|X+C |, 
completing the proof.  

Now, let us return to the proof of Plunnecke’s inequality. By the key lemma, there 
is some X ⊂ A such that |X + C + B| ≤ K|X + C|. Plugging in C = {c} yields 
|X + B| ≤ K|X|. Then plugging in C = B gives |X + B + B| ≤ K|X + B| ≤ K2|X|. 
Continuing in this fashion, we get |X + B⊕m| ≤ Km|X|. 
Now, Ruzsa’s triangle inequality implies 

|X||B⊕m − B⊕n| ≤ |X + B⊕m||X + B⊕n| ≤ Km+n|X|2 , 

so we get 
|B⊕m − B⊕n| ≤ Km+n|X| ≤ Km+n|A|. 

 
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