
    

    

  
              

            
          

         
             
   
                  

        
 

        
              

    
              
              

              
  
              

 
 

         
 

        

                  
               

  
                   

            
                 
      

 
      

     
 

       
    

                     

 

 
  
  

 

 

 
  

 

 
  
  

 
 

  

 

 

      

 

 
  
  

 

 

 
  
  

 

  

   
 

 
   

 

 

      

               

         
 

         
 

112 PROJECTION THEORY NOTES 

21. Homogeneous Dynamics II 

May 1 
In this lecture, we give some more details about how projection theory can help 

understand homogeneous dynamics. We sketch proofs in a simple case. Then we 
discuss recent work by Lindenstrauss-Mohammadi which uses projection theory to 
prove quantitative bounds in Ratner-type equidistribution theorems. The projection 
theory that appears here is related to some recent problems in projection theory 
raised by Fassler-Orponen. 
We pick up from the end of the last lecture. At the end of the last lecture, we 

drew a picture to illustrate how L a acts on the space X = SL2(R)/SL2(Z). The−1 
r 

key point in the picture is that the compressing direction vcomp is twisting relative 
to the unipotent orbits. 
To start this lecture, we formulate precisely what we mean when we say that 

vcomp is twisting and indicate how to compute and prove this twisting using matrix 
computations. Then we explain how to use this twisting to prove bounds about an 
orbit Ux. 

−1the direction that was compressed when we apply L ,We call vcomp(t) ∈ Tutg0 ar 

i.e. the smallest singular value vector for dL a −1 . We also define an orbit vector vorb(t)r 

such that ut(g0 + v0) = utg0 + vorb(t). The moral the the story is that at each 
point there is an orbit vector and a compression vector and the angle between them 
is changing. 
Let us first compute vcomp at g0 ∈ G. Here vcomp = vcomp,g0 ∈ Tg0 G is the smallest 

singular vector for dL a : Tg0 G → Tar g0 G.−1 
r 

To study this we make use of the fact that m is right invariant. So the singular 
values and vectors of L a −1 are closely related to those of 

r 

R(ar g0)−1 ◦ L a −1 ◦ Rg0 h = arhg0(arg0)
−1 = arhar 

−1 = Car h. r 

Here Car : G → G mean conjugation by ar. Note that Car : e → e. dCar : TeG          
r −ra b e a b e 

dCar = .−r rc d e c d e 

Recall: Orthonormal basis for TeG :      
√1 00 1 0 0 ˜ 2n = , ñ = , d = 

0 0 1 0 0 −√1 
2 

After some calculation, we see that 
−2r ˜dCar (n) = e 2rn, dCar (ñ) = e n, dCar (d) = d 

−1Thus, Rg0 (ñ) is the singular vector of dL a at g0 with singular value e−2r . In other 
r 

words 



    

     
               

       
               

     

       
                  

              

   

            

    
              

           
      

      
 

  

    
                   

                  
                  

                   
             

    

        

   
 

 
 

   

     
 

            
         

          

        

    
  

113 PROJECTION THEORY NOTES 

vcomp,g0 = Rg0 (ñ). 
Next we want to study vcomp(t) = vcomp,utg0 . Plugging in, we get 

vcomp(t) = Rutg0 n) = nutg0.(˜ ˜ 
For comparison, we consider a vector that tracks the orbits of U . We define an 

orbit vector vorb(t) such that 

ut(g0 + v0) = utg0 + vorb(t). 
If we use coordinates so that the orbits are vertical lines {x}× [0, 1], then in these 

coordinates vorb(t) will be constant in t. Solving the equation above, we see that 

vorb(t) = utv0. 

If vorb(0) = v0 = vcomp(0) = (̃n)g0, then we would have 

˜vorb(t) = ut(n)g0. 
Comparing formulas for vcomp(t) and vorb(t) we see that they are not the same. 

And so the compression direction is twisting relative to the orbits. 
Tracking the spread of an orbit 

U[0,T ]x = aRU[0,1]a −1 x.R 

Put x̃ = a − 
R 
1 x and assume that x̃ is not deep in the cusp. This implies that U · x is 

not close to being periodic. Let R = Jr and put Uj = ajrU[0,1]x̃. Define |X|δ to be 
the nubmer of δ balls needed to cover X. Goal: Estimate |Uj |δ in terms of j, δ, r. 
Define Xj to be the top layer of Uj , then |Uj |δ = δ−1|Xj |δ. We say that we are in 
the very spread situation if |Uj |δ ∼ δ−3 and |Xj |δ ∼ δ−2 . 
Using the Key Picture 

Lemma 21.1. If e2r = δ. Then,  
|Xj+1|δ ∼ ∼ δ−1Avg0≤t≤1|πtXj |δ. 

t∈δZ 
0≤t≤1 

Let ft be L −1 restricted to time t. looks like the projection map πt (see Fig-a ft r 

ure 18). ft is not linear but is smooth. 
We now bring into play a rather simple projection estimate. 

Proposition 21.2. If X ∈ B1
2 , then 

Avgθ∈S1 |πθX|δ  |X|1/2 
.δ 



    

 

 

   

   

  
 

 

 

 

  
      
   

        

  

 

 

       

           
         

  

     

         
   

                 

               
     

114 PROJECTION THEORY NOTES 

. 

# of balls in a strip 

δ 

. . 

−2r . . . 

L −1 

e 

ar 

1 

X 

πtX π = |πtXj |δ 

t 

Figure 17. Proof sketch for the projection estimate. 

ft πt 

δ 

1 

Figure 18. ft is almost a projection. 

The sharp case for this example is shown in Figure 19. 
The proof for πt holds for ft as well. 

Corollary 21.3. 

|Xj+1|δ  δ−1|Xj |1/2 . 

Proof. |Xj+1|δ  δ−1Avgt|ftXj |δ  δ−1|Xj |1/2 
. δ 

Suppose |X0|δ = 1, then |X1|δ  δ−1 , |X2|δ  δ−3/2 , |X3|δ  δ−7/4 · · · 

Remark 21.4. This proof sketch shows that Xj is well spread, but it doesn’t show 
that the orbit is dense. 



    

 

 

               
 

    

           
           
              

               
                   

   
              

 

 
    

  
   

 

 

             
         

          
            

                 
                 

        
              

              
          

 
             

            
     

                
    

115 PROJECTION THEORY NOTES 

ρ πθX X 

B1 

Figure 19. Example with X = Bρ ⊂ B1, we see that |X|δ ∼ (ρ )2 

and |πθ(X)|δ ∼ ρ
δ 

δ 

This finishes our discussion of homogenenous dynamics ni SL2(R). Next we con-
sider higher dimensions. Hedlund’s theorem was extended to higher dimensions by 
Dani, Margulis, and Ratner. One key result in the theory is Ratner’s theorem. A 
special case of Ratner’s theorem says that if U ⊂ SLn(R) is a unipotent subgroup, 
and X = SLn(R)/SLn(Z), then the closure of an orbit Ux is either all of X or is a 
lower-dimensional homogeneous space. 
As one concrete example, we can consider, G = SL3(R), Γ = SL3(Z). Put, ⎡ 

1 ⎣U = 0 
t 
1 

t2 

t 

⎤ ⎦ 
0 0 1 

The orbit closures in this situation were studied by Margulis in connection with 
the Oppenheim conjecture about the values of quadratic forms. 
Ratner’s theorem gives the best possible qualitative information about orbit clo-

sures in great generality. But there are interesting open questions about quantitative 
information. We can consider a finite piece of the orbit of the form U[0,T ]x. In terms 
of T , it would be interesting to describe how this piece of orbit is distributed in X. 
Recently, Lindenstrauss, Mohammadi, and collaborators proved strong quantitative 
bounds about the distribution of U[0,T ]x in certain Lie groups. Together with Wang 
and Yang they gave strong quantitative bounds for the unipotent group U ⊂ SL3(R) 
mentioned above, establishing a strong quantitative version of the Oppenheim con-
jecture. 
In the course of this work, they found a new connection between homogeneous 

dynamics and projection theory. The discussion above applies their ideas in the 
much simpler case of SL2(R). 
In the last short section, we explain what is similar and what is different in SLn(R) 

for n ≥ 3. 



    

            
          

  

 
    
  
   

 

 

   

 
    

         
                  

         
          

               
    

            
 

     
               

               
             

                

              
            

              
            

        
               

                
                

                 
               

               
               

              
            

    
             

           
             

            

116 PROJECTION THEORY NOTES 

The initial setup with diagonal matrices and unipotent matrices is quite similar. 
To study the group U ⊂ SL3(R) above, we set ⎡ ⎤ 

re 0 0 ⎣ar = 0 1 0 ⎦ 
0 0 −re

Then we have 

arutar 
−1 = Uer t, 

which is closely analogous to the setup in SL2(R). 
Next we can study the action of L a . We can study the singular value of L a −1 by −1 

r r 

studying the singular value of Car . They are 
−2r −r −r r r 2r e , e , e , 1, 1, e , e , e . 

The direction tangent to U is a singular vector with singular value er . The per-
pendicular space is 7-dimensional. 

2r −2r −1Recall that in the SL2(R) case, the singular values of L a were e , 1, e , and 
the tangent vector to U is singular vector with singular value 

r 

e2r . The perpendicular 
space is 2-dimensional, and the singular values for that space are 1 and e−2r . 
The first difference in SL3(R) is that the perpendicular space is higher dimensional 

and it has more different singular values. A linear map with singular values 1 and e−2r 

can be approximated by a projection. In 7 dimensions, a linear map with singular 
−r −r −rvalues 1, 1, 1, 1, e , e , e can be approximated by a projection from R7 onto a 

4-dimensional subspace. But here, we have to deal with a linear map with singular 
−2r −r −r r 2rvalues e , e , e , 1, 1, e , e . This linear map is not approximately a projection. 

However, this is not the most serious issue. 
Our key geometric input is that as t varies, the linear map on the perpendicular 

space twists. In the case of SL2(R), we get a 1-parameter family of linear maps. Each 
linear map is almost a projection, and so we almost get the whole set of projections 
from R2 to a 1-dimensional space. For U ⊂ SL3(R), the variable t still lives in R 
because the group U is 1-dimensional, and so we get a 1-parameter family of linear 
maps on R7 . These linear maps are a bit more complicated than projections, but 
suppose for a moment that we had a 1-parameter family of projections from R7 to 4-
dimensional subspaces. This 1-parameter family is still a very small subset of all the 
projections from R7 to 1-dimensional subspaces. This is the most serious difference 
between SL2(R) and SL3(R). 
This leads to a problem called the restricted projection problem, which was posed 

by Fassler-Orponen. In the restricted projection problem, instead of considering all 
the projections from Rn to k-dimensional subspaces, we consider only a smooth lower 
dimensional family of projections. There are many different choices we could make 



    

            
     

    
                       

            

            

               
  

                   
               

        

   
                

      

         
             

               
    

         
                     
                  

   

                

       

                 
             

 
             

            
             

             
            

             

117 PROJECTION THEORY NOTES 

for this smooth family, leading to many different problems. The simplest interesting 
example occurs in three dimensions. 

Question 21.5. (Fassler-Orponen 2013) 
For θ ∈ S2 ,, let πθ : R3 → θ⊥ be the orthogonal projection. Let γ be curve in S2 . If 
X ⊆ B3 , and X is a (δ, s, C) set, estimate Avgθ∈γ |πθ(X)|δ. 

The answer depends on whether γ lies in an equator or not. 

Example 21.6. Let γ be the equator and X a δ×1×1 slab. Then, Avgθ∈γ |πθ(X)|θ ∼ 
δ−1 . 

An equator is a geodesic in S2 and so it has zero extrinsic curvature in S2 . We say 
that γ ⊂ S2 is non-degenerate if it has non-zero extrinsic curvature at every point. 
For non-degenerate curves, there are much stronger estimates. 

Theorem 21.7. (Gan-Guo-Guth-Harris-Maldague-Wang) 
If X ⊆ B3 is a (δ, 2, C) set and γ is non-degenerate. Then, Avgθ∈γ |πθ(X)|δ ≥ 
Cδ

−2+ for any  > 0. 

The proof is based on decoupling in Fourier analysis. 
Results about the restricted projection problem in the spirit of the theorem above 

were used as tools in the work on quantitative Ratner theorems. Here is a sample 
theorem in this direction: 

Theorem 21.8. (Lindenstrauss, Mohammadi, Wang, Yang, vague statement) There 
is a constant c > 0 so that the following holds. If G = SL(3, R), Γ = SL(3, Z). U 
as above and U · x is not close to a proper homogeneous subspace, then, U[0,T ]x is 
T −c-dense in (G/Γ). 

One key step in the proof of this theorem is that, for δ = T −c , 

|U[0,T ]x|δ ≥ cδ
−(dim G+). 

Part of the proof of this key step follows the ideas we have outlined, but with the 
restricted projection theorem in place of the simple projection theorem that we used 
above. 
The full proofs of the results we have discussed in homogeneous dynamics require 

more tools and ideas from homogeneous dynamics. But hopefully these notes give 
an idea of how tools from projection theory can help to study dynamics. 
There is some other recent work in this area by Benard-He and Benard-He-Zhang, 

applying tools from projection theory to study random walks on homogeneous spaces. 
The introductions to those papers are a good next step for further reading. 
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