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In this lecture, we give some more details about how projection theory can help
understand homogeneous dynamics. We sketch proofs in a simple case. Then we
discuss recent work by Lindenstrauss-Mohammadi which uses projection theory to
prove quantitative bounds in Ratner-type equidistribution theorems. The projection
theory that appears here is related to some recent problems in projection theory
raised by Fassler-Orponen.

We pick up from the end of the last lecture. At the end of the last lecture, we
drew a picture to illustrate how L,-1 acts on the space X = SLy(R)/SLa(Z). The
key point in the picture is that the compressing direction veem, is twisting relative
to the unipotent orbits.

To start this lecture, we formulate precisely what we mean when we say that
Vcomp 18 twisting and indicate how to compute and prove this twisting using matrix
computations. Then we explain how to use this twisting to prove bounds about an
orbit Ux.

We call Veomp(t) € Ty,q, the direction that was compressed when we apply L, -1,
i.e. the smallest singular value vector for dL, 1. We also define an orbit vector vwb(t)
such that ui(go + €vg) = urgo + €Vorp(t). The moral the the story is that at each
point there is an orbit vector and a compression vector and the angle between them
is changing.

Let us first compute Veomp at go € G. Here Veomp = Veomp,go € Ty, G is the smallest
singular vector for dL,-1 : Ty,G' — Tp, 4,G.

To study this we make use of the fact that m is right invariant. So the singular
values and vectors of L,-1 are closely related to those of

R(‘ZTQO)*l © Lail © Rgoh - aThQO(aTQO)_l = arha;l = CaTh.
Here C,, : G — G mean conjugation by a,. Note that C,_ :e—e. dC, :T.G O

a b e’ 1la o] [eT
dCo, {c d} - [ 6_7"_ [c d_ { er}'

Recall: Orthonormal basis for T,G :

0 1] _ {0 o s [ 0]
= ’n: 7d: 1
{0 0 1 0] 0 -4

)

After some calculation, we see that
dC,, (n) = €*n,dC,, () = e *n,dC,, (d) = d

Thus, Ry,(7) is the singular vector of dL,-1 at go with singular value e~2". In other
words
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Veomp,go — Rgo (ﬁ)

Next we want to study Veomp(t) = Veompurgo- Plugging in, we get

Veomp(t) = Ru,go (1) = Ntz go.
For comparison, we consider a vector that tracks the orbits of U. We define an
orbit vector vy, such that

u(go + €vo) = Usgo + €Vorp(t).
If we use coordinates so that the orbits are vertical lines {z} x [0, 1], then in these
coordinates v,(t) will be constant in ¢. Solving the equation above, we see that

Vorp () = ugvp.
If Vr6(0) = V9 = Veomp(0) = En) Jo, then we would have
Uorb<t) = ut(n)g[)-
Comparing formulas for veem,(t) and ve,(t) we see that they are not the same.
And so the compression direction is twisting relative to the orbits.
Tracking the spread of an orbit

U[O,T}I' = CLRU[OJ](I;%I[L’.

Put z = a}’%laz and assume that T is not deep in the cusp. This implies that U - x is
not close to being periodic. Let R = Jr and put U; = alUjp ;1. Define | X|s to be
the nubmer of § balls needed to cover X. Goal: Estimate |Uj|s in terms of j,0, .
Define X; to be the top layer of U;, then |U;|s = § 71| X;[s. We say that we are in
the very spread situation if |Uj|s ~ 62 and | X;|s ~ 72

Using the Key Picture

Lemma 21.1. Ife* =§. Then,
[ Xjals ~ > ~ 6 Avgoci<a|me X5,

tesZ
0<t<1

Let f; be L,-1 restricted to time t. f; looks like the projection map 7; (see Fig-
ure 18). f; is not linear but is smooth.
We now bring into play a rather simple projection estimate.

Proposition 21.2. If X € B?, then
Avggesi|mo X5 2 | X157,
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FI1GURE 17. Proof sketch for the projection estimate.

¥ | -
N>

1

FIGURE 18. f; is almost a projection.

The sharp case for this example is shown in Figure 19.
The proof for m; holds for f; as well.

Corollary 21.3.
| Xjials 2 6712
Proof. | X 1ls 2 6~ Avg| i X515 = 074 X5 0
Suppose |Xo|s = 1, then | Xi|s = 671, [Xals = 6732, [ Xsls =2 677/

Remark 21.4. This proof sketch shows that X; is well spread, but it doesn’t show
that the orbit is dense.
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FIGURE 19. Example with X = B, C By, we see that |X][5; ~ (£)
and [me(X)|5 ~ &

This finishes our discussion of homogenenous dynamics ni SLy(R). Next we con-
sider higher dimensions. Hedlund’s theorem was extended to higher dimensions by
Dani, Margulis, and Ratner. One key result in the theory is Ratner’s theorem. A
special case of Ratner’s theorem says that if U C SL,(R) is a unipotent subgroup,
and X = SL,(R)/SL,(Z), then the closure of an orbit Uz is either all of X or is a
lower-dimensional homogeneous space.

As one concrete example, we can consider, G = SL3(R), I' = SL3(Z). Put,

2

~

U=

O O =

t
1t
0 1

The orbit closures in this situation were studied by Margulis in connection with
the Oppenheim conjecture about the values of quadratic forms.

Ratner’s theorem gives the best possible qualitative information about orbit clo-
sures in great generality. But there are interesting open questions about quantitative
information. We can consider a finite piece of the orbit of the form Uy rjz. In terms
of T', it would be interesting to describe how this piece of orbit is distributed in X.
Recently, Lindenstrauss, Mohammadi, and collaborators proved strong quantitative
bounds about the distribution of Uy 72z in certain Lie groups. Together with Wang
and Yang they gave strong quantitative bounds for the unipotent group U C SL3(R)
mentioned above, establishing a strong quantitative version of the Oppenheim con-
jecture.

In the course of this work, they found a new connection between homogeneous
dynamics and projection theory. The discussion above applies their ideas in the
much simpler case of SLy(R).

In the last short section, we explain what is similar and what is different in SL,,(R)
for n > 3.
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The initial setup with diagonal matrices and unipotent matrices is quite similar.
To study the group U C SL3(R) above, we set

e 0 0
a.= |0 1

0 0 e
Then we have

aruga, ' = Uery,
which is closely analogous to the setup in SLs(R).

Next we can study the action of L —1. We can study the singular value of L,-1 by
studying the singular value of C,, They are

e e e 1,1,e" e, e

The direction tangent to U is a singular vector with singular value e”. The per-
pendicular space is 7-dimensional.

Recall that in the SLy(R) case, the singular values of L,-1 were e 1,e % and
the tangent vector to U is singular vector with singular value e?". The perpendicular
space is 2-dimensional, and the singular values for that space are 1 and e=%".

The first difference in SL3(R) is that the perpendicular space is higher dimensional
and it has more different singular values. A linear map with singular values 1 and e 2"
can be approximated by a projection. In 7 dimensions, a linear map with singular
values 1,1,1,1,e ", e ™", e " can be approximated by a projection from R onto a
4-dimensional subspace. But here, we have to deal with a linear map with singular
values e 2", e7", e ",1,1,¢e", e?. This linear map is not approximately a projection.
However, this is not the most serious issue.

Our key geometric input is that as ¢ varies, the linear map on the perpendicular
space twists. In the case of SLy(R), we get a 1-parameter family of linear maps. Each
linear map is almost a projection, and so we almost get the whole set of projections
from R? to a 1-dimensional space. For U C SL3(R), the variable ¢ still lives in R
because the group U is 1-dimensional, and so we get a 1-parameter family of linear
maps on R”. These linear maps are a bit more complicated than projections, but
suppose for a moment that we had a 1-parameter family of projections from R7 to 4-
dimensional subspaces. This 1-parameter family is still a very small subset of all the
projections from R7 to 1-dimensional subspaces. This is the most serious difference
between SLs(R) and SL3(R).

This leads to a problem called the restricted projection problem, which was posed
by Fassler-Orponen. In the restricted projection problem, instead of considering all
the projections from R” to k-dimensional subspaces, we consider only a smooth lower
dimensional family of projections. There are many different choices we could make

2r
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for this smooth family, leading to many different problems. The simplest interesting
example occurs in three dimensions.

Question 21.5. (Fassler-Orponen 2013)
For 0 € S?,, let my : R® — 0+ be the orthogonal projection. Let vy be curve in S%. If
X C B? and X is a (8,s,C) set, estimate Avgge,|mo(X)]s.

The answer depends on whether « lies in an equator or not.

Example 21.6. Let v be the equator and X a § x1x1 slab. Then, Avgge|mo(X)|o ~
6t

An equator is a geodesic in S? and so it has zero extrinsic curvature in S?. We say
that v C S? is non-degenerate if it has non-zero extrinsic curvature at every point.
For non-degenerate curves, there are much stronger estimates.

Theorem 21.7. (Gan-Guo-Guth-Harris-Maldague- Wang)
If X C B?is a (6,2,C) set and v is non-degenerate. Then, Avgpes|mo(X)|s >
C.072%¢ for any € > 0.

The proof is based on decoupling in Fourier analysis.

Results about the restricted projection problem in the spirit of the theorem above
were used as tools in the work on quantitative Ratner theorems. Here is a sample
theorem in this direction:

Theorem 21.8. (Lindenstrauss, Mohammadi, Wang, Yang, vague statement) There
is a constant ¢ > 0 so that the following holds. If G = SL(3,R), I' = SL(3,Z). U
as above and U - x is not close to a proper homogeneous subspace, then, Uz is
T~¢-dense in (G/TI).

One key step in the proof of this theorem is that, for 6 = T7¢,
’U[O,T]x|6 Z Ceéf(dim GJre).

Part of the proof of this key step follows the ideas we have outlined, but with the
restricted projection theorem in place of the simple projection theorem that we used
above.

The full proofs of the results we have discussed in homogeneous dynamics require
more tools and ideas from homogeneous dynamics. But hopefully these notes give
an idea of how tools from projection theory can help to study dynamics.

There is some other recent work in this area by Benard-He and Benard-He-Zhang,
applying tools from projection theory to study random walks on homogeneous spaces.
The introductions to those papers are a good next step for further reading.
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