
     18.156, Projection theory, problem set 1 

1. Digesting material from class 

Notation. Recall that we write A . B to mean that there exists a constant c so that A ≤ cB. 

1. (Practicing Cauchy-Schwarz and double counting) Suppose that X, Y are finite sets and 
f : X → Y . If |Y | ≤ (1/2)|X| prove that 

#{x1, x2 ∈ X : f(x1) = f(x2)} & |X|2|Y |−1 . 

We recall the convenitions and basic theorems about the Fourier transform over finite fields. 

rLet Fq be the finite field with q elements, where q = p and p prime. 
For x, ξ ∈ Fd , we define x · ξ = x1ξ1 + ... + xdξd.q 
We let e : Fq → C∗ be a non-trivial group homomorphism, from Fq with addition to C∗ with 

multiplication. 
2πi x 

(If q = p is prime, then we can define e(x) = e p . But any choice of e works equally well. If 
r thq = p , the image of e will be the p roots of unity.) 

Suppose f : Fd → C. For any ξ ∈ Fd , defineq q X 
f̂(ξ) = f(x)e(−x · ξ). 

x∈Fd
q 

Theorem 1. (Fourier inversion) If f : Fd → C, thenq 

f(x) = 
1 X 

f̂(ξ)e(x · ξ). 
qd 

ξ∈Fd
q 

Theorem 2. (Plancherel) If f, g : Fd → C, thenq X 
f(x)g(x) = 

1 X 
f̂(ξ)ĝ(ξ). 

qd 
x∈Fd

q ξ∈Fd
q 
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2. On your own, work through the proof of Theorem 1 and Theorem 2. (You don’t have to 
turn anything in.) The proofs are based on linear algebra and on orthogonality. Here is a sketchy 
outline. P 

a. Because e : Fq → C∗ is a non-trivial group homomorphism, e(x) = 0. x∈FqP 
b. Building on part a, show that for any non-zero ξ in Fd 

q e(x · ξ) = 0., x∈Fd
q 

c. Building on part b, show that for any ξ1, ξ2 ∈ Fd ,q (X1 1 ξ1 = ξ2 
e(x · ξ1)e(x · ξ2) = 

qd 0 else 
x∈Fd

q 

1d. Show that the set of functions { d/2 e(x · ξ)}ξ∈Fq 
e. Theorems 1 and 2 follow from d with a bit of algebra. 

forms an orthonormal basis of `2(Fd 
q ).d

q 

3. Suppose that P ⊂ Fd is an affine k-plane. Define the perpendicular subspace P ⊥ by q 

P ⊥ = {ξ ∈ Fd : (x1 − x2) · ξ = 0∀x1, x2 ∈ P }.q 

Show that ( 
kq ξ ∈ P ⊥ 

|1̂P (ξ)| = 
0 else 

In class we proved some projection estimates for sets X ⊂ F2 using Fourier analysis. In thisq 

problem, you will generalize these estimates to X ⊂ F3 
q 

Let Grq(k, d) be the set of k-dimensional subspaces W ⊂ Fd .q 

For each W ∈ Grq(d − k, d), let πW : Fd → Fk be a linear map with kernel W .q q 

4. Suppose that X ⊂ F3 . Suppose that D ⊂ Grq(1, 3). Let S = S(X, D) = maxW ∈D |πW (X)|.q 

If S ≤ q2/2, prove that 

Sq2 

(1) |D| . . 
|X| 

Then on your own, check that this gives sharp bounds in the following two cases. 
Case 1. If D = Grq(1, 3), then we get |X| . S, which is sharp. 
Case 2. If X is a 2-plane in F3 and D is the set of directions tangent to the 2-plane.q 

2. Optional exploring futher 

Here are some options for exploring further if you would like to do so. 
In each problem set, I will include some options to explore. At the end of the class, everyone 

will do a final project. One option for a final project is to study one of these further exploration 
questions and write up what you learn about it. 

Suppose that X ⊂ F3 and D and S are as above. Given |X| and S, how big could |D| be? Try p 
out a few examples and see if you can make a plausible conjecture. If you want, you could also 
consider the same problem over Fq, where there are more examples based on subfields. 
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The example where X is a 2-plane plays an important role in the last story. You could consider 
sets X ⊂ F3 where |X ∩ P | ≤ B for any 2-plane P ⊂ F3 . Given |X| and S and B, how big couldq q 

|D| be? Again you could try some examples. Can you prove a bound that improves on problem 4 
when B is much less than q2? 
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