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6 Lovász Local Lemma

The Lovász local lemma (LLL) was introduced in the paper of Erdős and Lovász
(1975). It is a powerful tool in the probabilistic method.

In many problems, we wish to avoid a certain set of “bad events.” Here are two easy
to handle scenarios:

• (Complete independence) All the bad events are independent and have probabil-
ity less than 1.

• (Union bound) The sum of the bad event probabilities is less than 1.

The local lemma deals with an intermediate situation where there is a small amount of
local dependencies.

We saw an application of the Lovász local lemma back in Section 1.1, where we used
it to lower bound Ramsey numbers. This chapter explores the local lemma and its
applications in depth.

6.1 Statement and proof

Definition 6.1.1 (Independence from a set of events)
Here we say that an event 𝐴0 is independent from events 𝐴1, . . . , 𝐴𝑚 if 𝐴0 is indepen-
dent of every event of the form 𝐵1 ∧ · · · ∧ 𝐵𝑚 (we sometimes omit the “logical and”
symbol ∧) where each 𝐵𝑖 is either 𝐴𝑖 or 𝐴𝑖, i.e.,

P(𝐴0𝐵1 · · · 𝐵𝑚) = P(𝐴0)P(𝐵1 · · · 𝐵𝑚),

or, equivalently, using Bayes’s rule:

P(𝐴0 |𝐵1 · · · 𝐵𝑚) = P(𝐴0).

Given a collection of events, we can associate to it a dependency graph. This is a
slightly subtle notion, as we will explain. Technically speaking, the graph can be a
directed graph (=digraph), but for most applications, it will be sufficient (and easier)
to use undirected graphs.
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Definition 6.1.2 (Dependency (di)graph)
Let 𝐴1, . . . , 𝐴𝑛 be events (the “bad events” we wish to avoid). Let 𝐺 be a (directed)
graph with vertex set [𝑛]. We say that 𝐺 is a dependency (di)graph for the events
𝐴1, . . . , 𝐴𝑛 if, for for every 𝑖, 𝐴𝑖 is independent from all {𝐴 𝑗 : 𝑗 ∉ 𝑁 (𝑖) ∪ {𝑖}} (𝑁 (𝑖)
is the set of (out)neighbors of 𝑖 in 𝐺).

Remark 6.1.3 (Non-uniqueness). Given a collection of events, there can be more
than one valid dependency graphs. For example, the complete graph is always a valid
dependency graph.

Remark 6.1.4 (Important!). Independence ≠ pairwise independence
The dependency graph is not made by joining 𝑖 ∼ 𝑗 whenever 𝐴𝑖 and 𝐴 𝑗 are not
independent (i.e., P(𝐴𝑖𝐴 𝑗 ) ≠ P(𝐴𝑖)P(𝐴 𝑗 )).

Example: suppose one picks 𝑥1, 𝑥2, 𝑥3 ∈ Z/2Z uniformly and independently at random
and set, for each 𝑖 = 1, 2, 3 (indices taken mod 3), 𝐴𝑖 the event that 𝑥𝑖+1 + 𝑥𝑖+2 = 0.
Then these events are pairwise independent but not independent. So the empty graph
on three vertices is not a valid dependency graph (on the other hand, having at least
two edges makes it a valid dependency graph).

In practice, it is not too hard to construct a valid dependency graph, since most
applications of the Lovász local lemma use the following setup (which we saw in
Section 1.1).

Setup 6.1.5 (Random variable model / hypergraph coloring)
Let {𝑥𝑖 : 𝑖 ∈ 𝐼} be a collection of independent random variables. Let 𝐸1, . . . , 𝐸𝑛 be
events where each 𝐸𝑖 depends only on the variables indexed by some subset 𝐵𝑖 ⊆ 𝐼 of
variables. A canonical dependency graph for the events 𝐸1, . . . , 𝐸𝑛 has vertex set [𝑛]
and an edge 𝑖 𝑗 whenever 𝐵𝑖 ∩ 𝐵 𝑗 ≠ ∅.

It is easy to check that the canonical dependency graph above is indeed a valid depen-
dency graph.

Example 6.1.6 (Boolean satisfiability problem (SAT)). Given a CNF formula (con-
junctive normal form, i.e., and-of-or’s), e.g., (∧ = and; ∨ = or)

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (𝑥2 ∨ 𝑥4 ∨ 𝑥5) ∧ · · ·

the problem is to find a satisfying assignment with boolean variables 𝑥1, 𝑥2, . . . . Many
problems in computer science can be modeled using this way. This problem can be
viewed as in Setup 6.1.5, where 𝐴𝑖 is the event that the 𝑖-th clause is violated.
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6.1 Statement and proof

The following formulation of the local lemma is easiest to apply and is the most
commonly used. It applies to settings where the dependency graph has small maximum
degree.

Theorem 6.1.7 (Lovász local lemma; symmetric form)
Let 𝐴1, . . . , 𝐴𝑛 be events, with P[𝐴𝑖] ≤ 𝑝 for all 𝑖. Suppose that each 𝐴𝑖 is independent
from a set of all other 𝐴 𝑗 except for at most 𝑑 of them. If

𝑒𝑝(𝑑 + 1) ≤ 1,

then with some positive probability, none of the events 𝐴𝑖 occur.

Remark 6.1.8. The constant 𝑒 is best possible (Shearer 1985). In most applications,
the precise value of the constant is unimportant.

Theorem 6.1.9 (Lovász local lemma; general form)
Let 𝐴1, . . . , 𝐴𝑛 be events. For each 𝑖 ∈ [𝑛], let 𝑁 (𝑖) be such that 𝐴𝑖 is independent
from {𝐴 𝑗 : 𝑗 ∉ {𝑖} ∪ 𝑁 (𝑖)}. If 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1) satisfy

P(𝐴𝑖) ≤ 𝑥𝑖
∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥 𝑗 ) for all 𝑖 ∈ [𝑛],

then

P(none of the events 𝐴𝑖 occur) ≥
𝑛∏
𝑖=1

(1 − 𝑥𝑖).

Proof that the general form implies the symmetric form. Set 𝑥𝑖 = 1/(𝑑 + 1) < 1 for
all 𝑖. Then

𝑥𝑖

∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥 𝑗 ) ≥
1

𝑑 + 1

(
1 − 1

𝑑 + 1

)𝑑
>

1
(𝑑 + 1)𝑒 ≥ 𝑝

so the hypothesis of general local lemma holds. □

Here is another corollary of the general form local lemma, which applies if the total
probability of any neighborhood in a dependency graph is small.

Corollary 6.1.10
In the setup of Theorem 6.1.9, if P(𝐴𝑖) < 1/2 and

∑
𝑗∈𝑁 (𝑖) P(𝐴 𝑗 ) ≤ 1/4 for all 𝑖, then

with positive probability none of the events 𝐴𝑖 occur.
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Proof. In Theorem 6.1.9, set 𝑥𝑖 = 2P(𝐴𝑖) for each 𝑖. Then

𝑥𝑖

∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥 𝑗 ) ≥ 𝑥𝑖 ©«1 −
∑︁
𝑗∈𝑁 (𝑖)

𝑥 𝑗
ª®¬ = 2P(𝐴𝑖) ©«1 −

∑︁
𝑗∈𝑁 (𝑖)

2P(𝐴𝑖)ª®¬ ≥ P(𝐴𝑖).

(The first inequality is by “union bound.”) □

In some applications, one may need to apply the general form local lemma with
carefully chosen values for 𝑥𝑖.

Proof of Lovász local lemma (general case). We will prove that

P
©«𝐴𝑖

������ ∧𝑗∈𝑆 𝐴 𝑗ª®¬ ≤ 𝑥𝑖 whenever 𝑖 ∉ 𝑆 ⊆ [𝑛] . (6.1)

Once (6.1) has been established, we then deduce that

P(𝐴1 · · · 𝐴𝑛) = P(𝐴1)P
(
𝐴2

��� 𝐴1

)
P

(
𝐴3

��� 𝐴1𝐴2

)
· · · P

(
𝐴𝑛

��� 𝐴1 · · · 𝐴𝑛−1

)
≥ (1 − 𝑥1) (1 − 𝑥2) · · · (1 − 𝑥𝑛),

which is the conclusion of the local lemma.

Now we prove (6.1) by induction on |𝑆 |. The base case |𝑆 | = 0 is trivial.

Let 𝑖 ∉ 𝑆. Let 𝑆1 = 𝑆 ∩ 𝑁 (𝑖) and 𝑆2 = 𝑆 \ 𝑆1. We have

P
©«𝐴𝑖

������ ∧𝑗∈𝑆 𝐴 𝑗ª®¬ =

P
(
𝐴𝑖

∧
𝑗∈𝑆1 𝐴 𝑗

��� ∧ 𝑗∈𝑆2 𝐴 𝑗

)
P

(∧
𝑗∈𝑆1 𝐴 𝑗

��� ∧ 𝑗∈𝑆2 𝐴 𝑗

) (6.2)

For the RHS of (6.2), using that 𝐴𝑖 is independent of
{
𝑗 ∈ 𝑆2 : 𝐴 𝑗

}
,

numerator ≤ P ©«𝐴𝑖
������ ∧
𝑗∈𝑆2

𝐴 𝑗
ª®¬ = P(𝐴𝑖) ≤ 𝑥𝑖

∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥𝑖), (6.3)
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and, denoting the elements of 𝑆1 by 𝑆1 = { 𝑗1, . . . , 𝑗𝑟},

denominator = P ©«𝐴 𝑗1
������ ∧
𝑗∈𝑆2

𝐴 𝑗
ª®¬P ©«𝐴 𝑗2

������ 𝐴 𝑗1 ∧
𝑗∈𝑆2

𝐴 𝑗
ª®¬ · · · P ©«𝐴 𝑗𝑟

������ 𝐴 𝑗1 · · · 𝐴 𝑗𝑟−1

∧
𝑗∈𝑆2

𝐴 𝑗
ª®¬

≥ (1 − 𝑥 𝑗1) · · · (1 − 𝑥 𝑗𝑟 ) [by induction hypothesis]

≥
∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥𝑖)

Thus (6.2) ≤ 𝑥𝑖, thereby finishing the induction proof of (6.1). □

Remark 6.1.11. We used the independence assumption only at step (6.3) of the proof.
Upon a closer examination, we see that we only need to know correlation inequalities
of the form P

(
𝐴𝑖

��� ∧ 𝑗∈𝑆2 𝐴 𝑗

)
≤ P(𝐴𝑖) for 𝑆2 ⊆ 𝑁 (𝑖), rather than independence. This

observation allows a strengthening of the local lemma, known as a lopsided local
lemma, that we will explore later in the chapter.

6.2 Coloring hypergraphs
Previously, in Theorem 1.3.1, we saw that every 𝑘-uniform hypergraph with fewer
than 2𝑘−1 edges is 2-colorable. The next theorem gives a sufficient local condition for
2-colorability.

Theorem 6.2.1
A 𝑘-uniform hypergraph is 2-colorable if every edge intersects at most 𝑒−12𝑘−1 − 1
other edges

Proof. For each edge 𝑓 , let 𝐴 𝑓 be the event that 𝑓 is monochromatic. Then P(𝐴 𝑓 ) =
𝑝 := 2−𝑘+1. Each 𝐴 𝑓 is independent from all 𝐴 𝑓 ′ where 𝑓 ′ is disjoint from 𝑓 . Since
at most 𝑑 := 𝑒−12𝑘−1 − 1 edges intersect every edge, and 𝑒(𝑑 + 1)𝑝 ≤ 1, so the local
lemma implies that with positive probability, none of the events 𝐴 𝑓 occur. □

Corollary 6.2.2
For 𝑘 ≥ 9, every 𝑘-uniform 𝑘-regular hypergraph is 2-colorable.
(Here 𝑘-regular means that every vertex lies in exactly 𝑘 edges.)

Proof. Every edge intersects ≤ 𝑑 = 𝑘 (𝑘−1) other edges. And 𝑒(𝑘 (𝑘−1)+1)2−𝑘+1 < 1
for 𝑘 ≥ 9. □
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Remark 6.2.3. The statement is false for 𝑘 = 2 (triangle) and 𝑘 = 3 (Fano plane) but
actually true for all 𝑘 ≥ 4 (Thomassen 1992).

Here is an example where the symmetric form of the local lemma is insufficient (why?).

Theorem 6.2.4
Let 𝐻 be a (non-uniform) hypergraph where every edge has size ≥ 3. Suppose∑︁

𝑓 ∈𝐸 (𝐻)\{𝑒}:𝑒∩ 𝑓≠∅
2−| 𝑓 | ≤ 1

8
, for each edge 𝑒,

then 𝐻 is 2-colorable.

Proof. Consider a uniform random 2-coloring of the vertices. Let 𝐴𝑒 be the event that
edge 𝑒 is monochromatic. Then P(𝐴𝑒) = 2−|𝑒 |+1 ≤ 1/4 since |𝑒 | ≥ 3. Also,∑︁

𝑓 ∈𝐸 (𝐻)\{𝑒}:𝑒∩ 𝑓≠∅
P(𝐴 𝑓 ) =

∑︁
𝑓 ∈𝐸 (𝐻)\{𝑒}:𝑒∩ 𝑓≠∅

2−| 𝑓 |+1 ≤ 1/4.

Thus by Corollary 6.1.10 one can avoid all events 𝐴𝑒, and hence 𝐻 is 2-colorable. □

Remark 6.2.5. A sign to look beyond the symmetric local lemma is when there are
bad events of very different nature (e.g., having very different probabilities).

Compactness argument
Now we highlight an important compactness argument that allows us to deduce the
existence of an infinite object, even though the local lemma itself is only applicable to
finite systems.

Theorem 6.2.6
Let 𝐻 be a (non-uniform) hypergraph on a possibly infinite vertex set, such that
each edge is finite, has at least 𝑘 vertices, and intersect at most 𝑑 other edges. If
𝑒2−𝑘+1(𝑑 + 1) ≤ 1, then 𝐻 has a proper 2-coloring.

Proof. From a vanilla application of the symmetric local lemma, we deduce that for
any finite subset 𝑋 of vertices, there exists an 2-coloring 𝑋 so that no edge contained
in 𝑋 is monochromatic (color each vertex iid uniformly, and consider the bad event 𝐴𝑒
that the edge 𝑒 ⊆ 𝑋 is monochromatic).

Next we extend the coloring to the entire vertex set𝑉 by a compactness argument. The
set of all colorings is [2]𝑉 . By Tikhonov’s theorem (which says a product of a possibly
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infinite collection of compact topological spaces is compact), [2]𝑉 is compact under
the product topology.

For each finite subset 𝑋 , let 𝐶𝑋 ⊆ [2]𝑉 be the subset of colorings where no edge
contained in 𝑋 is monochromatic. Earlier from the local lemma we saw that 𝐶𝑋 ≠ ∅.
If 𝑌 ⊆ 𝑋 , then 𝐶𝑌 ⊇ 𝐶𝑋 . Thus

𝐶𝑋1 ∩ · · · ∩ 𝐶𝑋ℓ ⊇ 𝐶𝑋1∪···∪𝑋ℓ ,

so {𝐶𝑋 : |𝑋 | < ∞} is a collection of closed subsets of [2]𝑉 with the finite intersection
property (i.e., the intersection of any finite subcollection is nonempty).

Recall from point-set topology the following basic fact (a defining property): a space
is compact if and only if every family of closed subsets having the finite intersection
property has non-empty intersection.

Hence by compactness of [2]𝑉 , the intersection of 𝐶𝑋 taken over all finite 𝑋 is
non-empty. Any element of this intersection corresponds to a valid coloring of the
hypergraph. □

More generally, the above compactness argument yields the following.

Lemma 6.2.7 (Compactness argument)
Consider a variation of the random variable model (Setup 6.1.5) where each variable
has only finitely many choices but there can be possibly infinitely many events (each
event depends on a finite subset of variables). If it is possible to avoid any finite subset
of events, then it is possible to avoid all the events. □

Remark 6.2.8. Note the conclusion may be false if we do not assume the random
variable model (why?).

The next application appears in the paper of Erdős and Lovász (1975) where the local
lemma originally appears.

Consider 𝑘-coloring the real numbers, i.e., a function 𝑐 : R→ [𝑘]. We say that 𝑇 ⊆ R
is multicolored with respect to 𝑐 if all 𝑘 colors appear in 𝑇 .

Question 6.2.9
For each 𝑘 is there an 𝑚 so that for every 𝑆 ⊆ R with |𝑆 | = 𝑚, one can 𝑘-color R so
that every translate of 𝑆 is multicolored?

The following theorem shows that this can be done whenever 𝑚 > (3 + 𝜀)𝑘 log 𝑘 and
𝑘 > 𝑘0(𝜀) sufficiently large.
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Theorem 6.2.10
The answer to the above equation is yes if

𝑒(𝑚(𝑚 − 1) + 1)𝑘
(
1 − 1

𝑘

)𝑚
≤ 1.

Proof. Each translate of 𝑆 is not multicolored with probability 𝑝 ≤ 𝑘 (1 − 1/𝑘)𝑚, and
each translate of 𝑆 intersects at most 𝑚(𝑚 − 1) other translates. Consider a bad event
for each translate of 𝑆 contained in 𝑋 . The symmetric local lemma tells us that it is
possible to avoid any finite collection of bad events. By the compactness argument, it
is possible to avoid all the bad events. □

Coloring arithmetic progressions
Here is an application where we need to apply the asymmetric local lemma.

Theorem 6.2.11 (Beck 1980)
For every 𝜀 > 0, there exists 𝑘0 and a 2-coloring of Z with no monochromatic 𝑘-term
arithmetic progressions with 𝑘 ≥ 𝑘0 and common difference less than 2(1−𝜀)𝑘 .

Proof. We pick a uniform random color for each element of Z. For each 𝑘-term
arithmetic progression in Z with 𝑘 ≥ 𝑘0 and common difference less than 2(1−𝜀)𝑘 ,
consider the event that this 𝑘-AP is monochromatic. By the compactness argument, it
suffices to check that we can avoid any finite subset of events.

The event that a particular 𝑘-AP is monochromatic has probability exactly 2−𝑘+1.
(Since this number depends on 𝑘 , we should use the asymmetric local lemma.)

Recall that in the asymmetric local lemma (Theorem 6.1.9), we need to select 𝑥𝑖 ∈ [0, 1)
for each bad event 𝐴𝑖 so that

P(𝐴𝑖) ≤ 𝑥𝑖
∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥 𝑗 ) for all 𝑖 ∈ [𝑛] .

It is usually a good idea to select 𝑥𝑖 to be somewhat similar to P(𝐴𝑖). In this case, if 𝐴𝑖
is the event corresponding to a 𝑘-AP, then we take

𝑥𝑖 = 2−(1−𝜀/2)𝑘 =
(
P(𝐴𝑖)

2

)1−𝜀/2

(with the same 𝜀 as in the statement of the theorem).
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Fix a 𝑘-AP 𝑃 in Z with 𝑘 ≥ 𝑘0. The number of ℓ-APs with ℓ ≥ 𝑘0 and common
difference less than 2(1−𝜀)ℓ that intersects 𝑃 is at most 𝑘ℓ2(1−𝜀)ℓ (one choice for the
element of 𝑘 , a choice of the position of the ℓ-AP, and at most 2(1−𝜀)ℓ choices for the
common difference). So to apply the local lemma, it suffices to check that

2−𝜀𝑘/2+1 ≤
∏
ℓ≥𝑘0

(
1 − 2−(1−𝜀/2)ℓ

) 𝑘ℓ2(1−𝜀)ℓ

.

Note that 1 − 𝑥 ≥ 𝑒−2𝑥 for 𝑥 ∈ [0, 1/2]. So

𝑅𝐻𝑆 ≥ exp

(
−

∑︁
ℓ≥𝑘0

21−(1−𝜀/2)ℓ · 𝑘ℓ2(1−𝜀)ℓ
)
= exp

(
−𝑘

∑︁
ℓ≥𝑘0

ℓ21−𝜀ℓ/2
)

By making 𝑘0 = 𝑘0(𝜀) large enough, we can ensure that
∑
ℓ≥𝑘0 ℓ2

1−𝜀ℓ/2 < 𝜀/4, and so
continuing,

· · · ≥ 𝑒−𝜀𝑘/4 ≥ 2−𝜀𝑘/2+1

provided that 𝑘 ≥ 𝑘0(𝜀). So we can apply the local lemma to conclude. □

Decomposing coverings
We say that a collection of disks in R𝑑 is a covering if their union is R𝑑 . We say that
it is a 𝒌-fold covering if every point of R𝑑 is contained in at least 𝑘 disks (so 1-fold
covering is the same as a covering).

We say that a 𝑘-fold covering is decomposable if it can be partitioned into two cover-
ings.

In R𝑑 , is a every 𝑘-fold covering by unit balls decomposable if 𝑘 is sufficiently large?

A fun exercise: in R1, every 𝑘-fold covering by intervals can be partitioned into 𝑘
coverings.

Mani-Levitska and Pach (1986) showed that every 33-fold covering of R2 is decom-
posable.

What about higher dimensions?

Surprising, they also showed that for every 𝑘 , there exists a 𝑘-fold indecomposable
covering of R3 (and similarly for R𝑑 for 𝑑 ≥ 3).

However, it turns out that indecomposable coverings must cover the space quite un-
evenly:
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Theorem 6.2.12 (Mani-Levitska and Pach 1986)
Every 𝑘-fold nondecomposable covering of R3 by open unit balls must cover some
point ≳ 2𝑘/3 times.

Remark 6.2.13. In R𝑑 , the same proof gives ≥ 𝑐𝑑2𝑘/𝑑 .

We will need the following combinatorial geometric fact:

Lemma 6.2.14
A set of 𝑛 ≥ 2 spheres in R3 cut R3 into at most 𝑛3 connected components.

Proof. Let us first consider the problem in one dimension lower. Let 𝑓 (𝑚) be the
maximum number of connected regions that 𝑚 circles on a sphere in R3 can cut the
sphere into.

We have 𝑓 (𝑚 + 1) ≤ 𝑓 (𝑚) + 2𝑚 for all 𝑚 ≥ 1 since adding a new circle to a set of 𝑚
circles creates at most 2𝑚 intersection points, so that the new circle is divided into at
most 2𝑚 arcs, and hence its addition creates at most 2𝑚 new regions.

Combined with 𝑓 (1) = 2, we deduce 𝑓 (𝑚) ≤ 𝑚(𝑚 − 1) + 2 for all 𝑚 ≥ 1.

Now let 𝑔(𝑚) be the maximum number of connected regions that 𝑚 spheres in R3 can
cut R3 into. We have 𝑔(1) = 2, and 𝑔(𝑚 + 1) ≤ 𝑔(𝑚) + 𝑓 (𝑚) ≤ 𝑔(𝑚) by a similar
argument as earlier. So 𝑔(𝑚) ≤ 𝑓 (𝑚 − 1) + 𝑓 (𝑚 − 2) + · · · + 𝑓 (1) + 𝑔(0) ≤ 𝑚3. □

Proof. Suppose for contradiction that every point in R3 is covered by at most 𝑡 ≤ 𝑐2𝑘/3
unit balls from 𝐹 (for some sufficiently small 𝑐 that we will pick later).

Construct an infinite hypergraph 𝐻 with vertex set being the set of balls and edges
having the form 𝐸𝑥 = {balls containing 𝑥} for some 𝑥 ∈ R3. Note that |𝐸𝑥 | ≥ 𝑘 since
we have a 𝑘-fold covering.

Also, note that if 𝑥, 𝑦 ∈ R3 lie in the same connected component in the complement of
the union of all the unit spheres, then 𝐸𝑥 = 𝐸𝑦 (i.e., the same edge).

Claim: every edge of intersects at most 𝑑 = 𝑂 (𝑡3) other edges

Proof of claim: Let 𝑥 ∈ R3. If 𝐸𝑥 ∩ 𝐸𝑦 ≠ ∅, then |𝑥 − 𝑦 | ≤ 2, so all the balls in
𝐸𝑦 lie in the radius-4 ball centered at 𝑥. The volume of the radius-4 ball is 43 times
the unit ball. Since every point lies in at most 𝑡 balls, there are at most 43𝑡 balls
appearing among those 𝐸𝑦 intersecting 𝑥, and these balls cut the radius-2 centered at
𝑥 into 𝑂 (𝑡3) connected regions by the earlier lemma, and two different 𝑦’s in the same
region produce the same 𝐸𝑦. So 𝐸𝑥 intersects 𝑂 (𝑡3) other edges. ■
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With 𝑡 ≤ 𝑐2𝑘/3 and 𝑐 sufficiently small, and knowing 𝑑 = 𝑂 (𝑡3) from the claim, we
have 𝑒2−𝑘+1(𝑑 +1) ≤ 1. It then follows by Theorem 6.2.6 (local lemma + compactness
argument) that this hypergraph is 2-colorable, which corresponds to a decomposition
of the covering, a contradiction. □

6.3 Independent transversal
The application of the local lemma in this section is instructive in that it is not obvious
at first what to choose as bad events (even if you are already told to apply the local
lemma). It is worth trying different possibilities.

Every graph with maximum degreeΔ contains an independent set of size ≥ |𝑉 |/(Δ+1)
(choose the independent set greedily). The following lemma shows that by decreasing
the desired size of the independent set by a constant factor, we can guarantee an
independent set that is also a transversal to a vertex set partition.

Theorem 6.3.1
Let 𝐺 = (𝑉, 𝐸) be a graph with maximum degree Δ and let 𝑉 = 𝑉1 ∪ · · · ∪ 𝑉𝑟 be a
partition, where each |𝑉𝑖 | ≥ 2𝑒Δ. Then there is an independent set in 𝐺 containing
one vertex from each 𝑉𝑖.

Proof. The first step in the proof is simple yet subtle: we may assume that |𝑉𝑖 | = 𝑘 :=
⌈2𝑒Δ⌉ for each 𝑖, or else we can remove some vertices from 𝑉𝑖 (if we do not trim the
vertex sets now, we will run into difficulties later).

Pick 𝑣𝑖 ∈ 𝑉𝑖 uniformly at random, independently for each 𝑖.

This is an instance of the random variable model (Setup 6.1.5), where 𝑣1, . . . , 𝑣𝑟 are
the random variables.

We would like to design a collection of “bad events” so that if we avoid all of them,
then {𝑣1, . . . , 𝑣𝑟} is guaranteed to be independent set.

What do we choose as bad events? It turns out that some choices work better than
others.

Attempt 1:

For each 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 where there exists an edge between 𝑉𝑖 and 𝑉 𝑗 , let 𝐴𝑖, 𝑗 be the
event that 𝑣𝑖 is adjacent to 𝑣 𝑗 .

We find that P(𝐴𝑖, 𝑗 ) ≤ Δ/𝑘 .

The canonical dependency graph has 𝐴𝑖, 𝑗 ∼ 𝐴𝑖′, 𝑗 ′ if and only if the two sets {𝑖, 𝑗} and
{𝑖′, 𝑗 ′} intersect. This dependency graph has max degree ≤ 2Δ𝑘 (starting from (𝑖, 𝑗),
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look at the neighbors of all vertices in 𝑉𝑖 ∪𝑉 𝑗 ). The max degree is too large compared
to the bad event probabilities.

Attempt 2:

For each edge 𝑒 ∈ 𝐸 , let 𝐴𝑒 be the event that both endpoints of 𝑒 are picked.

We have P(𝐴𝑒) = 1/𝑘2.

The canonical dependency graph has 𝐴𝑒 ∼ 𝐴 𝑓 if some 𝑉𝑖 intersects both 𝑒 and 𝑓 .

This dependency graph has max degree ≤ 2𝑘Δ (if 𝑒 is between 𝑉𝑖 and 𝑉 𝑗 , then 𝑓 must
be incident to 𝑉𝑖 ∪𝑉 𝑗 ).

We have 𝑒(1/𝑘2) (2𝑘Δ + 1) ≤ 1, so the local lemma implies the with probability no
bad event occurs, in which case {𝑣1, . . . , 𝑣𝑟} is an independent set. □

Remark 6.3.2. Alon (1988) introduced the above result as lemma in his near resolution
of the still-open linear arboricity conjecture (see the Alon–Spencer textbook §5.5).
Alon’s approach makes heavy use of the local lemma.

Haxell (1995, 2001) relaxed the hypothesis to |𝑉𝑖 | ≥ 2Δ for each 𝑖. The statement
becomes false if 2Δ is replaced by 2Δ − 1 (Szabó and Tardos 2006).

6.4 Directed cycles of length divisible by 𝑘
A directed graph is 𝒅-regular if every vertex has in-degree 𝑑 and out-degree 𝑑.

Theorem 6.4.1 (Alon and Linial 1989)
For every 𝑘 there exists 𝑑 so that every 𝑑-regular directed graph has a directed cycle
of length divisible by 𝑘 .

Corollary 6.4.2
For every 𝑘 there exists 𝑑 so that every 2𝑑-regular graph has a cycle of length divisible
by 𝑘 .

Proof. Every 2𝑑-regular graph can be made into a 𝑑-regular digraph by orientating its
edges according to an Eulerian tour. And then we can apply the previous theorem. □

We will prove the following more general statement.
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Theorem 6.4.3 (Alon and Linial 1989)
Every directed graph with min out-degree 𝛿 and max in-degree Δ contains a cycle of
length divisible by 𝑘 ∈ N as long as

𝑘 ≤ 𝛿

1 + log(1 + 𝛿Δ) .

Proof. By deleting edges, can assume that every vertex has out-degree exactly 𝛿.

Assign every vertex 𝑣 an element 𝑥𝑣 ∈ Z/𝑘Z iid uniformly at random.

We will look for directed cycles where the labels increase by 1 (mod 𝑘) at each step.
These cycles all have length divisible by 𝑘 .

For each vertex 𝑣, let 𝐴𝑣 be the event that there is nowhere to go from 𝑣 (i.e., if no
outneighbor is labeled 𝑥𝑣 + 1 (mod 𝑘)). We have

P(𝐴𝑣) = (1 − 1/𝑘)𝛿 ≤ 𝑒−𝛿/𝑘 .

Since 𝐴𝑣 depends only on {𝑥𝑤 : 𝑤 ∈ {𝑣} ∪ 𝑁+(𝑣)}, where 𝑁+(𝑣) denotes the out-
neighbors of 𝑣 and 𝑁−(𝑣) the in-neighbors of 𝑣, the canonical dependency graph
has

𝐴𝑣 ∼ 𝐴𝑤 if {𝑣} ∪ 𝑁+(𝑣) intersects {𝑤} ∪ 𝑁+(𝑤).

The maximum degree in the dependency graph is at most Δ+𝛿Δ (starting from 𝑣, there
are

(1) at most Δ choices stepping backward

(2) 𝛿 choices stepping forward, and

(3) at most 𝛿(Δ−1) choices stepping forward and then backward to land somewhere
other than 𝑣).

So an application of the local lemma shows that we are done as long as 𝑒1−𝛿/𝑘 (1+Δ+𝛿Δ),
i.e.,

𝑘 ≤ 𝛿/(1 + log(1 + Δ + 𝛿Δ)).

This is almost, but not quite the result (though, for most applications, we would be
perfectly happy with such a bound).

The final trick is to notice that we actually have an even smaller valid dependency
digraph:

𝐴𝑣 is independent of all 𝐴𝑤 where 𝑁+(𝑣) is disjoint from 𝑁+(𝑤) ∪ {𝑤}.
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Indeed, even if we fix the colors of all vertices outside 𝑁+(𝑣), the conditional proba-
bility that 𝐴𝑣 is still (1 − 1/𝑘)𝛿.

The number of 𝑤 such that 𝑁+(𝑣) intersects 𝑁+(𝑤) ∪ {𝑤} is at most 𝛿Δ (no longer
need to consider (1) in the previous count). And we have

𝑒𝑝(𝛿Δ + 1) ≤ 𝑒1−𝛿/𝑘 (𝛿Δ + 1) ≤ 1.

So we are done by the local lemma. □

6.5 Lopsided local lemma
Let us move beyond the random variable model, and consider a collection of bad
events in the general setup of the local lemma. Instead of requiring that each event is
independent of its non-neighbors (in the dependency graph), what if we assume that
avoiding some bad events make it easier to avoid some others? Intuitively, it seems
that it would only make it easier to avoid bad events.

We can make this notion precise by re-examining the proof of the local lemma. Where
did we actually use the independence assumption in the hypothesis of the local lemma?
It was in the following step, Equation (6.3):

numerator ≤ P ©«𝐴𝑖
������ ∧
𝑗∈𝑆2

𝐴 𝑗
ª®¬ = P(𝐴𝑖) ≤ 𝑥𝑖

∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥𝑖).

If we had changed the middle = to ≤, the whole proof would remain valid. This
observation allows us to weaken the independence assumption. Therefore we have the
following theorem, which was used by Erdős and Spencer (1991) to give an application
to Latin transversals that we will see shortly.
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Theorem 6.5.1 (Lopsided local lemma)
Let 𝐴1, . . . , 𝐴𝑛 be events. For each 𝑖, let 𝑁 (𝑖) ⊆ [𝑛] be such that

P
©«𝐴𝑖

������ ∧𝑗∈𝑆 𝐴 𝑗ª®¬ ≤ P(𝐴𝑖) for all 𝑖 ∈ [𝑛] and 𝑆 ⊆ [𝑛] \ (𝑁 (𝑖) ∪ {𝑖}) (6.1)

Suppose there exist 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1) such that

P(𝐴𝑖) ≤ 𝑥𝑖
∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥 𝑗 ) for all 𝑖 ∈ [𝑛] .

Then

P(none of the events 𝐴𝑖 occur) ≥
𝑛∏
𝑖=1

(1 − 𝑥𝑖).

Like earlier, by setting 𝑥𝑖 = 1/(𝑑 + 1), we deduce a symmetric version that is easier to
apply.

Corollary 6.5.2 (Lopsided local lemma; symmetric version)
In the previous theorem, if |𝑁 (𝑖) | ≤ 𝑑 and P(𝐴𝑖) ≤ 𝑝 for every 𝑖 ∈ [𝑛], and 𝑒𝑝(𝑑+1) ≤
1, then with positive probability none of the events 𝐴𝑖 occur.

The (di)graph where 𝑁 (𝑖) is the set of (out-)neighbors of 𝑖 is called a negative depen-
dency (di)graph.

Remark 6.5.3 (Important!). Just as with the usual local lemma, the negative depen-
dency graph is not constructed by simply checking pairs of events.

The hypothesis of Theorem 6.5.1 seems annoying to check. Fortunately, many appli-
cations of lopsided local lemma fall within a model that we will soon describe, where
there is a canonical negative dependency graph that is straightforward to construct.
This is analogous to the random variable model for the usual local lemma, where the
canonical dependence graph has two events adjacency if they share variables.

Random injection model
We describe a random injection model where there is an easy-to-construct canonical
negative dependency graph (Lu and Székely 2007).

Recall that a matching in a graph is a subset of edges with no two sharing a vertex.
In a bipartite graph with vertex parts 𝑋 and 𝑌 , a complete matching from 𝑋 to 𝑌 is a
matching where every vertex of 𝑋 belongs to an edge of the matching.
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Setup 6.5.4 (Random injection model)
Let 𝑋 and 𝑌 be finite sets with |𝑋 | ≤ |𝑌 |.

Let 𝑓 : 𝑋 → 𝑌 be an injection chosen uniformly at random. We can also represent 𝑓
by a complete matching 𝑀 from 𝑋 to 𝑌 in 𝐾𝑋,𝑌 (the complete bipartite graph between
𝑋 and 𝑌 ). We will speak interchangeably of the injection 𝑓 and matching 𝑀 .

For a given matching 𝐹 (not necessarily complete) in 𝐾𝑋,𝑌 , let 𝐴𝐹 denote the event
that 𝐹 ⊆ 𝑀 .

Let 𝐹1, . . . , 𝐹𝑛 be matchings in 𝐾𝑋,𝑌 . The canonical negative dependency graph for
the vents 𝐴𝐹1 , . . . , 𝐴𝐹𝑛 has one vertex for each event, and an edge between the events
𝐴𝐹𝑖 and 𝐴𝐹𝑗

(𝑖 ≠ 𝑗) if 𝐹𝑖 and 𝐹𝑗 are not vertex disjoint.

The following result shows that the above canonical negative dependency graph is a
valid for the lopsided local lemma (Theorem 6.5.1).

Theorem 6.5.5 (Nonnegative dependence for random injections)
In Setup 6.5.4, let 𝐹0 be a matching in 𝐾𝑋,𝑌 such that 𝐹0 is vertex disjoint from
𝐹1 ∪ · · · ∪ 𝐹𝑘 . Then

P
(
𝐴𝐹0

��� 𝐴𝐹1 · · · 𝐴𝐹𝑘
)
≤ P(𝐴𝐹0).

Proof. Let 𝑋0 ⊆ 𝑋 and 𝑌0 ⊆ 𝑌 be the set of endpoints of 𝐹0.

For each matching 𝑇 in 𝐾𝑋,𝑌 , let

M𝑇 = {complete matchings from 𝑋 to 𝑌 containing 𝑇 but not containing any of 𝐹1, . . . , 𝐹𝑘 } .

For the desired inequality, note that

𝐿𝐻𝑆 = P
(
𝐴𝐹0

��� 𝐴𝐹1 · · · 𝐴𝐹𝑘
)
=

��M𝐹0

��
|M∅ |

=

��M𝐹0

��∑
𝑇 : 𝑋0↩→𝑌 |M𝑇 |

where the sum is taken over all |𝑌 | ( |𝑌 | − 1) · · · ( |𝑌 | − |𝑋 | + 1) complete matchings 𝑇
from 𝑋0 to 𝑌 (which we denote by 𝑇 : 𝑋0 ↩→ 𝑌 ), and

𝑅𝐻𝑆 = P(𝐴𝐹0) =
1

|{𝑇 : 𝑋0 ↩→ 𝑌 }| .

Thus to show that 𝐿𝐻𝑆 ≤ 𝑅𝐻𝑆, it suffices to prove��M𝐹0

�� ≤ |M𝑇 | for every 𝑇 : 𝑋0 ↩→ 𝑌 .

94



MIT OCW: Probabilistic Methods in Combinatorics — Yufei Zhao

6.5 Lopsided local lemma

It suffices to construct an injection M𝐹0 ↩→ M𝑇 . Let 𝑌1 be the set of endpoints of 𝑇
in 𝑌 . Fix a permutation 𝜎 of 𝑌 such that

• 𝜎 fixes all elements of 𝑌 outside 𝑌0 ∪ 𝑌1; and

• 𝜎 sends 𝐹0 to 𝑇 .

Then 𝜎 induces a permutation on the set of complete matchings from 𝑋 to 𝑌 . It
remains to show that if we start with a matching in M𝐹0 , so that it avoids 𝐹𝑖 for all
𝑖 ≥ 1, then it is sent to a matching that also avoids 𝐹𝑖 for all 𝑖 ≥ 1 (and hence lies in
M𝑇 ). Indeed, this follows from the hypothesis that none of the edges in 𝐹𝑖 use any
vertex from 𝑋0 or 𝑌0. □

As an example, here is a quick application.

Corollary 6.5.6 (Derangement lower bound)
The probability that a uniform random permutation of [𝑛] has no fixed points is at
least (1 − 1/𝑛)𝑛.

Proof. In the random injection model, let 𝑋 = 𝑌 = [𝑛]. Let 𝑓 : 𝑋 → 𝑌 be a uniform
random permutation. For each 𝑖 ∈ [𝑛], let 𝐹𝑖 be the single edge (𝑖, 𝑖), i.e., 𝐴𝐹𝑖 is the
even that 𝑓 (𝑖) = 𝑖. Note that the canonical negative dependency graph is empty since
no two 𝐹𝑖’s share a vertex. Since P(𝐴𝑖) = 1 − 1/𝑛, we can set 𝑥𝑖 = 1 − 1/𝑛 for each 𝑖
in the lopsided local lemma to obtain the conclusion

P( 𝑓 has no fixed points) = P(𝐴1 · · · 𝐴𝑛) ≥
(
1 − 1

𝑛

)𝑛
. □

Remark 6.5.7. A fixed-point free permutation is called a derangement. Using
inclusion-exclusion, one can deduce an exact answer to the above question:

∑𝑛
𝑖=0(−1)𝑖/𝑖!.

This quantity converges to 1/𝑒 as 𝑘 → ∞, and the above lower bound (1 − 1/𝑛)𝑛 also
converges to 1/𝑒 and so is asymptotically optimal.

Latin transversal
A Latin square of order 𝑛 is an 𝑛 × 𝑛 array filled with 𝑛 symbols so that every symbol
appears exactly once in every row and column. Example:

1 2 3
2 3 1
3 1 2

These objects are called Latin squares because they were studied by Euler (1707–1783)
who used Latin symbols to fill the arrays.
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Given an 𝑛 × 𝑛 array, a transversal is a set of 𝑛 entries with one in every row and
column. A Latin transversal is a transversal with distinct entries. Example:

1 2 3
2 3 1
3 1 2

Here are is a famous open conjecture about Latin transversals.1 (Do you see why the
hypothesis on parity is necessary?)

Conjecture 6.5.8 (Ryser 1967)
Every odd order Latin square has a transversal.

The conjecture should be modified for even order Latin squares.

Conjecture 6.5.9 (Ryser-Brualdi-Stein conjecture)
Every even order Latin square has a transversal containing all but at most one symbol.

Remark 6.5.10. Keevash, Pokrovskiy, Sudakov and Yepremyan (2022) proved that
every order 𝑛 Latin square contains a transversal containing all but 𝑂 (log 𝑛/log log 𝑛)
symbols, improving an earlier bound of 𝑂 (log2 𝑛) by Hatami and Shor (2008).

Recently, Montgomery announced a proof of the conjecture for all sufficiently large
even 𝑛. The proof uses sophisticated techniques combining the semi-random method
and the absorption method.

The next result is the original application of the lopsided local lemma.

Theorem 6.5.11 (Erdős and Spencer 1991)
Every 𝑛×𝑛 array where every entry appears at most 𝑛/(4𝑒) times has a Latin transversal.

Proof. Pick a transversal uniformly at random. This is the same as picking a permuta-
tion 𝑓 : [𝑛] → [𝑛] uniformly at random. In Setup 6.5.4, the random injection model,
transversals correspond to perfect matchings.

For each pair of equal entries in the array not both lying in the same row or column,
consider the bad event that the transversal contains both entries.

The canonical negative dependency graph is obtained by joining an edge between two
bad events if the four entries involved share some row or column.

1Not to be confused with another conjecture also known as Ryser’s conjecture concerning an inequality
between the covering number and the matching number of multipartite hypergraphs, as a generaliza-
tion of König’s theorem. See Best and Wanless (2018) for a historical commentary and a translation
of Ryser’s 1967 paper.
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Let us count neighbors in this negative dependency graph. Fix a pair of equal entries
in the array. Their rows and columns span fewer than 4𝑛 entries, and for each such
entry 𝑧, there are at most 𝑛/(4𝑒) − 1 choices for another entry equal to 𝑧. Thus the
maximum degree in the canonical negative dependence graph is

≤ (4𝑛 − 4)
( 𝑛
4𝑒

− 1
)
≤ 𝑛(𝑛 − 1)

𝑒
− 1.

We can now apply the symmetric lopsided local lemma to conclude that with positive
probability, none of the bad events occur. □

6.6 Algorithmic local lemma
Consider an instance of a problem in the random variable setting (e.g., 𝑘-CNF) for
which the local lemma guarantees a solution. Can one find a satisfying assignment
efficiently?

The local lemma tells you that some good configuration exists, but the proof is non-
constructive. The probability that a random sample avoids all the bad events is often
very small (usually exponentially small, e.g., in the case of a set of independent bad
events). It had been an open problem for a long time whether the local lemma can be
made algorithmic.

Moser (2009), during his PhD, achieved a breakthrough by coming up with the first
efficient algorithmic version of the local lemma for finding a satisfying assignment
for 𝑘-CNF formulas. Moser and Tardos (2010) later extended the algorithm for the
general local lemma in the random variable model.

Remark 6.6.1 (Too hard in general). The Moser–Tardos algorithm works in the ran-
dom variable model (there are subsequent work that concern other models such as
the random injection model). Some assumption on the model is necessary since the
problem can be computationally hard in general.

For example, let 𝑞 = 2𝑘 , and 𝑓 : [𝑞] → [𝑞] be some fixed bĳection (with an explicit
description and easy to compute). Consider the computational task of inverting 𝑓 :
given 𝑦 ∈ [𝑞], find 𝑥 such that 𝑓 (𝑥) = 𝑦 (we would like an algorithm with running
time polynomial in 𝑘).

If 𝑥 ∈ [𝑞] is chosen uniformly, then 𝑓 (𝑥) ∈ [𝑞] is also uniform. For each 𝑖 ∈ [𝑘], let
𝐴𝑖 be the event that 𝑓 (𝑥) and 𝑦 disagree on 𝑖-th bit. Then 𝐴1, . . . , 𝐴𝑘 are independent
events. Also, 𝑓 (𝑥) = 𝑦 if and only if no event 𝐴𝑖 occurs. So a trivial version of the
local lemma (with empty dependency graph) implies the existence of some 𝑥 such that
𝑓 (𝑥) = 𝑦.
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On the other hand, it is believed that there exist functions 𝑓 that is easy to compute but
hard to invert. Such functions are called one-way functions, and they are a fundamental
building block in cryptography. For example, let 𝑔 be a multiplicative generator of F𝑞,
and let 𝑓 : F𝑞 → F𝑞 be given by 𝑓 (0) = 0 and 𝑓 (𝑥) = 𝑔𝑥 and for 𝑥 ≠ 0. Then inverting
𝑓 is the discrete logarithm problem, which is believed to be computationally difficult.
The computational difficulty of this problem is the basis for the security of important
public key cryptography schemes, such as the Diffie–Hellman key exchange.

Moser–Tardos algorithm
The algorithm is surprisingly simple.

Algorithm 6.6.2 (Moser–Tardos “fix-it”)
input : a set of variables and events in the random variable model
output : an assignment of variables avoiding all bad events

Initialize by setting all variables to arbitrary values;
while there is some violated event do

Pick an arbitrary violated event and uniformly resample its variables;

(We can make the algorithm more precise by specifying a way to pick an “arbitrary” choice, e.g., the
lexicographically first choice.)

Theorem 6.6.3 (Moser and Tardos 2010)
In Algorithm 6.6.2, letting 𝐴1, . . . , 𝐴𝑛 denote the bad events, suppose there are
𝑥1, . . . , 𝑥𝑛 ∈ [0, 1) such that

P(𝐴𝑖) ≤ 𝑥𝑖
∏
𝑗∈𝑁 (𝑖)

(1 − 𝑥 𝑗 ) for all 𝑖 ∈ [𝑛],

then for each 𝑖,

E[number of times that 𝐴𝑖 is chosen for resampling] ≤ 𝑥𝑖

1 − 𝑥𝑖
.

We won’t prove the general theorem here. The proof in Moser and Tardos (2010) is
beautifully written and not too long. I highly recommend it reading it. In the next
subsection, we will prove the correctness of the algorithm in a special case using a
neat idea known as entropy compression.

Remark 6.6.4 (Las Vegas versus Monte Carlo). Here are some important classes of
randomized algorithms:
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• Monte Carlo algorithm (MC): a randomized algorithm that terminates with an
output, but there is a small probability that the output is incorrect;

• Las Vegas algorithm (LV): a randomized algorithm that always returns a correct
answer, but may run for a long time (or possibly forever).

The Moser–Tardos algorithm is a LV algorithm whose expected runtime is bounded by∑
𝑖 𝑥𝑖/(1 − 𝑥𝑖), which is usually at most polynomial in the parameters of the problem.

We are usually interested in randomized algorithms whose running time is small (e.g.,
at most a polynomial of the input size).

We can convert an efficient LV algorithm into an efficient MC algorithm as follows:
suppose the LV algorithm has expected running time 𝑇 , and now we run the algorithm
but if it takes more than 𝐶𝑇 time, then halt and declare a failure. Markov’s inequality
then shows that the algorithm fails with probability ≤ 1/𝐶.

However, it is not always possible to convert an efficient MC algorithm into an efficient
LV algorithm. Starting with an MC algorithm, one might hope to repeatedly run it
until a correct answer has been found. However, there might not be an efficient way to
check the answer.

For example, consider the problem of finding a Ramsey coloring, specifically, 2-
edge-coloring of 𝐾𝑛 without a monochromatic clique of size ≥ 100 log2 𝑛. A uniform
random coloring works with overwhelming probability, as can be checked by a simple
union bound (see Theorem 1.1.2). However, we do not have an efficient way to check
whether the random edge-coloring indeed has the desired property. It is a major open
problem to find an LV algorithm for finding such an edge-coloring.

Entropy compression argument
We now give a simple and elegant proof for a special case of the above algorithm, due
to Moser (2009). Actually, the argument in his paper is quite a bit more complicated.
Moser presented a version of the proof below in a conference, and his ideas were
popularized by Fortnow and Tao. (Fortnow called Moser’s talk “one of the best STOC
talks ever”). Tao introduced the phase entropy compression argument to describe
Moser’s influential idea. (We won’t use the language of entropy here, and instead use a
more elementary argument involving counting and the pigeonhole principle. We will
discuss entropy in Chapter 10.)

To keep the argument simple, we work in the setting of 𝑘-CNFs. Recall from Ex-
ample 6.1.6 that a 𝒌-CNF formula (conjunctive normal form) consist of a logical
conjunction (i.e., and, ∧) of clauses, where each clause is a disjunction (i.e., or, ∨)
of exactly 𝑘 literals. We shall require that the 𝑘 literals of each clause use distinct
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variables (𝑥1, . . . , 𝑥𝑁 ), and each variable appears either in its positive 𝑥𝑖 or negative
form 𝑥𝑖. For example, here is a 3-CNF with 4 clauses on 6 variables:

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (𝑥2 ∨ 𝑥4 ∨ 𝑥5) ∧ (𝑥3 ∨ 𝑥5 ∨ 𝑥6).

The problem is to find a satisfying assignment with boolean variables so that the
expression output to TRUE.

Algorithm 6.6.5 (Moser “fix-it”)
input : a 𝑘-CNF
output : a satisfying assignment

1 Initialize by setting all variables to arbitrary values;
2 while there is some violated clause 𝐶 do
3 fix (𝐶);

4 Subroutine fix (clause 𝐶) :
5 Resample the variables in 𝐶 uniformly at random;
6 while there is some violated clause 𝐷 that shares a variable with 𝐶 do
7 fix (𝐷);

(We can make the algorithm more well defined by specifying a way to pick an “arbitrary” choice, e.g.,
the lexicographically first choice. Also, in Line 6, we allow taking 𝐷 = 𝐶.)

Theorem 6.6.6 (Correctness of Moser’s algorithm)
Given a 𝑘-CNF where every clause shares variables with at most 2𝑘−3 other clauses,
Algorithm 6.6.5 output a satisfying assignment with expected running time at most
polynomial in the number of variables and clauses.

Note that the Lovász local lemma guarantees the existence of a solution if each clause
shares variables with at most 2𝑘/𝑒 − 1 clauses (each clause is violated with probability
exactly 2−𝑘 in a uniform random assignment of variables). So the theorem above is
tight up to an unimportant constant factor.

Lemma 6.6.7 (Outer while loop)
Each clause of the 𝑘-CNF appears at most once as a violated clause in the outer while
loop (Line 2).

Proof. Given an assignment of variables, by calling fix(𝐶) for any clause 𝐶, any
clause that was previously satisfied remains satisfied after the completion of the execu-
tion of fix(𝐶). Furthermore, 𝐶 becomes satisfied after the function call. Thus, once
fix(𝐶) is called, 𝐶 can never show up again as a violated clause in Line 2. □
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Lemma 6.6.8 (The number of recursive calls to fix)
Fix a 𝑘-CNF on 𝑛 variables where every clause shares variables with at most 2𝑘−3

other clauses. Also fix a clause 𝐶0 and some assignment of variables. Then, in an
execution of fix(𝐶0), for any positive integer ℓ,

P(there are at least ℓ recursive calls to fix in Line 7) ≤ 2−ℓ+𝑛+1.

It follows that the expected number of recursive calls to fix is 𝑛 + 𝑂 (1). Thus, in
the Moser algorithm (Algorithm 6.6.5), the expected total number of calls to fix is
𝑚𝑛 +𝑂 (𝑚), where 𝑛 is the number of variables and 𝑚 is the number of clauses. This
proves the correctness of the algorithm (Theorem 6.6.6).

Proof. Let us formalize the randomness in the algorithm by first initializing a random
string of bits. Specifically, let 𝑥 ∈ {0, 1}𝑘ℓ be generated uniformly at random. When-
ever the a clause in resampled in Line 5, one replaces the variables in the clause by
the next 𝑘 bits from 𝑥. Furthermore, if the line Line 7 is called for the ℓ-th time, we
halt the algorithm and declare a failure (as we would have run out of random bits to
resample had we continued).

At the same time, we keep an execution trace which keeps track of which clauses got
called fix, and also when the inner while loop Line 6 ends. Note that the very first
call to fix(𝐶0) is not included in the execution trace since it is already given as fixed
and so we don’t need to include this information. Here is an example of an execution
trace, writing C7 for the 7th clause in the 𝑘-CNF:

fix(C7) called

fix(C4) called

fix(C7) called

while loop ended

fix(C2) called

while loop ended

while loop ended

...

For illustration, here is the example of how clause variables could intersect:

C2: ****

C4: ****

C7: ****

It is straightforward to deduce which while loop ended corresponds to which fix
call by reading the execution trace and keeping track of a first-in-first-out stack.
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Encoding the execution trace as a bit string. We fix at the beginning some canonical
order of all clauses (e.g., lexicographic). It would be too expensive to refer to each
clause in its absolute position in this order (this is an important point!). Instead, we
note that every clause shares variables with at most 2𝑘−3 other clauses, and only these
≤ 2𝑘−3 could be called in the inner while loop in Line 6. So we can record which one
got called using a 𝑘 − 3 bit string.

• fix(𝐷) called: suppose this was called inside an execution of fix(𝐶), and
𝐷 is the 𝑗-th clause among all clauses sharing a variable with 𝐶, then record in
the execution trace bit string 0 followed by exactly ℓ − 3 bits giving the binary
representation of 𝑗 (prepended by zeros to get exactly ℓ − 3 bits).

• while loop ended: record 1 in the execution trace bit string.

Note that one can recover the execution trace from the above bit string encoding.

Now, suppose the algorithm terminates as a failure due to fix being called the ℓ-th
time. Here is the key claim.

Key claim (recovering randomness). At the moment right before the ℓ-th recur-
sive call to fix on Line 7, we can completely recover 𝑥 from the current variable
assignments and the execution trace.

Note that all ℓ𝑘 random bits in 𝑥 have been used up at this point.

To see the key claim, note that from the execution trace, we can determine which clauses
were resampled and in what order. Furthermore, if fix(𝐷) was called on Line 7, then
𝐷 must have been violated right before the call, and there is a unique possibility for
the violating assignment to 𝐷 right before the call (e.g., if 𝐷 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3, then the
only violating assignment is (𝑥1, 𝑥2, 𝑥3) = (0, 0, 1)). We can then rewind history, and
put the reassigned values to 𝐷 back into the random bit string 𝑥 to complete recover 𝑥.

How long can the execution bit string be? It has length ≤ ℓ(𝑘 −1). Indeed, each of the
≤ ℓ recursive calls to fix produces 𝑘 − 2 bits for the call to fix and 1 bit for ending
the while loop. So the total number of possible execution strings is ≤ 2ℓ(𝑘−1)+1 (the
+1 accounts for variable lengths, though it can removed with a more careful analysis).

Thus, the key claim implies that each 𝑥 ∈ {0, 1}ℓ𝑘 that leads to a failed execution
produces a unique pair (variable assignment, execution bit string). Thus

P(≥ ℓ recursive calls to fix) 2ℓ𝑘 = |{𝑥 ∈ {0, 1}𝑛 leading to failure}| ≤ 2𝑛2ℓ(𝑘−1)+1.

Therefore, the failure probability is ≤ 2−ℓ+𝑛+1. □

Remark 6.6.9 (Entropy compression). Tao use the phrase “entropy compression” to
describe this argument. The intuition is that the recoverability of the random bit string
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𝑥 means that we are somehow “compressing” a ℓ𝑘-bit random string into a shorter
length losslessly, but that would be impossible. Each call to fix uses up 𝑘 random bits
and converts it to 𝑘−1 bits to the execute trace (plus at most 𝑛 bits of extra information,
namely the current variables assignment, and this is viewed as a constant amount of
information), and this conversion is reversible. So we are “compressing entropy.” The
conservation of information tells us that we cannot losslessly compress 𝑘 random bits
to 𝑘 − 1 bits for very long.

Remark 6.6.10 (Relationship between the two proofs of the local lemma?). The
above proof, along with extensions of these ideas in Moser and Tardos (2010), seems
to give a completely different proof of the local lemma than the one we saw at the
beginning of the chapter. Is there some way to relate these seemingly completely
different proofs? Are they secretly the same proof? We do not know. This is an
interesting open-ended research problem.

Exercises
1. Show that it is possible to color the edges of 𝐾𝑛 with at most 3

√
𝑛 colors so that

there are no monochromatic triangles.

2. Prove that it is possible to color the vertices of every 𝑘-uniform 𝑘-regular hyper-
graph using at most 𝑘/log 𝑘 colors so that every color appears at most 𝑂 (log 𝑘)
times on each edge.

3. ★ Hitting thin rectangles. Prove that there is a constant 𝐶 > 0 so that for every
sufficiently small 𝜀 > 0, one can choose exactly one point inside each grid square
[𝑛, 𝑛 + 1) × [𝑚, 𝑚 + 1) ⊂ R2, 𝑚, 𝑛 ∈ Z, so that every rectangle of dimensions
𝜀 by (𝐶/𝜀) log(1/𝜀) in the plane (not necessarily axis-aligned) contains at least
one chosen point.

4. List coloring. Prove that there is some constant 𝑐 > 0 so that given a graph and
a set of 𝑘 acceptable colors for each vertex such that every color is acceptable
for at most 𝑐𝑘 neighbors of each vertex, there is always a proper coloring where
every vertex is assigned one of its acceptable colors.

5. Prove that, for every 𝜀 > 0, there exist ℓ0 and some (𝑎1, 𝑎2, . . . ) ∈ {0, 1}N
such that for every ℓ > ℓ0 and every 𝑖 > 1, the vectors (𝑎𝑖, 𝑎𝑖+1, . . . , 𝑎𝑖+ℓ−1) and
(𝑎𝑖+ℓ, 𝑎𝑖+ℓ+1, . . . , 𝑎𝑖+2ℓ−1) differ in at least ( 1

2 − 𝜀)ℓ coordinates.

6. Avoiding periodically colored paths. Prove that for every Δ, there exists 𝑘 so
that every graph with maximum degree at most Δ has a vertex-coloring using 𝑘
colors so that there is no path of the form 𝑣1𝑣2 . . . 𝑣2ℓ (for any positive integer
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ℓ) where 𝑣𝑖 has the same color as 𝑣𝑖+ℓ for each 𝑖 ∈ [ℓ]. (Note that vertices on a
path must be distinct.)

7. Prove that every graph with maximum degree Δ can be properly edge-colored
using 𝑂 (Δ) colors so that every cycle contains at least three colors.

(An edge-coloring is proper if it never assigns the same color to two edges sharing a vertex.)

8. ★Prove that for everyΔ, there exists 𝑔 so that every bipartite graph with maximum
degree Δ and girth at least 𝑔 can be properly edge-colored using Δ + 1 colors so
that every cycle contains at least three colors.

9. ★ Prove that for every positive integer 𝑟, there exists 𝐶𝑟 so that every graph with
maximum degree Δ has a proper vertex coloring using at most 𝐶𝑟Δ1+1/𝑟 colors
so that every vertex has at most 𝑟 neighbors of each color.

10. Vertex-disjoint cycles in digraphs. (Recall that a directed graph is 𝑘-regular if
all vertices have in-degree and out-degree both equal to 𝑘 . Also, cycles cannot
repeat vertices.)

a) Prove that every 𝑘-regular directed graph has at least 𝑐𝑘/log 𝑘 vertex-
disjoint directed cycles, where 𝑐 > 0 is some constant.

b) ★ Prove that every 𝑘-regular directed graph has at least 𝑐𝑘 vertex-disjoint
directed cycles, where 𝑐 > 0 is some constant.

Hint:splitintwoanditerate

11. a) Generalization of Cayley’s formula. Using Prüfer codes, prove the identity

𝑥1𝑥2 · · · 𝑥𝑛 (𝑥1 + · · · + 𝑥𝑛)𝑛−2 =
∑︁
𝑇

𝑥
𝑑𝑇 (1)
1 𝑥

𝑑𝑇 (2)
2 · · · 𝑥𝑑𝑇 (𝑛)𝑛

where the sum is over all trees 𝑇 on 𝑛 vertices labeled by [𝑛] and 𝑑𝑇 (𝑖) is
the degree of vertex 𝑖 in 𝑇 .

b) Let 𝐹 be a forest with vertex set [𝑛], with components having 𝑓1, . . . , 𝑓𝑠
vertices so that 𝑓1 + · · · + 𝑓𝑠 = 𝑛. Prove that the number of trees on the
vertex set [𝑛] that contain 𝐹 is exactly 𝑛𝑛−2 ∏𝑠

𝑖=1( 𝑓𝑖/𝑛 𝑓𝑖−1).

c) Independence property for uniform spanning tree of 𝐾𝑛. Show that if 𝐻1
and 𝐻2 are vertex-disjoint subgraphs of 𝐾𝑛, then for a uniformly random
spanning tree 𝑇 of 𝐾𝑛, the events 𝐻1 ⊆ 𝑇 and 𝐻2 ⊆ 𝑇 are independent.

d) ★ Packing rainbow spanning trees. Prove that there is a constant 𝑐 > 0
so that for every edge-coloring of 𝐾𝑛 where each color appears at most
𝑐𝑛 times, there exist at least 𝑐𝑛 edge-disjoint spanning trees, where each
spanning tree has all its edges colored differently.
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(In your submission, you may assume previous parts without proof.)

The next two problems use the lopsided local lemma.

12. Packing two copies of a graph. Prove that there is a constant 𝑐 > 0 so that if 𝐻
is an 𝑛-vertex 𝑚-edge graph with maximum degree at most 𝑐𝑛2/𝑚, then one can
find two edge-disjoint copies of 𝐻 in the complete graph 𝐾𝑛.

13. ★ Packing Latin transversals. Prove that there is a constant 𝑐 > 0 so that every
𝑛 × 𝑛 matrix where no entry appears more than 𝑐𝑛 times contains 𝑐𝑛 disjoint
Latin transversals.
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