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7 Correlation Inequalities

7.1 Harris–FKG inequality
Recall that 𝐴 ⊆ {0, 1}𝑛 is called an increasing event (also: increasing property, up-
set) if 𝐴 is upwards-closed, meaning that whenever 𝑥 is in 𝐴, then everything above 𝑥
in the boolean lattice also lies in 𝐴. In other words,

if 𝑥 ∈ 𝐴 and 𝑥 ≤ 𝑦 (coordinatewise), then 𝑦 ∈ 𝐴.

Similarly, a decreasing event is defined by a downward closed collection of subset of
{0, 1}𝑛. A subset 𝐴 ⊆ {0, 1}𝑛 is increasing if and only if its complement 𝐴 ⊆ {0, 1}𝑛
is decreasing.

The main theorem of this chapter tells us that

increasing events of independent variables are positively correlated .

Theorem 7.1.1 (Harris 1960)
If 𝐴 and 𝐵 are increasing events of independent boolean random variables, then

P(𝐴𝐵) ≥ P(𝐴)P(𝐵).

Equivalently, we can write P (𝐴 | 𝐵) ≥ P(𝐴).

Remark 7.1.2 (Independence assumption). It is important that the boolean random
variables are independent, also they do not have to be identically distributed.

There are other important settings where the independence assumption can be relaxed.
This is important for certain statistical physics models, where much of this theory
originally arose. Indeed, the above inequality is often called the FKG inequality,
attributed to Fortuin, Kasteleyn, Ginibre (1971), who proved a more general result in
the setting of distributive lattices, which we will not discuss here (see Alon–Spencer).

Remark 7.1.3 (Percolation). Many of such inequalities were initially introduced for
the study of percolations. A classic setting of this problem takes place in infinite
grid with vertices Z2 with edges connecting adjacent vertices at distance 1. Suppose
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we keep each edge of this infinite grid with probability 𝑝 independently, what is the
probability that the origin is part of an infinite component (in which case we say
that there is “percolation”)? This is supposed to an idealized mathematical model
of how a fluid permeates through a medium. Harris showed that with probability 1,
percolation does not occur for 𝑝 ≤ 1/2. A later breakthrough of Kesten (1980) shows
that percolation occurs with probability 1 for all 𝑝 > 1/2. Thus the “bond percolation
threshold” for Z2 is exactly 1/2. Such exact results are extremely rare.

Example 7.1.4. Here is a quick application of Harris’ inequality to a random graph
𝐺 (𝑛, 𝑝):

P(planar | connected) ≤ P(planar).

Indeed, being planar is a decreasing property, whereas being connected is an increasing
property.

We state and prove a more general result, which says that independent random variables
possess positive association.

Let each Ω𝑖 be a linearly ordered set (i.e., {0, 1}, R) and 𝑥𝑖 ∈ Ω𝑖 with respect to some
probability distribution independent for each 𝑖. We say that a function 𝑓 (𝑥1, . . . , 𝑥𝑛)
is monotone increasing if

𝑓 (𝑥) ≤ 𝑓 (𝑦) whenever 𝑥 ≤ 𝑦 coordinatewise.

Theorem 7.1.5 (Harris)
If 𝑓 and 𝑔 are monotone increasing functions of independent random variables, then

E[ 𝑓 𝑔] ≥ (E 𝑓 ) (E𝑔).

This version of Harris inequality implies the earlier version by setting 𝑓 = 1𝐴 and
𝑔 = 1𝐵.

Proof. We use induction on 𝑛.

For 𝑛 = 1, for independent 𝑥, 𝑦 ∈ Ω1, we have

0 ≤ E[( 𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔(𝑥) − 𝑔(𝑦))] = 2E[ 𝑓 𝑔] − 2(E 𝑓 ) (E𝑔).

So E[ 𝑓 𝑔] ≥ (E 𝑓 ) (E𝑔). (The one-variable case is sometimes called Chebyshev’s
inequality. It can also be deduced using the rearrangement inequality).

Now assume 𝑛 ≥ 2. Let ℎ = 𝑓 𝑔 : Ω1×· · ·×Ω𝑛 → R. Define marginals 𝑓1, 𝑔1, ℎ1 : Ω1 →
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R by

𝑓1(𝑦1) = E[ 𝑓 |𝑥1 = 𝑦1] = E(𝑥2,...,𝑥𝑛)∈Ω2×···×Ω𝑛
[ 𝑓 (𝑦1, 𝑥2, . . . , 𝑥𝑛)],

𝑔1(𝑦1) = E[𝑔 |𝑥1 = 𝑦1] = E(𝑥2,...,𝑥𝑛)∈Ω2×···×Ω𝑛
[𝑔(𝑦1, 𝑥2, . . . , 𝑥𝑛)],

ℎ1(𝑦1) = E[ℎ |𝑥1 = 𝑦1] = E(𝑥2,...,𝑥𝑛)∈Ω2×···×Ω𝑛
[ℎ(𝑦1, 𝑥2, . . . , 𝑥𝑛)] .

Note that 𝑓1 and 𝑔1 are 1-variable monotone increasing functions on Ω1.

For every fixed 𝑦1 ∈ Ω1, the function (𝑥2, . . . , 𝑥𝑛) ↦→ 𝑓 (𝑦1, 𝑥2, . . . , 𝑥𝑛) is monotone
increasing, and likewise with 𝑔. So applying the induction hypothesis for 𝑛 − 1, we
have

ℎ1(𝑦1) ≥ 𝑓1(𝑦1)𝑔1(𝑦1). (7.1)

Thus

E[ 𝑓 𝑔] = E[ℎ] = E[ℎ1] ≥ E[ 𝑓1𝑔1] [by (7.1)]
≥ (E 𝑓1) (E𝑔1) [by the 𝑛 = 1 case]
= (E 𝑓 ) (E𝑔). □

Corollary 7.1.6 (Decreasing events and multiple events)
Let 𝐴 and 𝐵 be events on independent random variables.

(a) If 𝐴 and 𝐵 are decreasing, then P(𝐴 ∧ 𝐵) ≥ P(𝐴)P(𝐵).

(b) If 𝐴 is increasing and 𝐵 is decreasing, then P(𝐴 ∧ 𝐵) ≤ P(𝐴)P(𝐵).

If 𝐴1, . . . , 𝐴𝑘 are all increasing (or all decreasing) events on independent random
variables, then

P(𝐴1 · · · 𝐴𝑘 ) ≥ P(𝐴1) · · · P(𝐴𝑘 ).

Proof. For the second inequality, note that the complement 𝐵 is increasing, so

P(𝐴𝐵) = P(𝐴) − P(𝐴𝐵)
Harris
≤ P(𝐴) − P(𝐴)P(𝐵) = P(𝐴)P(𝐵).

The proof of the first inequality is similar. For the last inequality we apply the Harris
inequality repeatedly. □
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7.2 Applications to random graphs

Triangle-free probability

Question 7.2.1
What’s the probability that 𝐺 (𝑛, 𝑝) is triangle-free?

Harris inequality will allow us to prove a lower bound. In the next chapter, we will use
Janson inequalities to derive upper bounds.

Theorem 7.2.2
P(𝐺 (𝑛, 𝑝) is triangle-free) ≥ (1 − 𝑝3) (𝑛3)

Proof. For each triple of distinct vertices 𝑖, 𝑗 , 𝑘 ∈ [𝑛], the event that 𝑖 𝑗 𝑘 does not form
a triangle is a decreasing event (here the ground set is the set of edges of the complete
graph on 𝑛). So by Harris’ inequality,

P(𝐺 (𝑛, 𝑝) is triangle-free) = P ©«
∧
𝑖< 𝑗<𝑘

{𝑖 𝑗 𝑘 not a triangle}ª®¬
≥

∏
𝑖< 𝑗<𝑘

P(𝑖 𝑗 𝑘 not a triangle) = (1 − 𝑝3) (
𝑛
3) . □

Remark 7.2.3. How good is this bound? For 𝑝 ≤ 0.99, we have 1 − 𝑝3 = 𝑒−Θ(𝑝3) , so
the above bound gives

P(𝐺 (𝑛, 𝑝) is triangle-free) ≥ 𝑒−Θ(𝑛3𝑝3) .

Here is another lower bound

P(𝐺 (𝑛, 𝑝) is triangle-free) ≥ P(𝐺 (𝑛, 𝑝) is empty) = (1 − 𝑝) (
𝑛
2) = 𝑒−Θ(𝑛2𝑝) .

The bound from Harris is better when 𝑝 ≪ 𝑛−1/2. Putting them together, we obtain

P(𝐺 (𝑛, 𝑝) is triangle-free) ≳
{
𝑒−Θ(𝑛3𝑝3) if 𝑝 ≲ 𝑛−1/2

𝑒−Θ(𝑛2𝑝) if 𝑛−1/2 ≲ 𝑝 ≤ 0.99

(note that the asymptotics agree at the boundary 𝑝 ≍ 𝑛−1/2). In the next chapter, we
will prove matching upper bounds using Janson inequalities.
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Maximum degree

Question 7.2.4
What’s the probability that the maximum degree of 𝐺 (𝑛, 1/2) is at most 𝑛/2?

For each vertex 𝑣, deg(𝑣) ≤ 𝑛/2 is a decreasing event with probability just slightly
over 1/2. So by Harris inequality, the probability that every 𝑣 has deg(𝑣) ≤ 𝑛/2 is at
least ≥ 2−𝑛.

It turns out that the appearance of high degree vertices is much more correlated than
the independent case. The truth is exponentially more than the above bound.

Theorem 7.2.5 (Riordan and Selby 2000)

P(maxdeg𝐺 (𝑛, 1/2) ≤ 𝑛/2) = (0.6102 · · · + 𝑜(1))𝑛

Instead of giving a proof, we consider an easier continuous model of the problem that
motivates the numerical answer. Building on this intuition, Riordan and Selby (2000)
proved the result in the random graph setting, although this is beyond the scope of this
class.

In a random graphs, we assign independent Bernoulli random variables on edges of a
complete graph. Instead, let us assign independent standard normal random variables
to each edge of the complete graph.

Proposition 7.2.6 (Max degree with normal random edge labels)
Assign an independent standard normal random variable 𝑍𝑢𝑣 to each edge of 𝐾𝑛. Let
𝑊𝑣 =

∑
𝑢≠𝑣 𝑍𝑢𝑣 be the sum of the labels of the edges incident to a vertex 𝑣. Then

P(𝑊𝑣 ≤ 0 ∀𝑣) = (0.6102 · · · + 𝑜(1))𝑛

The event 𝑊𝑣 ≤ 0 is supposed to model the event that the degree at vertex 𝑣 is less
than 𝑛/2. Of course, other than intuition, there is no justification here that these two
models should behave similarly

We have P(𝑊𝑣 ≤ 0) = 1/2. Since each {𝑊𝑣 ≤ 0} is a decreasing event of the
independent edge labels, Harris’ inequality tells us that

P(𝑊𝑣 ≤ 0 ∀𝑣) ≥ 2−𝑛.

The truth turns out to be significantly greater.

Proof sketch of Proposition 7.2.6. The tuple (𝑊𝑣)𝑣∈[𝑛] has a joint normal distribution,
with each coordinate variance 𝑛 − 1 and pairwise covariance 1. So (𝑊𝑣)𝑣∈[𝑛] has the
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same distribution as
√
𝑛 − 2(𝑍′1, 𝑍

′
2, . . . , 𝑍

′
𝑛) + 𝑍′0(1, 1, . . . , 1)

where 𝑍′0, . . . , 𝑍
′
𝑛 are iid standard normals.

Let Φ be the pdf and cdf of the standard normal 𝑁 (0, 1).

Thus

P(𝑊𝑣 ≤ 0 ∀𝑣) = P
(
𝑍′𝑖 ≤ −

𝑍′0√
𝑛 − 2

∀𝑖 ∈ [𝑛]
)
=

1
√

2𝜋

∫ ∞

−∞
𝑒−𝑧

2/2Φ

(
−𝑧

√
𝑛 − 2

)𝑛
𝑑𝑧

where the final step is obtained by conditioning on 𝑍′0. Substituting 𝑧 = 𝑦
√
𝑛, the above

quantity equals to

=

√︂
𝑛

2𝜋

∫ ∞

−∞
𝑒𝑛 𝑓 (𝑦) 𝑑𝑦 where 𝑓 (𝑦) = − 𝑦

2

2
+ logΦ

(
𝑦

√︂
𝑛

𝑛 − 2

)
.

We can estimate the above integral for large 𝑛 using the Laplace method (which can be
justified rigorously by considering Taylor expansion around the maximum of 𝑓 ). We
have

𝑓 (𝑦) ≈ 𝑔(𝑦) := − 𝑦
2

2
+ logΦ (𝑦)

and we can deduce that

lim
𝑛→∞

1
𝑛

logP(max
𝑣∈[𝑛]

𝑊𝑣 ≤ 0) = lim
𝑛→∞

1
𝑛

log
∫

𝑒𝑛 𝑓 (𝑦) 𝑑𝑦 = max 𝑔 = log 0.6102 · · · . □

Exercises
1. Let 𝐺 = (𝑉, 𝐸) be a graph. Color every edge with red or blue independently

and uniformly at random. Let 𝐸0 be the set of red edges and 𝐸1 the set of blue
edges. Let 𝐺𝑖 = (𝑉, 𝐸𝑖) for each 𝑖 = 0, 1. Prove that

P(𝐺0 and 𝐺1 are both connected) ≤ P(𝐺0 is connected)2.

2. A set family F is intersecting if 𝐴 ∩ 𝐵 ≠ ∅ for all 𝐴, 𝐵 ∈ F . Let F1, . . . , F𝑘
each be a collection of subsets of [𝑛] and suppose that each F𝑖 is intersecting.
Prove that

��⋃𝑘
𝑖=1 F𝑖

�� ≤ 2𝑛 − 2𝑛−𝑘 .

3. Percolation. Let𝐺𝑚,𝑛 be the grid graph on vertex set [𝑚] × [𝑛] (𝑚 vertices wide
and 𝑛 vertices tall). A horizontal crossing is a path that connects some left-most
vertex to some right-most vertex. See below for an example of a horizontal
crossing in 𝐺7,5.
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Let 𝐻𝑚,𝑛 denote the random subgraph of 𝐺𝑚,𝑛 obtained by keeping every edge
with probability 1/2 independently.

Let RSW(𝑘) denote the following statement: there exists a constant 𝑐𝑘 > 0 such
that for all positive integers 𝑛, P(𝐻𝑘𝑛,𝑛 has a horizontal crossing) ≥ 𝑐𝑘 .

a) Prove RSW(1).

b) Prove that RSW(2) implies RSW(100).

c) ★★ (Very challenging) Prove RSW(2).

4. Let 𝐴 and 𝐵 be two independent increasing events of independent random
variables. Prove that there are two disjoint subsets 𝑆 and 𝑇 of these random
variables so that 𝐴 depends only on 𝑆 and 𝐵 depends only on 𝑇 .

5. Let 𝑈1 and 𝑈2 be increasing events and 𝐷 a decreasing event of independent
Boolean random variables. Suppose 𝑈1 and 𝑈2 are independent. Prove that
P(𝑈1 |𝑈2 ∩ 𝐷) ≤ P(𝑈1 |𝑈2).

6. Coupon collector. Let 𝑠1, . . . , 𝑠𝑚 be independent random elements in [𝑛] (not
necessarily uniform or identically distributed; chosen with replacement) and
𝑆 = {𝑠1, . . . , 𝑠𝑚}. Let 𝐼 and 𝐽 be disjoint subsets of [𝑛]. Prove that P(𝐼 ∪ 𝐽 ⊆
𝑆) ≤ P(𝐼 ⊆ 𝑆)P(𝐽 ⊆ 𝑆).

7. ★ Prove that there exist 𝑐 < 1 and 𝜀 > 0 such that if 𝐴1, . . . , 𝐴𝑘 are increasing
events of independent Boolean random variables with P(𝐴𝑖) ≤ 𝜀 for all 𝑖, then,
letting 𝑋 denote the number of events 𝐴𝑖 that occur, one has P(𝑋 = 1) ≤ 𝑐.
(Give your smallest 𝑐. It is conjectured that any 𝑐 > 1/𝑒 works.)

8. ★ Disjoint containment. Let S and T each be a collection of subsets of [𝑛].
Let 𝑅 ⊆ [𝑛] be a random subset where each element is included independently
(not necessarily with the same probability). Let 𝐴 be the event that 𝑆 ⊆ 𝑅 for
some 𝑆 ∈ S. Let 𝐵 be the event that 𝑇 ⊆ 𝑅 for some 𝑇 ∈ T . Let 𝐶 denote
the event there exist disjoint 𝑆, 𝑇 ⊆ 𝑅 with 𝑆 ∈ S and 𝑇 ∈ T . Prove that
P(𝐶) ≤ P(𝐴)P(𝐵).
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