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9 Concentration of Measure

9.1 Bounded differences inequality
Recall that the Chernoff bound allows to prove exponential tail bounds for sums of
independent random variables. For example, if 𝑍 is a sum of 𝑛 independent Bernoulli
random variables, then

P( |𝑍 − E𝑍 | ≥ 𝑡) ≤ 2𝑒−2𝑡2/𝑛.

In this chapter, we develop tools for proving similar tail bounds for other random
variables that do not necessarily arise as a sum of independent random variables.

The next theorem says:

A Lipschitz function of many independent random variables is con-
centrated.

We will prove the following important and useful result, known by several names:
McDiarmid’s inequality, Azuma–Hoeffding inequality, and bounded differences
inequality.

Theorem 9.1.1 (Bounded differences inequality)
Let 𝑋1 ∈ Ω1, . . . , 𝑋𝑛 ∈ Ω𝑛 be independent random variables. Suppose 𝑓 : Ω1 × · · · ×
Ω𝑛 → R satisfies �� 𝑓 (𝑥1, . . . , 𝑥𝑛) − 𝑓 (𝑥′1, . . . , 𝑥

′
𝑛)

�� ≤ 1 (9.1)

whenever (𝑥1, . . . , 𝑥𝑛) and (𝑥′1, . . . , 𝑥
′
𝑛) differ on exactly one coordinate. Then the

random variable 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) satisfies, for every 𝜆 ≥ 0,

P(𝑍 − E𝑍 ≥ 𝜆) ≤ 𝑒−2𝜆2/𝑛 and P(𝑍 − E𝑍 ≤ −𝜆) ≤ 𝑒−2𝜆2/𝑛.

In particular, we can apply the above inequality to 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑥1 + · · · + 𝑥𝑛 to
recover the Chernoff bound. The theorem tells us that the window of fluctuation of 𝑍
has length 𝑂 (

√
𝑛).

Example 9.1.2 (Coupon collector). Let 𝑠1, . . . , 𝑠𝑛 ∈ [𝑛] chosen uniformly and inde-
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pendently at random. Denote the number of “missing” elements by

𝑍 = | [𝑛] \ {𝑠1, . . . , 𝑠𝑛}|.

Note that changing one of the 𝑠1, . . . , 𝑠𝑛 changes 𝑍 by at most 1, so we have

P ( |𝑍 − E𝑍 | ≥ 𝜆) ≤ 2𝑒−2𝜆2/𝑛,

with
E𝑍 = 𝑛

(
1 − 1

𝑛

)𝑛
∈

[
𝑛 − 1
𝑒

,
𝑛

𝑒

]
.

Theorem 9.1.1 holds more generally allowing the bounded difference to depend on the
coordinate.

Theorem 9.1.3 (Bounded differences inequality)
Let 𝑋1 ∈ Ω1, . . . , 𝑋𝑛 ∈ Ω𝑛 be independent random variables. Suppose 𝑓 : Ω1 × · · · ×
Ω𝑛 → R satisfies �� 𝑓 (𝑥1, . . . , 𝑥𝑛) − 𝑓 (𝑥′1, . . . , 𝑥

′
𝑛)

�� ≤ 𝑐𝑖 (9.2)

whenever (𝑥1, . . . , 𝑥𝑛) and (𝑥1, . . . , 𝑥𝑛) differ only on the 𝑖-th coordinate. Here
𝑐1, . . . , 𝑐𝑛 are constants. Then the random variable 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) satisfies,
for every 𝜆 ≥ 0,

P(𝑍 − E𝑍 ≥ 𝜆) ≤ exp

(
−2𝜆2

𝑐2
1 + · · · + 𝑐2

𝑛

)
and

P(𝑍 − E𝑍 ≤ −𝜆) ≤ exp

(
−2𝜆2

𝑐2
1 + · · · + 𝑐2

𝑛

)
.

We will prove these inequality using martingales.

9.2 Martingales concentration inequalities

Definition 9.2.1
A martingale is a random real sequence 𝑍0, 𝑍1, . . . such that for every 𝑍𝑛, E|𝑍𝑛 | < ∞
and

E[𝑍𝑛+1 |𝑍0, . . . , 𝑍𝑛] = 𝑍𝑛.

(To be more formal, we should talk about filtrations of a probability space . . . )

Example 9.2.2 (Random walks with independent steps). If (𝑋𝑖)𝑖≥0 is a sequence of
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independent random variables withE𝑋𝑖 = 0 for all 𝑖, then the partial sums 𝑍𝑛 =
∑
𝑖≤𝑛 𝑋𝑖

is a Martingale.

Example 9.2.3 (Betting strategy). Betting on a sequence of fair coin tosses. After
round, you are allow to change your bet. Let 𝑍𝑛 be your balance after the 𝑛-th round.
Then 𝑍𝑛 is always a martingale regardless of your strategy.

Originally, the term “martingale” referred to the betting strategy where one doubles
the bet each time until the first win and then stop betting. Then, with probability 1,
𝑍𝑛 = 1 for all sufficiently large 𝑛. (Why does this “free money” strategy not actually
work?)

The next example is especially important to us.

Example 9.2.4 (Doob martingale). Let 𝑋1, . . . , 𝑋𝑛 be a random sequence (not nec-
essarily independent, though they often are independent in practice). Consider a
function 𝑓 (𝑋1, . . . , 𝑋𝑛). Let 𝑍𝑖 be the expected value of 𝑓 after “revealing” (exposing)
𝑋1, . . . , 𝑋𝑖, i.e.,

𝑍𝑖 = E[ 𝑓 (𝑋1, . . . , 𝑋𝑛) |𝑋1, . . . , 𝑋𝑖] .

So 𝑍𝑖 is the expected value of the random variable 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) after seeing the
first 𝑖 arguments, and letting the remaining arguments be random. Then 𝑍0, . . . , 𝑍𝑛 is
a martingale (why?). It satisfies 𝑍0 = E𝑍 (a non-random quantity) and 𝑍𝑛 = 𝑍 (the
random variable that we care about), and thereby offering a way to interpolate between
the two.

Example 9.2.5 (Edge-exposure martingale). We can reveal the random graph𝐺 (𝑛, 𝑝)
by first fixing an order on all unordered pairs of [𝑛] and then revealing in order whether
each pair is an edge. For any graph parameter 𝑓 (𝐺) we can produce a martingale
𝑋0, 𝑋1, . . . , 𝑋(𝑛2) where 𝑍𝑖 is the conditional expectation of 𝑓 (𝐺 (𝑛, 𝑝)) after revealing
whether there are edges for first 𝑖 pairs of vertices. See Figure 9.1 for an example.

Example 9.2.6 (Vertex-exposure martingale). Similar to the previous example, ex-
cept that we now first fix an order on the vertex set, and, at the 𝑖-th step, with 0 ≤ 𝑖 ≤ 𝑛,
we reveal all edges whose endpoints are contained in the first 𝑖 vertices. See Figure 9.1
for an example.

Sometimes it is better to use the edge-exposure martingale and sometimes it is better to
use the vertex-exposure martingale. It depends on the application. There is a trade-off
between the length of the martingale and the control on the bounded differences.

The main result is that a martingale with bounded differences must be concen-
trated. The following fundamental result is called Azuma’s inequality or the Azuma–
Hoeffding inequality.
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Figure 9.1: The edge-exposure martingale (left) and vertex-exposure martingale
(right) for the chromatic number of 𝐺 (𝑛, 1/2) with 𝑛 = 3. The
martingale is obtained by starting at the leftmost point, and splitting
at each branch with equal probability.

Theorem 9.2.7 (Azuma’s inequality)
Let 𝑍0, 𝑍1, . . . , 𝑍𝑛 be a martingale satisfying

|𝑍𝑖 − 𝑍𝑖−1 | ≤ 1 for each 𝑖 ∈ [𝑛] .

Then for every 𝜆 > 0,
P(𝑍𝑛 − 𝑍0 ≥ 𝜆

√
𝑛) ≤ 𝑒−𝜆2/2.

Note that this is the same bound that we derived in Chapter 5 for 𝑍𝑛 = 𝑋1 + · · · 𝑋𝑛
where 𝑋𝑖 ∈ {−1, 1} uniform and iid.

More generally, allowing different bounds on different steps of the martingale, we have
the following.

Theorem 9.2.8 (Azuma’s inequality)
Let 𝑍0, 𝑍1, . . . , 𝑍𝑛 be a martingale satisfying

|𝑍𝑖 − 𝑍𝑖−1 | ≤ 𝑐𝑖 for each 𝑖 ∈ [𝑛] .

For any 𝜆 > 0,

P(𝑍𝑛 − 𝑍0 ≥ 𝜆) ≤ exp

(
−𝜆2

2(𝑐2
1 + · · · + 𝑐2

𝑛)

)
.

The above formulations of Azuma’s inequality can be used to recover the bounded
differences inequality (Theorems 9.1.1 and 9.1.3) up to a usually unimportant constant
in the exponent. To obtain the exact statement of Theorem 9.1.3, we state the following
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strengthening of Azuma’s inequality. (You are welcome to ignore the next statement
if you do not care about the constant factor in the exponent — and really, you should
not care.)

Theorem 9.2.9 (Azuma’s inequality for Doob martingales)
Consider a Doob martingale 𝑍𝑖 = E[ 𝑓 (𝑋1, . . . , 𝑋𝑛) |𝑋1, . . . , 𝑋𝑖] as in Example 9.2.4.
Suppose, conditioned on any value of (𝑋1, . . . , 𝑋𝑖−1), the possibilities for 𝑍𝑖 lies in
an interval of length 𝑐𝑖 (here 𝑐𝑖 is non-random, but the location of the interval may
depend on 𝑋1, . . . , 𝑋𝑖−1). Then for any 𝜆 > 0,

P(𝑍𝑛 − 𝑍0 ≥ 𝜆) ≤ exp

(
−2𝜆2

𝑐2
1 + · · · + 𝑐2

𝑛

)
.

Remark 9.2.10. Applying the inequality to the martingale with terms −𝑍𝑛, we obtain
the following lower tail bound:

P(𝑍𝑛 − 𝑍0 ≤ −𝜆) ≤ exp

(
−2𝜆2

𝑐2
1 + · · · + 𝑐2

𝑛

)
.

And we can put them together as

P( |𝑍𝑛 − 𝑍0 | ≥ 𝜆) ≤ 2 exp

(
−2𝜆2

𝑐2
1 + · · · + 𝑐2

𝑛

)
.

Remark 9.2.11. Theorem 9.2.8 is a special case of Theorem 9.2.9, since we can take
(𝑋1, . . . , 𝑋𝑛) = (𝑍1 . . . , 𝑍𝑛) and 𝑓 (𝑋1, . . . , 𝑋𝑛) = 𝑋𝑛. Note that the |𝑍𝑖 − 𝑍𝑖−1 | ≤ 𝑐𝑖

condition in Theorem 9.2.8 implies that 𝑍𝑖 lies in an interval of length 2𝑐𝑖 if we
condition on (𝑋1, . . . , 𝑋𝑖−1).

Lemma 9.2.12 (Hoeffding’s lemma)
Let 𝑋 be a real random variable contained in an interval of length ℓ. Suppose E𝑋 = 0.
Then

E[𝑒𝑋] ≤ 𝑒ℓ2/8.

Proof. Suppose 𝑋 ∈ [𝑎, 𝑏] with 𝑎 ≤ 0 ≤ 𝑏 and 𝑏 − 𝑎 = ℓ. Then since 𝑒𝑥 is convex,
using a linear upper bound on the interval [𝑎, 𝑏], we have (note that RHS below is
linear in 𝑥)

𝑒𝑥 ≤ 𝑏 − 𝑥
𝑏 − 𝑎 𝑒

𝑎 + 𝑥 − 𝑎
𝑏 − 𝑎 𝑒

𝑏, for all 𝑥 ∈ [𝑎, 𝑏] .
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Since E𝑋 = 0, we obtain

E𝑒𝑋 ≤ 𝑏

𝑏 − 𝑎 𝑒
𝑎 + −𝑎

𝑏 − 𝑎 𝑒
𝑏 .

Let 𝑝 = −𝑎/(𝑏 − 𝑎). Then 𝑎 = −𝑝ℓ and 𝑏 = (1 − 𝑝)ℓ. So

logE𝑒𝑋 ≤ log
(
(1 − 𝑝)𝑒−𝑝ℓ + 𝑝𝑒(1−𝑝)ℓ

)
= −𝑝ℓ + log(1 − 𝑝 + 𝑝𝑒ℓ).

Fix 𝑝 ∈ [0, 1]. Let
𝜑(ℓ) := −𝑝ℓ + log(1 − 𝑝 + 𝑝𝑒ℓ).

It remains to show that 𝜑(ℓ) ≤ ℓ2/8 for all ℓ ≥ 0, which follows from 𝜑(0) = 𝜑′(0) = 0
and 𝜑′′(ℓ) ≤ 1/4 for all ℓ ≥ 0, as

𝜑′′(ℓ) =
(

𝑝

(1 − 𝑝)𝑒−𝑝ℓ + 𝑝

) (
1 − 𝑝

(1 − 𝑝)𝑒−𝑝ℓ + 𝑝

)
≤ 1

4
,

since 𝑡 (1 − 𝑡) ≤ 1/4 for all 𝑡 ∈ [0, 1]. □

Proof of Theorem 9.2.9. Let 𝑡 ≥ 0 be some constant to be decided later. Conditional
on any values of (𝑋1, . . . , 𝑋𝑖−1), the random variable 𝑍𝑖 − 𝑍𝑖−1 has mean zero and lies
in an interval of length 𝑐𝑖. So Lemma 9.2.12 gives

E[𝑒𝑡 (𝑍𝑖−𝑍𝑖−1) |𝑋1, . . . , 𝑋𝑖−1] ≤ 𝑒𝑡
2𝑐2

𝑖
/8.

Then the moment generating function satisfies

E[𝑒𝑡 (𝑍𝑛−𝑍0)] = E
[
𝑒𝑡 (𝑍𝑖−𝑍𝑖−1)𝑒𝑡 (𝑍𝑖−1−𝑍0)

]
= E

[
E

[
𝑒𝑡 (𝑍𝑖−𝑍𝑖−1)

��� 𝑋1, . . . , 𝑋𝑖−1

]
𝑒𝑡 (𝑍𝑖−1−𝑍0)

]
= 𝑒𝑡

2𝑐2
𝑛/8E

[
𝑒𝑡 (𝑍𝑖−1−𝑍0)

]
.

Iterating, we obtain
E

[
𝑒𝑡 (𝑍𝑛−𝑍0)

]
≤ 𝑒𝑡

2 (𝑐2
1+···𝑐

2
𝑛)/8.

By Markov,

P(𝑍𝑛 − 𝑍0 ≥ 𝜆) ≤ 𝑒−𝑡𝜆E
[
𝑒𝑡 (𝑍𝑛−𝑍0)

]
≤ 𝑒−𝑡𝜆+

𝑡2
8 (𝑐2

1+···𝑐
2
𝑛) .

Setting 𝑡 = 4𝜆/(𝑐2
1 + · · · + 𝑐2

𝑛) yields the theorem. □

Now we apply Azuma’s inequality to deduce the bounded differences inequality.

Proof of the bounded differences inequality (Theorem 9.1.3). Consider the Doob mar-
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tingale 𝑍𝑖 = E[ 𝑓 (𝑋1, . . . , 𝑋𝑛) |𝑋1, . . . , 𝑋𝑖]. The hypothesis of Theorem 9.1.3 implies
that the hypothesis of Theorem 9.2.9 is satisfied. The same conclusion then follows. □

Remark 9.2.13. Azuma’s inequality (Theorem 9.2.9) is more versatile than (Theo-
rem 9.1.3). For example, while changing 𝑋𝑖 might change 𝑓 (𝑋1, . . . , 𝑋𝑛) by a lot in
the worst case over all possible (𝑋1, . . . , 𝑋𝑛), it might not change it by much in expec-
tation over random choices of (𝑋𝑖+1, . . . , 𝑋𝑛). And so the 𝑐𝑖 in Theorem 9.2.9 could
potentially be smaller than in Theorem 9.1.3. This will be useful in some applications,
including one that we will see later in the chapter.

9.3 Chromatic number of random graphs

Concentration of the chromatic number
Even before Bollobás (1988) showed that 𝜒(𝐺 (𝑛, 1/2)) ∼ 𝑛

2 log2 𝑛
whp (Theorem 8.3.2),

using the bounded difference inequality, it was already known that the chromatic
number of a random graph must be concentrated in a𝑂 (

√
𝑛) window around its mean.

The following application shows that one can prove concentration around the mean
without even knowing where is the mean!

Theorem 9.3.1 (Shamir and Spencer 1987)
For every 𝜆 ≥ 0, the chromatic number of a random graph 𝑍 = 𝜒(𝐺 (𝑛, 𝑝)) satisfies

P( |𝑍 − E𝑍 | ≥ 𝜆
√
𝑛 − 1) ≤ 2𝑒−2𝜆2

.

Proof. Let 𝑉 = [𝑛], and consider each vertex labeled graph as an element of Ω2 ×
· · · × Ω𝑛 where Ω𝑖 = {0, 1}𝑖−1 and its coordinates correspond to edges whose larger
coordinate is 𝑖 (cf. the vertex-exposure martingale Example 9.2.6). If two graphs 𝐺
and 𝐺′ differ only in edges incident to one vertex 𝑣, then |𝜒(𝐺) − 𝜒(𝐺′) | ≤ 1 since,
given a proper coloring of 𝐺 using 𝜒(𝐺) colors, one can obtain a proper coloring
of 𝐺′ using 𝜒(𝐺) + 1 colors by using a new color for 𝑣. Theorem 9.1.3 implies the
result. □

Remark 9.3.2 (Non-concentration of the chromatic number). Heckel (2021) showed
that the 𝜒(𝐺 (𝑛, 1/2)) is not concentrated on any interval of length 𝑛𝑐 for any constant
𝑐 < 1/4. This was the opposite of what most experts believed in. It has been
conjectured that width of the window of concentrations fluctuates between 𝑛1/4+𝑜(1) to
𝑛1/2+𝑜(1) depending on 𝑛.
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Clique number, again
Previously in Section 8.3, we used Janson inequalities to prove the following ex-
ponentially small bound on the probability that 𝐺 (𝑛, 1/2) has small clique num-
ber. This was a crucial step in the proof of Bollobás’ theorem (Theorem 8.3.2) that
𝜒(𝐺 (𝑛, 1/2)) ∼ 𝑛/(2 log2 𝑛) whp. Here we give a different proof using the bounded
difference inequality instead of Janson inequalities. The proof below in fact was the
original approach of Bollobás (1988).

Lemma 9.3.3 (Same as Lemma 8.3.3)
Let 𝑘0 = 𝑘0(𝑛) ∼ 2 log2 𝑛 be the largest positive integer so that

( 𝑛
𝑘0

)
2−(

𝑘0
2 ) ≥ 1. Then

P(𝜔(𝐺 (𝑛, 1/2)) < 𝑘0 − 3) = 𝑒−𝑛2−𝑜 (1)
.

A naive approach might be to estimate the number of 𝑘-cliques in 𝐺 (this is the
approach taken with Janson inequalities. The issue is that this quantity can change too
much when we modify one edge of 𝐺. We will use a more subtle function on graphs.
Note that we only care about whether there exists a 𝑘-clique or not.

Proof. Let 𝑘 = 𝑘0 − 3. Let 𝑌 = 𝑌 (𝐺) be the maximum number of edge-disjoint set of
𝑘-cliques in 𝐺. Then as a function of 𝐺, 𝑌 changes by at most 1 if we change 𝐺 by
one edge. (Note that the same does not hold if we change 𝐺 by one vertex, e.g., when
𝐺 consists of many 𝑘-cliques glued along a common vertex.)

So by the bounded differences inequality, for 𝐺 ∼ 𝐺 (𝑛, 1/2),

P(𝜔(𝐺) < 𝑘) = P(𝑌 = 0) ≤ P(𝑌 − E𝑌 ≤ −E𝑌 ) ≤ exp

(
−2(E𝑌 )2(𝑛

2
) )

. (9.1)

It remains to show that E𝑌 ≥ 𝑛2−𝑜(1) . Create an auxiliary graph H whose vertices
are the 𝑘-cliques in 𝐺, with a pair of 𝑘-cliques adjacent if they overlap in at least 2
vertices. Then 𝑌 = 𝛼(H). We would like to lower bound the independence number
of this graph based on its average degree. Here are two ways to proceed:

1. Recall the Caro–Wei inequality (Corollary 2.3.5): for every graph𝐻with average
degree 𝑑, we have

𝛼(𝐻) ≥
∑︁

𝑣∈𝑉 (𝐻)

1
1 + 𝑑𝑣

≥ |𝑉 (𝐻) |
1 + 𝑑

=
|𝑉 (𝐻) |2

|𝑉 (𝐻) | + 2 |𝐸 (𝐻) | .

2. Let 𝐻′ be the induced subgraph obtained from 𝐻 by keeping every vertex
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independently with probability 𝑞. We have

𝛼(𝐻) ≥ 𝛼(𝐻′) ≥ |𝑉 (𝐻′) | − |𝐸 (𝐻′) | .

Taking expectations of both sides, and noting that E |𝑉 (𝐻′) | = 𝑞 |𝑉 (𝐻) | and
E |𝐸 (𝐻′) | = 𝑞2 |𝐸 (𝐻) | by linearity of expectations, we have

𝛼(𝐻) ≥ 𝑞E |𝑉 (𝐻) | − 𝑞2 |𝐸 (𝐻) | for every 𝑞 ∈ [0, 1] .

Provided that |𝐸 (𝐻) | ≥ |𝑉 (𝐻) | /2, we can take 𝑞 = |𝑉 (𝐻) | /(2 |𝐸 (𝐻) |) ∈ [0, 1]
and obtain

𝛼(𝐻) ≥ |𝑉 (𝐻) |2

4 |𝐸 (𝐻) | if |𝐸 (𝐻) | ≥ 1
2
|𝑉 (𝐻) | .

(This method allows us to recover Turán’s theorem up to a factor of 2, whereas
the Caro–Wei inequality recovers Turán’s theorem exactly. For the present
application, we do not care about these constant factors.)

By a second moment argument (details again omitted, like in the proofs of Theo-
rem 4.4.2 and Lemma 8.3.3), we have, with probability 1 − 𝑜(1), that the number of
𝑘-cliques in 𝐺 is

|𝑉 (H)| ∼ E |𝑉 (H)| =
(
𝑛

𝑘

)
2−(

𝑘
2) = 𝑛3−𝑜(1)

and the number of unordered pairs of edge-overlapping 𝑘-cliques in 𝐺 is

E |𝐸 (H)| = 𝑛4−𝑜(1) .

Thus, with probability 1 − 𝑜(1), we can apply either of the above lower bounds on
independent sets to obtain

E𝑌 ≳ E
|𝑉 (H)|2

|𝐸 (H)| ≳ E
𝑛6−𝑜(1)

|𝐸 (H)| ≥
𝑛6−𝑜(1)

E |𝐸 (H)| = 𝑛
2−𝑜(1) .

Together with (9.1), this completes the proof that P(𝜔(𝐺) < 𝑘) = 𝑒−𝑛2−𝑜 (1) . □

Chromatic number of sparse random graphs
Let us show that 𝐺 (𝑛, 𝑝) is concentrated on a constant size window if 𝑝 is small
enough.
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Theorem 9.3.4 (Shamir and Spencer 1987)
Let 𝛼 > 5/6 be fixed. Then for 𝑝 < 𝑛−𝛼, 𝜒(𝐺 (𝑛, 𝑝)) is concentrated on four values
with probability 1 − 𝑜(1). That is, there exists 𝑢 = 𝑢(𝑛, 𝑝) such that, as 𝑛→ ∞,

P(𝑢 ≤ 𝜒(𝐺 (𝑛, 𝑝)) ≤ 𝑢 + 3) = 1 − 𝑜(1).

Proof. It suffices to show that for all 𝜀 > 0, there exists 𝑢 = 𝑢(𝑛, 𝑝, 𝜀) so that, provided
𝑝 < 𝑛−𝛼 and 𝑛 is sufficiently large,

P(𝑢 ≤ 𝜒(𝐺 (𝑛, 𝑝)) ≤ 𝑢 + 3) ≥ 1 − 3𝜀.

Let 𝑢 be the least integer so that

P(𝜒(𝐺 (𝑛, 𝑝)) ≤ 𝑢) > 𝜀.

Now we make a clever choice of a random variable.

Let 𝐺 ∼ 𝐺 (𝑛, 𝑝). Let 𝑌 = 𝑌 (𝐺) denote the minimum size of a subset 𝑆 ⊆ 𝑉 (𝐺) such
that 𝐺 − 𝑆 is 𝑢-colorable.

Note that𝑌 changes by at most 1 if we change the edges around one vertex of𝐺. Thus,
by applying Theorem 9.1.1 with respect to vertex-exposure (Example 9.2.6), we have

P(𝑌 ≤ E𝑌 − 𝜆
√
𝑛) ≤ 𝑒−2𝜆2

and P(𝑌 ≥ E𝑌 + 𝜆
√
𝑛) ≤ 𝑒−2𝜆2

.

We choose 𝜆 = 𝜆(𝜀) > 0 so that 𝑒−2𝜆2
= 𝜀.

First, we use the lower tail bound to show that E𝑌 must be small. We have

𝑒−2𝜆2
= 𝜀 < P(𝜒(𝐺) ≤ 𝑢) = P(𝑌 = 0) = P(𝑌 ≤ E𝑌 − E𝑌 ) ≤ exp

(
−2(E𝑌 )2

𝑛

)
.

Thus
E𝑌 ≤ 𝜆

√
𝑛.

Next, we apply the upper tail bound to show that 𝑌 is rarely large. We have

P(𝑌 ≥ 2𝜆
√
𝑛) ≤ P(𝑌 ≥ E𝑌 + 𝜆

√
𝑛) ≤ 𝑒−2𝜆2

= 𝜀.

Each of the following three events occur with probability at least 1−𝜀, for large enough
𝑛,

• By the above argument, there is some 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 2𝜆
√
𝑛 and 𝐺 − 𝑆
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may be properly 𝑢-colored.

• By the next lemma, one can properly 3-color 𝐺 [𝑆].

• 𝜒(𝐺) ≥ 𝑢 (by the minimality of 𝑢 at the beginning of the proof).

Thus, with probability at least 1 − 3𝜀, all three events occur, and so we have 𝑢 ≤
𝜒(𝐺) ≤ 𝑢 + 3. □

Lemma 9.3.5
Fix 𝛼 > 5/6 and 𝐶. Let 𝑝 ≤ 𝑛−𝛼. Then with probability 1 − 𝑜(1) every subset of at
most 𝐶

√
𝑛 vertices of 𝐺 (𝑛, 𝑝) can be properly 3-colored.

Proof. Let 𝐺 ∼ 𝐺 (𝑛, 𝑝). Assume that 𝐺 is not 3-colorable. Choose minimum size
𝑇 ⊆ 𝑉 (𝐺) so that the induced subgraph 𝐺 [𝑇] is not 3-colorable.

We see that 𝐺 [𝑇] has minimum degree at least 3, since if deg𝐺 [𝑇] (𝑥) < 3, then 𝑇 − 𝑥
cannot be 3-colorable either (if it were, then can extend coloring to 𝑥), contradicting
the minimality of 𝑇 .

Thus𝐺 [𝑇] has at least 3|𝑇 |/2 edges. The probability that𝐺 has some induced subgraph
on 𝑡 ≤ 𝐶

√
𝑛 vertices and ≥ 3𝑡/2 edges is, by a union bound, (recall

(𝑛
𝑘

)
≤ (𝑛𝑒/𝑘)𝑘 )

≤
𝐶
√
𝑛∑︁

𝑡=4

(
𝑛

𝑡

) ( ( 𝑡
2
)

3𝑡/2

)
𝑝3𝑡/2 ≤

𝐶
√
𝑛∑︁

𝑡=4

(𝑛𝑒
𝑡

) 𝑡 ( 𝑡𝑒
3

)3𝑡/2
𝑛−3𝑡𝛼/2

≤
𝐶
√
𝑛∑︁

𝑡=4

(
𝑂 (𝑛1−3𝛼/2√𝑡)

) 𝑡
≤
𝐶
√
𝑛∑︁

𝑡=4

(
𝑂 (𝑛1−3𝛼/2+1/4)

) 𝑡
.

The sum is 𝑜(1) provided that 𝛼 > 5/6. □

Remark 9.3.6. Theorem 9.3.4 was subsequently improved (by a refinement of the
above techniques) by Łuczak (1991) and Alon and Krivelevich (1997). We now know
that the chromatic number of 𝐺 (𝑛, 𝑛−𝛼) has two-point concentration for all 𝛼 > 1/2.

9.4 Isoperimetric inequalities: a geometric
perspective

We shall explore the following connection, which are two sides of the same coin:

Probability Geometry
Concentration of Lipschitz functions Isoperimetric inequalities
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Milman recognized the importance of the concentration of measure phenomenon,
which he heavily promoted in the 1970’s. The subject was have been since then
extensively developed. It plays a central role in probability theory, the analysis of
Banach spaces, and it also has been influential in theoretical computer science.

Euclidean space
The classic isoperimetric theorem in R𝑛 says that that among all subset of R𝑛 of given
volume, the ball has the smallest surface volume. (The word “isoperimetric” refers to
fixing the perimeter; equivalently we fix the surface area and ask to maximize volume.)
This result (at least in two-dimensions) was known to the Greeks, but rigorous proofs
were only found in towards the end of the nineteenth century.

Let (𝑋, 𝑑𝑋) be a metric space. Let 𝐴 ⊆ 𝑋 . For any 𝑥 ∈ 𝑋 , write 𝑑𝑋 (𝑥, 𝐴) :=
inf𝑎∈𝐴 𝑑𝑋 (𝑥, 𝑎) for the distance from 𝑥 to 𝐴. Denote the set of all points within
distance 𝑡 from 𝐴 by

𝐴𝑡 := {𝑥 ∈ 𝑋 : 𝑑𝑋 (𝑥, 𝐴) ≤ 𝑡} (9.1)

This is also known as the radius-𝒕 neighborhood of 𝑨. One can visualize 𝐴𝑡 by
“expanding” 𝐴 by distance 𝑡.

Theorem 9.4.1 (Isoperimetric inequality in Euclidean space)
Let 𝐴 ⊆ R𝑛 be a measurable set, and let 𝐵 ⊆ R𝑛 be a ball vol(𝐴) = vol(𝐵). Then, for
all 𝑡 ≥ 0,

vol 𝐴𝑡 ≥ vol 𝐵𝑡 .

Remark 9.4.2. A clean way to prove the above inequality is via the Brunn–Minkowski
theorem.

Classically, the isoperimetric inequality is stated as (here 𝜕𝐴 is the boundary of 𝐴)

vol𝑛−1 𝜕𝐴 ≥ vol𝑛−1 𝜕𝐵.

These two formulations are equivalent. Indeed, assuming Theorem 9.4.1, we have

vol𝑛−1 𝜕𝐴 =
𝑑

𝑑𝑡

����
𝑡=0

vol𝑛 𝐴𝑡 = lim
𝑡→0

vol 𝐴𝑡 − vol 𝐴
𝑡

≥ lim
𝑡→0

vol 𝐵𝑡 − vol 𝐵
𝑡

= vol𝑛−1 𝜕𝐵.

Conversely, we can obtain the neighborhood version from the boundary version by
integrating (noting that 𝐵𝑡 is always a ball).
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The cube
We have an analogous result in the {0, 1}𝑛 with respect to Hamming distance.In
Hamming cube, Harper’s theorem gives the exact result. Below, for 𝐴 ⊆ {0, 1}𝑛, we
write 𝐴𝑡 as in (9.1) for 𝑋 = {0, 1}𝑛 and 𝑑𝑋 being the Hamming distance.

Theorem 9.4.3 (Isoperimetic inequality in the Hamming cube; Harper 1966)
Let 𝐴 ⊆ {0, 1}𝑛. Let 𝐵 ⊆ {0, 1}𝑛 be a Hamming ball with |𝐴| ≥ |𝐵 |. Then for all
𝑡 ≥ 0,

|𝐴𝑡 | ≥ |𝐵𝑡 |.

Remark 9.4.4. The above statement is tight when 𝐴 has the same size as a Hamming
ball, i.e., when |𝐴| =

(𝑛
0
)
+

(𝑛
1
)
+ · · · +

(𝑛
𝑘

)
for some integer 𝑘 . Actually, more is true.

For any value of |𝐴| and 𝑡, the size of 𝐴𝑡 is minimized by taking 𝐴 to be an initial
segment of {0, 1}𝑛 according to the simplicial ordering: first sort by Hamming weight,
and for ties, sort by lexicographic order. For more on this topic, particularly extremal
set theory, see the book Combinatorics by Bollobás (1986).

Combined with the isoperimetic inequality on the cube, we obtain the following
surprising consequence. Suppose we start with just half of the cube, and then expand
it by a bit (recall that the diameter of the cube is 𝑛, and we will be expanding it by
𝑜(𝑛)), then resulting expansion occupies nearly all of the cube.

Theorem 9.4.5 (Rapid expansion from half to 1 − 𝜀)
Let 𝑡 > 0. For every 𝐴 ⊆ {0, 1}𝑛 with |𝐴| ≥ 2𝑛−1, we have

|𝐴𝑡 | > (1 − 𝑒−2𝑡2/𝑛)2𝑛.

Proof. Let 𝐵 = {𝑥 ∈ {0, 1}𝑛 : weight(𝑥) < 𝑛/2}, so that |𝐵 | ≤ 2𝑛−1 ≤ |𝐴|. Then by
Harper’s theorem (Theorem 9.4.3),

|𝐴𝑡 | ≥ |𝐵𝑡 | = |{𝑥 ∈ {0, 1}𝑛 : weight(𝑥) < 𝑛/2 + 𝑡}| > (1 − 𝑒−2𝑡2/𝑛)2𝑛

by the Chernoff bound. □

In fact, using the above, we can deduce that even if we start with a small fraction (e.g.,
1%) of the cube, and expand it slightly, then we would cover most of the cube.
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Theorem 9.4.6 (Rapid expansion from 𝜀 to 1 − 𝜀)
Let 𝜀 > 0 and 𝐶 =

√︁
2 log(1/(𝜀)). If 𝐴 ⊆ {0, 1}𝑛 with |𝐴| ≥ 𝜀2𝑛, then���𝐴𝐶√𝑛��� ≥ (1 − 𝜀)2𝑛.

First proof via Harper’s isoperimetric inequality. Let 𝑡 =
√︁

log(1/𝜀)𝑛/2 so that 𝑒−2𝑡2/𝑛 =

𝜀. Applying Theorem 9.4.5 to 𝐴′ = {0, 1}𝑛 \ 𝐴𝑡 , we see that |𝐴′| < 2𝑛−1 (or else��𝐴′𝑡 �� > (1 − 𝜀)2𝑛, so 𝐴′𝑡 would intersect 𝐴, which is impossible since the distance be-
tween 𝐴 and 𝐴′ is greater than 𝑡). Thus |𝐴𝑡 | ≥ 2𝑛−1, and then applying Theorem 9.4.5
yields |𝐴2𝑡 | ≥ (1 − 𝜀)2𝑛. □

Let us give another proof of Theorem 9.4.6 without using Harper’s exact isoperimetric
theorem in the Hamming cube, and instead use the bounded differences inequality that
we proved earlier.

Second proof via the bounded differences inequality. Pick a uniform random 𝑥 ∈
{0, 1}𝑛 and let 𝑋 = dist(𝑥, 𝐴). Note that 𝑋 changes by at most 1 if a single coor-
dinate of 𝑥 is changed. Applying the bounded differences inequality, Theorem 9.1.1,
we have the lower tail

P(𝑋 − E𝑋 ≤ −𝜆) ≤ 𝑒−2𝜆2/𝑛 for all 𝜆 ≥ 0

We have 𝑋 = 0 if and only if 𝑥 ∈ 𝐴, so

𝜀 ≤ P(𝑥 ∈ 𝐴) = P(𝑋 = 0) = P(𝑋 − E𝑋 ≤ −E𝑋) ≤ 𝑒−2(E𝑋)2/𝑛.

Thus

E𝑋 ≤
√︂

log(1/𝜀)𝑛
2

=
𝐶
√
𝑛

2
.

Now we apply the upper tail of the bounded differences inequality

P(𝑋 − E𝑋 ≥ 𝜆) ≤ 𝑒−2𝜆2/𝑛 for all 𝜆 ≥ 0

to yield

P(𝑥 ∉ 𝐴𝐶√𝑛) = P(𝑋 > 𝐶
√
𝑛) ≤ P

(
𝑋 ≥ E𝑋 + 𝐶

√
𝑛

2

)
≤ 𝜀. □

Isoperimetry versus concentration
The above two proofs illustrate the link between geometric isoperimetric inequalities
and probabilistic concentration inequalities. Let know now state a simple result that
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formalizes this connection.

Definition 9.4.7 (Lipschitz functions)
Given two metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ), we say that a function 𝑓 : 𝑋 → 𝑌 is
𝑪-Lipschitz if

𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝐶𝑑𝑋 (𝑥, 𝑥′) for all 𝑥, 𝑥′ ∈ 𝑋.

So the bounded differences inequality applies to Lipschitz functions with respect to
the Hamming distance. In particular, it tells us that if 𝑓 : {0, 1}𝑛 → R is 1-Lipschitz
(with respect to the Hamming distance on {0, 1}𝑛), it must be concentrated around its
mean with respect to the uniform measure on {0, 1}𝑛:

P( | 𝑓 − E 𝑓 | ≥ 𝑛𝜆) ≤ 2𝑒−2𝑛𝜆2
.

So 𝑓 is almost constant almost everywhere. This is a counterintuitive high dimensional
phenomenon.

Theorem 9.4.8 (Equivalence between notions of concentration of measure)
Let 𝑡, 𝜀 ≥ 0. In a probability space (Ω, P) equipped with a metric. The following are
equivalent:

(a) (Expansion/approximate isoperimetry) If 𝐴 ⊆ Ω with P(𝐴) ≥ 1/2, then

P(𝐴𝑡) ≥ 1 − 𝜀.

(b) (Concentration of Lipschitz functions) If 𝑓 : Ω → R is 1-Lipschitz and 𝑚 ∈ R
satisfies P( 𝑓 ≤ 𝑚) ≥ 1/2, then

P( 𝑓 > 𝑚 + 𝑡) ≤ 𝜀.

Remark 9.4.9 (Median). In (b), we often take𝑚 to be a median of 𝑓 , which is defined
to be a value such that P( 𝑓 ≥ 𝑚) ≥ 1/2 and P( 𝑓 ≤ 𝑚) ≥ 1/2 (the median always exists
but is not necessarily unique). For distributions with good concentration properties,
the median and mean are usually close to each other. For example, we leave it as an
exercise to check that if there is some 𝑚 such that P( | 𝑓 − 𝑚 | ≥ 𝑡) ≤ 2𝑒−𝑡2/2 for all
𝑡 ≥ 0, then the mean and the medians of 𝑓 all lie within 𝑂 (1) of 𝑚.

Proof. (a) =⇒ (b): Let 𝐴 = {𝑥 ∈ Ω : 𝑓 (𝑥) ≤ 𝑚}. So P(𝐴) ≥ 1/2. Since 𝑓 is
1-Lipschitz, we have 𝑓 (𝑥) ≤ 𝑚 + 𝑡 for all 𝑥 ∈ 𝐴𝑡 . Thus by (a)

P( 𝑓 > 𝑚 + 𝑡) ≤ P(𝐴𝑡) ≤ 𝜀.
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(b) =⇒ (a): Let 𝑓 (𝑥) = dist(𝑥, 𝐴) and 𝑚 = 0. Then P( 𝑓 ≤ 0) = P(𝐴) ≥ 1/2. Also 𝑓

is 1-Lipschitz. So by (b),

P(𝐴𝑡) = P( 𝑓 > 𝑚 + 𝑡) ≤ 𝜀. □

Informally, we say that a space (or rather, a sequence of spaces), has concentration
of measure if 𝜀 decays rapidly as a function of 𝑡 in the above theorem (the notion of
“Lévy family” makes this precise). Earlier we saw that the Hamming cube exhibits has
concentration of measure. Other notable spaces with concentration of measure include
the sphere, Gauss space, orthogonal and unitary groups, postively-curved manifolds,
and the symmetric group.

The sphere
We discuss analogs of the concentration of measure phenomenon in high dimensional
geometry. This is rich and beautiful subject. An excellent introductory to this topic is
the survey An Elementary Introduction to Modern Convex Geometry by Ball (1997).

Recall the isoperimetric inequality in R𝑛 says:

If 𝐴 ⊆ R𝑛 has the same measure as ball 𝐵, then vol(𝐴𝑡) ≥ vol(𝐵𝑡) for all
𝑡 ≥ 0.

Analogous exact isoperimetric inequalities are known in several other spaces. We
already saw it for the boolean cube (Theorem 9.4.3). The case of sphere and Gaussian
space are particularly noteworthy. The following theorem is due to Lévy (∼1919).

Theorem 9.4.10 (Lévy’s isoperimetric inequality on the sphere)
On a sphere inR𝑛, let 𝐴 be a measurable subset and 𝐵 a spherical cap with vol𝑛−1(𝐴) =
vol𝑛−1(𝐵). Then for all 𝑡 ≥ 0,

vol𝑛−1(𝐴𝑡) ≥ vol𝑛−1(𝐵𝑡).

We have the following upper bound estimate on the size of spherical caps.

Theorem 9.4.11 (Upper bound on spherical cap size)
Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 be a uniform random unit vector in R𝑛. Then for any 𝜀 ≥ 0,

P(𝑥1 ≥ 𝜀) ≤ 𝑒−𝑛𝜀2/2.

The following proof (including figures) is taken from Tokz (2012), building on the
method by Ball (1997).
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Proof. Let 𝐶 denote the spherical cap consisting of unit vectors 𝑥 with 𝑥1 ≥ 𝜀. Write
𝐶 for the convex hull of 𝐶 with the origin, i.e., the conical sector spanned by 𝐶. The
idea is to contain 𝐶 in a ball of radius 𝑟 ≤ 𝑒−𝜀

2/2. Writing 𝐵(𝑟) for a ball of radius 𝑟
in R𝑛 so that, we have

vol𝑛−1𝐶

vol𝑛−1 𝑆𝑛−1 =
vol𝑛 𝐶

vol𝑛 𝐵𝑛 (1)
=

vol𝑛 𝐵(𝑟)
vol𝑛 𝐵(1)

= 𝑟𝑛 ≤ 𝑒−𝜀
2𝑛/2.

Case 1: 𝜀 ∈ [0, 1/
√

2].

Bn(0,1)
Cone

Pp
1

�
"

2

As shown above, 𝐶 is contained in a ball of radius 𝑟 =
√

1 − 𝜀2 ≤ 𝑒−𝜀
2/2.

Case 2: 𝜀 ∈ [1/
√

2, 1].

Cone

Qr

1

Then 𝐶 is contained in a ball of radius 𝑟 as shown above. Using similar triangles, we
find that 𝑟/(1/2) = 1/𝜀. So 𝑟 = 1/(2𝜀) ≤ 𝑒−𝜀

2/2, where final inequality is equivalent
to 𝑒𝑥2/2 ≤ 2𝑥 for all [1/

√
2, 1], which, by convexity, only needs to be checked at the

endpoints of the interval. □

Combining the above two theorems, we deduce the following concentration of measure
results.
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Corollary 9.4.12 (Concentration of measure on the sphere)
Let 𝐴 be a measurable subset of the unit sphere in R𝑛, equipped with the metric
inherited from R𝑛. If 𝐴 ⊆ 𝑆𝑛−1 has vol𝑛−1(𝐴)/vol𝑛−1(𝑆𝑛−1) ≥ 1/2, then

vol𝑛−1(𝐴𝑡)
vol𝑛−1(𝑆𝑛−1)

≥ 1 − 𝑒−𝑛𝑡2/4.

Remark 9.4.13. See §14 in Barvinok’s notes for a proof of the sharper estimate with
𝑒−𝑛𝑡

2/4 replaced by
√︁
𝜋/8𝑒−𝑛𝑡2/2, where now we are using the geodesic distance on the

sphere.

Corollary 9.4.14 (Concentration of measure on the sphere)
Let 𝑆𝑛−1 denote the unit sphere in R𝑛. If 𝑓 : 𝑆𝑛−1 → R is a 1-Lipschitz measurable
function, then there is some real 𝑚 so that, for the uniform measure on the sphere,

P( | 𝑓 − 𝑚 | > 𝑡) ≤ 2𝑒−𝑛𝑡
2/4.

Informally: every Lipschitz function on a high dimensional sphere is almost constant
almost everywhere.

This is a rather counterintuitive high-dimensional phenomenon.

Gauss space
Another related setting is the Gauss space, which is R𝑛 equipped with the the proba-
bility measure 𝛾𝑛 induced by the Gaussian random vector whose coordinates are 𝑛 iid
standard normals, i.e., the normal random vector in R𝑛 with covariance matrix 𝐼𝑛. Its
probability density function of 𝛾𝑛 at 𝑥 ∈ R𝑛 is (2𝜋)−𝑛𝑒−|𝑥 |2/2. The metric on R𝑛 is the
usual Euclidean metric.

What would an isoperimetric inequality in Gauss space look like?

Although earlier examples of isoperimetric optimizers were all balls, for the Gauss
space, the answer is actually a half-spaces, i.e., points on one side of some hyperplane.

The Gaussian isoperimetric inequality, below, was first shown independently by Borell
(1975) and Sudakov and Tsirel’son (1974).

Theorem 9.4.15 (Gaussian isoperimetric inequality)
If 𝐴, 𝐻 ⊆ R𝑛, 𝐻 a half-space, and 𝛾(𝐴) = 𝛾(𝐻), then 𝛾(𝐴𝑡) ≥ 𝛾(𝐻𝑡) for all 𝑡 ≥ 0,
where 𝛾 is the Gauss measure.
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If 𝐻 = {𝑥1 ≤ 0}, then 𝐻𝑡 = {𝑥1 ≤ 𝑡}, which has Gaussian measure ≥ 1− 𝑒−𝑡2/2. Thus:

Corollary 9.4.16 (Concentration of measure for Gaussian vectors)
If 𝑓 : R𝑛 → R is 1-Lipschitz, and 𝑍 is a vector of i.i.d. standard normals, then 𝑋 = 𝑓 (𝑍)
satisfies, for some 𝑚,

P( |𝑋 − 𝑚 | ≥ 𝑡) ≤ 2𝑒−𝑡
2/2.

Here is a rather handwavy explanation why the half-space is a reasonable answer.

Consider {−1, 1}𝑚𝑛, where both 𝑚 and 𝑛 are large. Let us group the coordinates of
{−1, 1}𝑚𝑛 into block of length 𝑚. The sum of entries in each block (after normalizing
by

√
𝑚) approximates normal random variable by the central limit theorem.

In the Hamming cube, Harper’s theorem tells us Hamming balls are isoperimetric
optimizers. Since a Hamming ball in {−1, 1}𝑚𝑛 is given by all points whose sum of
coordinates is below a certain threshold, we should look at the analogous subset in the
Gauss space, which would then consist of all points whose sum of coordinates is below
a certain threshold. The set of all points whose of coordinate sum is below a certain
threshold is half-space. Note also that the Gaussian measure is radially symmetric.

The sphere as approximately a sum of independent Gaussians. The Gauss space is
a nice space to work with because a standard normal vector simultaneously possesses
two useful properties (and it is essentially the only such random vector to have both
properties):

(a) Rotational invariance

(b) Independence of coordinates

The squared-length of a random Gaussian vector is 𝑍2
1 + · · · + 𝑍

2
𝑛 with iid 𝑍1, . . . , 𝑍𝑛 ∈

𝑁 (0, 1). It has mean 𝑛 and a𝑂 (
√
𝑛) window of concentration (e.g., by a straightforward

adaptation of the Chernoff bound proof). Since
√︁
𝑛 +𝑂 (

√
𝑛) =

√
𝑛 +𝑂 (1), the length

of Gaussian vector is concentrated in a𝑂 (1) window around
√
𝑛 (the concentration can

also be deduced from the above corollary for 𝑓 (𝑥) = |𝑥 |). So most of the distribution
in the Gauss space lies within a constant distance of a sphere of radius

√
𝑛. Due to

rotational invariance, we see that a Gaussian distribution approximates the uniform
distribution on sphere of radius

√
𝑛 in high dimensions. In other words:

random Gaussian vector ≈
√
𝑛 · random unit vector.

Random Gaussian vectors often yield easier calculations due to coordinate indepen-
dence, and so they often give an accessible way to analyze random unit vectors.

Note that how a half-space in the Gauss space intersect the sphere in a spherical cap,
with both italicized objects being isoperimetric optimizers in their respective spaces.
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Sub-Gaussian distributions
We introduce some terminology that captures notions we have seen so far. It will also
be convenient for later discussions.

Definition 9.4.17 (Sub-Gaussian distribution)
We say that a random variable 𝑋 is 𝑲-subGaussian about its mean if

P( |𝑋 − E𝑋 | ≥ 𝑡) ≤ 2𝑒−𝑡
2/𝐾2

for all 𝑡 ≥ 0.

Remark 9.4.18. This definition is not standard. Some places say 𝜎2-subGaussian for
what we mean by 𝜎-subGaussian.

Usually we will not worry about constant factors. Thus, saying that a family of random
variables 𝑋𝑛 is 𝑂 (𝐾𝑛)-subGaussian about its mean is the same as saying that there
exist constant 𝐶, 𝑐 > 0 such that

P ( |𝑋𝑛 − E𝑋𝑛 | ≥ 𝑡) ≤ 𝐶𝑒−𝑐𝑡
2/𝐾2

𝑛 for all 𝑡 ≥ 0 and 𝑛.

Also note that, up to changing the constants 𝑐, 𝐶, the definition does not change if we
replace E𝑋𝑛 by a median of 𝑋𝑛 above.

Example 9.4.19. The concentration inequalities so far can be rephrased in terms of
subGaussian distributions. Below is summary of results of the form: if 𝑋 is a random
point drawn from the given space, and 𝑓 is a 1-Lipschitz function, then 𝑓 (𝑋) is
𝐾-subGaussian.

space distance -subGaussian reference

{0, 1}𝑛 Hamming 𝑂 (
√
𝑛) bounded diff. ineq. (Thm. 9.1.1)

𝑆𝑛−1 Euclidean 𝑂 (1/
√
𝑛) Lévy concentration (Cor. 9.4.14)

Gauss space R𝑛 Euclidean 𝑂 (1) Gaussian isoperimetric ineq. (Cor. 9.4.16)

The following lemma shows that for subGaussian random variables, it does not matter
much if we define the tails around its median, mean, or root-mean-square.
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Lemma 9.4.20 (Median vs. mean for subGaussian distributions)
There exists a constant 𝐶 > 0 so that the following holds for any real random variable
𝑋 satisfying, for some constants 𝑚 and 𝐾 ,

P( |𝑋 − 𝑚 | ≥ 𝑡) ≤ 2𝑒−𝑡
2/𝐾2

for all 𝑡 ≥ 0.

(a) Every medianM𝑋 of 𝑋 satisfies

|M𝑋 − 𝑚 | ≤ 𝐶𝐾.

(b) The mean of 𝑋 satisfies
|E𝑋 − 𝑚 | ≤ 𝐶𝐾.

(c) For any 𝑝 ≥ 1, writing ∥𝑋 ∥𝑝 := (E |𝑋 |𝑝)1/𝑝 for the 𝐿𝑝 norm of 𝑋 ,��∥𝑋 ∥𝑝 − 𝑚�� ≤ 𝐶𝐾√𝑝.
(d) For every constant 𝐴 there exists a constant 𝑐 > 0 so that if |𝑚′ − 𝑚 | ≤ 𝐴𝐾 , then

P( |𝑋 − 𝑚′| ≥ 𝑡) ≤ 2𝑒−𝑐𝑡
2/𝐾2

for all 𝑡 ≥ 0.

Proof. By considering 𝑋/𝐾 instead of 𝑋 , we may assume that 𝐾 = 1 for convenience.

(a) For any 𝑡 >
√︁

2 log 2, we have P( |𝑋 − 𝑚 | ≥ 𝑡) ≤ 2𝑒−𝑡2 < 1/2. So every median of
𝑋 lies within

√︁
2 log 2 of 𝑚.

(b) We have

|E𝑋 − 𝑚 | ≤ E |𝑋 − 𝑚 | =
∫ ∞

0
P( |𝑋 − 𝑚 | ≥ 𝑡) 𝑑𝑡

≤
∫ ∞

0
2𝑒−𝑡

2
𝑑𝑡 =

√
𝜋.

(c) Using the triangle inequality on the 𝐿𝑝 norm, we have

��∥𝑋 ∥𝑝 − 𝑚�� ≤ ∥𝑋 − 𝑚∥𝑝 = (E |𝑋 − 𝑚 |𝑝)1/𝑝
=

(∫ ∞

0
P( |𝑋 − 𝑚 |𝑝 ≥ 𝑡) 𝑑𝑡

)1/𝑝

≤
(∫ ∞

0
2𝑒−𝑡

2/𝑝
𝑑𝑡

)1/𝑝
= 21/𝑝Γ

(
1 + 𝑝

2

)1/𝑝
= 𝑂 (√𝑝).

(c) We can make 𝑐 small enough so that 𝑅𝐻𝑆 = 2𝑒−𝑐𝑡2 ≥ 1 for 𝑡 ≤ 2𝐴. For 𝑡 > 2𝐴,
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we note that
P( |𝑋 − 𝑚′| ≥ 𝑡) ≤ P( |𝑋 − 𝑚 | ≥ 𝑡/2) ≤ 2𝑒−𝑡

2/4. □

Remark 9.4.21 (Equivalent characterization of subGaussian distributions). Given
a real random variable 𝑋 , if any of the below is true for some 𝐾𝑖, then the other
conditions are true for some 𝐾 𝑗 ≤ 𝐶𝐾𝑖 for some absolute constant 𝐶.

(a) (Tails) P( |𝑋 | ≥ 𝑡) ≤ 2𝑒−𝑡2/𝐾2
1 for all 𝑡 ≥ 0.

(b) (Moments) ∥𝑋 ∥𝐿𝑝 ≤ 𝐾2
√
𝑝 for all 𝑝 ≥ 1.

(c) (MGF of 𝑋2) E𝑒𝑋
2/𝐾2

3 ≤ 2.

We leave the proofs as exercises. Also see §2.5.1 in the textbook High-Dimensional
Probability by Vershynin (2018), which gives a superb introduction to the subject.

Johnson–Lindenstrauss Lemma
Given a set of 𝑁 points in high-dimensional Euclidean space, the next result tells us
that one can embed them in 𝑂 (𝜀−2 log 𝑁) dimensions without sacrificing pairwise
distances by more than 1 ± 𝜀 factor. This is known as dimension reduction. It is an
important tool in many areas, from functional analysis to algorithms.

Theorem 9.4.22 (Johnson and Lindenstrauss 1982)
There exists a constant 𝐶 > 0 so that the following holds. Let 𝜀 > 0. Let 𝑋 be a set of
𝑁 points in R𝑚. Then for any 𝑑 > 𝐶𝜀−2 log 𝑁 , there exists 𝑓 : 𝑋 → R𝑑 so that

(1 − 𝜀) |𝑥 − 𝑦 | ≤ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ (1 + 𝜀) |𝑥 − 𝑦 | for all 𝑥, 𝑦 ∈ 𝑋.

Remark 9.4.23. Here the requirement 𝑑 > 𝐶𝜀−2 log 𝑁 on the dimension is optimal
up to a constant factor (Larsen and Nelson 2017).

We will take 𝑓 to be
√︁
𝑚/𝑑 times an orthogonal projection onto a 𝑑-dimensional

subspace chosen uniformly at random. The theorem then follows from the following
lemma together with a union bound.
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Lemma 9.4.24 (Random projection)
There exists a constant 𝐶 > 0 so that the following holds. Let 𝑚 ≥ 𝑑 and let
𝑃 : R𝑚 → R𝑑 denote the orthogonal projection onto the subspace spanned by the first
𝑑 coordinates. Let 𝑧 be a uniform random point on the unit sphere in R𝑚. Let 𝑦 = 𝑃𝑧
and 𝑌 = |𝑦 |. Then, for all 𝑡 ≥ 0,

P

(�����𝑌 −
√︂
𝑑

𝑚

����� ≥ 𝑡
)
≤ 2𝑒−𝑐𝑚𝑡

2
.

To prove the Theorem 9.4.22, for each pair of distinct points 𝑥, 𝑥′ ∈ 𝑋 , set

𝑧 =
𝑥 − 𝑥′
|𝑥 − 𝑥′| , so that

√︂
𝑚

𝑑
𝑌 =

| 𝑓 (𝑥) − 𝑓 (𝑥′) |
|𝑥 − 𝑥′| .

Then the length of the projection of 𝑧 onto a uniform random 𝑑-dimensional subspace
has the same distribution as 𝑌 in the lemma. So setting 𝑡 = 𝜀

√︁
𝑑/𝑚, we find that

P

(����√︂𝑚

𝑑
𝑌 − 1

���� ≥ 𝜀) ≤ 2𝑒−𝑐𝜀𝑑 < 2𝑁−𝑐𝐶 .

Provided that 𝐶 > 1/𝑐, we can take a union bound over all
(𝑁

2
)
< 𝑁2/2 pairs of points

of 𝑋 to show that with some positive probability, the random 𝑓 works.

Proof of the lemma. We have 𝑧21 + · · · + 𝑧2𝑛 = 1 and each 𝑧𝑖 has the same distribution,
so E[𝑧2

𝑖
] = 1/𝑚 for each 𝑖. Thus

E[𝑌2] = E
[
𝑧21 + · · · + 𝑧2𝑑

]
=
𝑑

𝑚
.

Note that 𝑃 is 1-Lipschitz on the unit sphere. By Lévy’s concentration measure
theorem on the sphere, lettingM𝑌 denote the median of 𝑌 ,

P ( |𝑌 −M𝑌 | ≥ 𝑡) ≤ 2𝑒−𝑚𝑡
2/4.

The result then follows by Lemma 9.4.20, using that ∥𝑌 ∥2 =
√︁
𝑑/𝑚. □

Here is a cute application of Johnson–Lindenstrauss (this is related to a homework
problem on the Chernoff bound).

Corollary 9.4.25
There is a constant 𝑐 > 0 so that for every positive integer 𝑑, there is a set of 𝑒𝑐𝜀2𝑑

points in R𝑑 whose pairwise distances are in [1 − 𝜀, 1 + 𝜀].
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Proof. Applying Theorem 9.4.22 a regular simplex with unit edge lengths with 𝑁

vertices in R𝑁−1 to yield 𝑁 points in R𝑑 for 𝑑 = 𝑂 (𝜀−2 log 𝑁) and pairwise distances
in [1 − 𝜀, 1 + 𝜀]. □

9.5 Talagrand’s inequality
Talagrand (1995) developed a powerful concentration inequality. It is applicable to
many combinatorial optimization problems on independent random inputs. The most
general form of Talagrand’s inequality can be somewhat difficult to grasp. So we start
by discussing a special case with an easier geometric statement. Though, to obtain the
full power of Talagrand’s inequality with combinatorial consequences, we will need
the full statement to be given later.

We omit the proof of Talagrand’s inequality (see the Alon–Spencer textbook or Tao’s
blog post) and instead focus on explaining the theorem and its applications.

Distance to a subspace
We start with a geometrically motivated question.

Problem 9.5.1
Let𝑉 be a fixed 𝑑-dimensional subspace. Let 𝑥 ∼ Unif{−1, 1}𝑛. How well is dist(𝑥,𝑉)
concentrated?

Let 𝑃 = (𝑝𝑖 𝑗 ) ∈ R𝑛×𝑛 be the matrix giving the orthogonal projection onto 𝑉⊥. We
have tr 𝑃 = dim𝑉⊥ = 𝑛 − 𝑑. Then

dist(𝑥,𝑉)2 = |𝑥 · 𝑃𝑥 | =
∑︁
𝑖, 𝑗

𝑥𝑖𝑥 𝑗 𝑝𝑖 𝑗 .

So
E[dist(𝑥,𝑉)2] =

∑︁
𝑖

𝑝𝑖𝑖 = tr 𝑃 = 𝑛 − 𝑑.

How well is dist(𝑥,𝑉) concentrated around
√
𝑛 − 𝑑?

Some easier special cases (codimension-1):

• If 𝑉 is a coordinate subspace, then dist(𝑥,𝑉) is a constant not depending on 𝑥.

• If 𝑉 = (1, 1, . . . , 1)⊥, then dist(𝑥,𝑉) = |𝑥1 + · · · + 𝑥𝑛 |/
√
𝑛 which converge to |𝑍 |

for 𝑍 ∼ 𝑁 (0, 1). In particular, it is 𝑂 (1)-subGaussian.
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• More generally, if for a hyperplane𝑉 = 𝛼⊥ for some unit vector𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈
R𝑛, one has dist(𝑥,𝑉) = |𝛼 · 𝑥 |. Note that flipping 𝑥𝑖 changes |𝛼 · 𝑥 | by at most
2|𝛼𝑖 |. So by the bounded differences inequality Theorem 9.1.3, for every 𝑡 ≥ 0,

P( |dist(𝑥,𝑉) − E dist(𝑥,𝑉) | ≥ 𝑡) ≤ 2 exp

(
−2𝑡2

4(𝛼2
1 + · · · + 𝛼2

𝑛)

)
≤ 2𝑒−𝑡

2/2.

So again dist(𝑥,𝑉) is 𝑂 (1)-subGaussian.

What about higher codimensional subspaces 𝑉? Then

dist(𝑥,𝑉) = sup
𝛼∈𝑉⊥
|𝛼 |=1

|𝛼 · 𝑥 | .

It is not clear how to apply the bounded difference inequality to all such 𝛼 in the above
supremum simultaneously.

The bounded difference inequality applied to the function 𝑥 ∈ {−1, 1}𝑛 ↦→ dist(𝑥,𝑉),
which is 2-Lipschitz (with respect to Hamming distance), gives

P ( |dist(𝑥,𝑉) − E dist(𝑥,𝑉) | ≥ 𝑡) ≤ 2𝑒−𝑡
2/(2𝑛) ,

showing that dist(𝑥,𝑉) is 𝑂 (
√
𝑛)-subGaussian—but this is a pretty bad result, as

|dist(𝑥,𝑉) | ≤
√
𝑛 (half the length of the longest diagonal of the cube).

Perhaps the reason why the above bound is so poor is that the bounded difference
inequality is measuring distance in {−1, 1}𝑛 using the Hamming distance (ℓ1) whereas
we really care about the Euclidean distance (ℓ2).

If, instead of sampling 𝑥 ∈ {−1, 1}𝑛, we took 𝑥 to be a uniformly random point on
the radius

√
𝑛 sphere in R𝑛 (which contains {−1, 1}𝑛), then Lévy concentration on

the sphere (Corollary 9.4.14) implies that dist(𝑥,𝑉) is 𝑂 (1)-subGaussian. Perhaps a
similar bound holds when 𝑥 is chosen from {−1, 1}𝑛?

Here is a corollary of Talagrand’s inequality, which we will state in its general form
later.

Theorem 9.5.2
Let 𝑉 be a fixed 𝑑-dimensional subspace in R𝑛. For uniformly random 𝑥 ∈ {−1, 1}𝑛,
one has

P
(
| dist(𝑥,𝑉) −

√
𝑛 − 𝑑 | ≥ 𝑡

)
≤ 𝐶𝑒−𝑐𝑡2 ,

where 𝐶, 𝑐 > 0 are some constants.
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Convex Lipschitz functions of independent random variables
Let us now state Talagrand’s inequality, first in a special case for convex functions, and
then more generally. Below dist(·, ·) means Euclidean distance.

Theorem 9.5.3 (Talagrand)
Let 𝐴 ⊆ R𝑛 be convex. Let 𝑥 ∼ Unif{0, 1}𝑛. Then for any 𝑡 ≥ 0,

P(𝑥 ∈ 𝐴)P(dist(𝑥, 𝐴) ≥ 𝑡) ≤ 𝑒−𝑡2/4.

Remark 9.5.4. (1) Note that 𝐴 is a convex body inR𝑛 and not simply a set of points
in 𝐴.

(2) The bounded differences inequality gives us an upper bound of the form 𝑒−𝑐𝑡
2/𝑛,

which is much worse than Talagrand’s bound.

Example 9.5.5 (Talagrand’s inequality fails for nonconvex sets). Let

𝐴 =

{
𝑥 ∈ {0, 1}𝑛 : wt(𝑥) ≤ 𝑛

2
−
√
𝑛

}
(here 𝐴 is a discrete set of points and not their convex hull). Then for every 𝑦 ∈ {0, 1}𝑛
with wt(𝑦) ≥ 𝑛/2, one has dist(𝑦, 𝐴) ≥ 𝑛1/4 (note that this is Euclidean distance
and not Hamming distance). Using the central limit theorem, we have, for some
constant 𝑐 > 0 and sufficiently large 𝑛, for 𝑥 ∼ Uniform({−1, 1}𝑛), P(𝑥 ∈ 𝐴) ≥ 𝑐

and P(wt(𝑥) ≥ 𝑛/2) ≥ 1/2, so the conclusion of Talagrand’s inequality is false for
𝑡 = 𝑛1/4, in the case of this nonconvex 𝐴.

By an argument similar to our proof of Theorem 9.4.8 (the equivalence of notions of
concentration of measure), one can deduce the following consequence.

Corollary 9.5.6 (Talagrand)
Let 𝑓 : R𝑛 → R be a convex and 1-Lipschitz function (with respect to Euclidean
distance on R𝑛). Let 𝑥 ∼ Unif{0, 1}𝑛. Then for any 𝑟 ∈ R and 𝑡 ≥ 0,

P( 𝑓 (𝑥) ≤ 𝑟)P( 𝑓 (𝑥) ≥ 𝑟 + 𝑡) ≤ 𝑒−𝑡2/4.

Remark 9.5.7. The proof below shows that the assumption that 𝑓 is convex can be
weakened to 𝑓 being quasiconvex, i.e., { 𝑓 ≤ 𝑎} is convex for every 𝑎 ∈ R.

Proof that Theorem 9.5.3 and Corollary 9.5.6 are equivalent. Theorem 9.5.3 implies
Corollary 9.5.6: take 𝐴 = {𝑥 : 𝑓 (𝑥) ≤ 𝑟}. We have 𝑓 (𝑥) ≤ 𝑟 + 𝑡 whenever
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dist(𝑎, 𝐴) ≤ 𝑡 since 𝑓 is 1-Lipschitz. So P( 𝑓 (𝑥) ≤ 𝑟) = P(𝑥 ∈ 𝐴) and P( 𝑓 (𝑥) ≥
𝑟 + 𝑡) ≤ P(dist(𝑥, 𝐴) ≥ 𝑡).

Corollary 9.5.6 implies Theorem 9.5.3: 𝑟 = 0 and take 𝑓 (𝑥) = dist(𝑥, 𝐴), which is a
convex function since 𝐴 is convex. □

Let us writeM𝑋 to be a median for the random variable 𝑋 , i.e., a non-random real so
that P(𝑋 ≥ M𝑋) ≥ 1/2 and P(𝑋 ≤ M𝑋) ≥ 1/2.

Corollary 9.5.8 (Talagrand)
Let 𝑓 : R𝑛 → R be a convex and 1-Lipschitz function (with respect to Euclidean
distance on R𝑛). Let 𝑥 ∼ Unif ({0, 1}𝑛). Then

P( | 𝑓 (𝑥) −M 𝑓 (𝑥) | ≥ 𝑡) ≤ 4𝑒−𝑡
2/4.

Proof. Setting 𝑟 = M 𝑓 (𝑥) in Corollary 9.5.6 yields

P( 𝑓 (𝑥) ≥ M 𝑓 (𝑥) + 𝑡) ≤ 2𝑒−𝑡
2/4.

Setting 𝑟 = M 𝑓 (𝑥) − 𝑡 in Corollary 9.5.6 yields

P( 𝑓 (𝑥) ≤ M 𝑓 (𝑥) − 𝑡) ≤ 2𝑒−𝑡
2/4. □

Combining the two tail bounds yields the corollary.

Theorem 9.5.2 then follows. Indeed, Corollary 9.5.8 shows that dist(𝑥,𝑉) (which is
a convex 1-Lipschitz function of 𝑥 ∈ R𝑛) is 𝑂 (1)-subGaussian, which immediately
implies Theorem 9.5.2.

Example 9.5.9 (Operator norm of a random matrix). Let 𝐴 be a random matrix whose
entries are uniform iid from {−1, 1}. Viewing 𝐴 ↦→ ∥𝐴∥op as a function R𝑛2 → R,
we see that it is convex (since the operator norm is a norm) and 1-Lipschitz (using
that ∥·∥op ≤ ∥·∥HS, where the latter is the Hilbert–Schmidt norm, also known as the
Frobenius norm, i.e., the ℓ2-norm of the matrix entries). It follows by Talagrand’s
inequality (Corollary 9.5.8) that ∥𝐴∥op is 𝑂 (1)-subGaussian about its mean.

Convex distance
Talagrand’s inequality has a much more general form, which has far-reaching combi-
natorial applications. We need a define a more subtle notion of distance.

We consider Ω = Ω1 × · · · × Ω𝑛 with product probability measure (i.e., independent
random variables).
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Weighted hamming distance: given 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ R𝑛≥0, 𝑥, 𝑦 ∈ Ω, we set

𝒅𝜶(𝒙, 𝒚) :=
∑︁
𝑖:𝑥𝑖≠𝑦 𝑗

𝛼𝑖

For 𝐴 ⊆ Ω,
𝒅𝜶(𝒙, 𝑨) := inf

𝑦∈𝐴
𝑑𝛼 (𝑥, 𝑦).

Talagrand’s convex distance between 𝑥 ∈ Ω and 𝐴 ⊆ Ω is defined by

𝒅𝑻 (𝒙, 𝑨) := sup
𝛼∈R𝑛≥0
|𝛼 |=1

𝑑𝛼 (𝑥, 𝐴).

Here |𝛼 | denotes Euclidean length:

|𝛼 |2 := 𝛼2
1 + · · · + 𝛼2

𝑛 .

Example 9.5.10 (Euclidean distance to convex hull). If 𝐴 ⊆ {0, 1}𝑛 and 𝑥 ∈ {0, 1}𝑛,
then 𝑑𝑇 (𝑥, 𝐴) is the Euclidean distance from 𝑥 to the convex hull of 𝐴.

Let us give another interpretation of convex distance. For 𝑥, 𝑦 ∈ Ω, let

𝜙𝑥 (𝑦) = (1𝑥1≠𝑦1 , 1𝑥2≠𝑦2 , . . . , 1𝑥𝑛≠𝑦𝑛) ∈ {0, 1}𝑛

be the vector of coordinatewise disagreements between 𝑥 and 𝑦. Write

𝜙𝑥 (𝐴) = {𝜙𝑥 (𝑦) : 𝑦 ∈ 𝐴} ⊆ {0, 1}𝑛 .

Then for any 𝛼 ∈ R𝑛≥0,
𝑑𝛼 (𝑥, 𝐴) = 𝑑𝛼 (®0, 𝜙𝑥 (𝐴)),

where the LHS is the weighted Hamming distance in Ω whereas the RHS takes
place in {0, 1}𝑛. Taking the supremum over 𝛼 ∈ R𝑛≥0 with |𝛼 | = 1, and using the
Example 9.5.10, we deduce

𝑑𝑇 (𝑥, 𝐴) = dist(®0,ConvexHull 𝜙𝑥 (𝐴)).

The general form of Talagrand’s inequality says the following. Note that it reduces to
the earlier special case Theorem 9.5.3 if Ω = {0, 1}𝑛.
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Theorem 9.5.11 (Talagrand’s inequality: general form)
Let 𝐴 ⊆ Ω = Ω1 × · · · ×Ω𝑛, with Ω equipped with a product probability measure. Let
𝑥 ∈ Ω be chosen randomly with independent coordinates. Let 𝑡 ≥ 0. Then

P(𝑥 ∈ 𝐴)P(𝑑𝑇 (𝑥, 𝐴) ≥ 𝑡) ≤ 𝑒−𝑡
2/4.

Let us see how Talagrand’s inequality recovers a more general form of our geometric
inequalities from earlier, extending from independent boolean random variables to
independent bounded random variables.

Lemma 9.5.12 (Convex distance upper bounds Euclidean distance)
Let 𝐴 ⊆ [0, 1]𝑛 and 𝑥 ∈ [0, 1]𝑛. Then dist(𝑥,ConvexHull 𝐴) ≤ 𝑑𝑇 (𝑥, 𝐴).

Proof. For any 𝛼 ∈ R𝑛, and any 𝑦 ∈ [0, 1]𝑛, we have

| (𝑥 − 𝑦) · 𝛼 | ≤
𝑛∑︁
𝑖=1

|𝛼𝑖 | |𝑥𝑖 − 𝑦𝑖 | ≤
𝑛∑︁

𝑖:𝑥𝑖≠𝑦𝑖

|𝛼𝑖 | .

First taking the infimum over all 𝑦 ∈ 𝐴, and then taking the supremum over unit vectors
𝛼, the LHS becomes dist(𝑥,ConvexHull 𝐴) and the RHS becomes 𝑑𝑇 (𝑥, 𝐴). □

Corollary 9.5.13 (Talagrand’s inequality: convex sets and convex Lipschitz func-
tions)
Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [0, 1]𝑛 be independent random variables (not necessarily
identical). Let 𝑡 ≥ 0. Let 𝐴 ⊆ [0, 1]𝑛 be a convex set. Then

P(𝑥 ∈ 𝐴)P(dist(𝑥, 𝐴) ≥ 𝑡) ≤ 𝑒−𝑡2/4

where dist is Euclidean distance. Also, if 𝑓 : [0, 1]𝑛 → R is a convex 1-Lipschitz
function, then

P( | 𝑓 −M 𝑓 | ≥ 𝑡) ≤ 4𝑒−𝑡
2/4.

Here is a form of Talagrand’s inequality that is useful for combinatorial applications.
Below, one should think of 𝑓 (𝑥) as the value of some optimization problem on some
random input 𝑥. There is a hypothesis on how much 𝑓 (𝑥) can change if we alter 𝑥.
An example that we will examine in the next section is the length of the shortest tour
through 𝑛 random points in the unit square (the Euclidean traveling salesman problem).
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Theorem 9.5.14 (Talagrand’s inequality — functions with weighted certificates)
Let Ω = Ω1 × · · · × Ω𝑛 equipped with the product measure. Let 𝑓 : Ω → R be a
function. Suppose for every 𝑥 ∈ Ω, there is some 𝛼(𝑥) = (𝛼1(𝑥), . . . , 𝛼𝑛 (𝑥)) ∈ R𝑛≥0
such that

𝑓 (𝑦) ≥ 𝑓 (𝑥) −
∑︁
𝑖:𝑥𝑖≠𝑦𝑖

𝛼𝑖 (𝑥) for all 𝑦 ∈ Ω.

Then, for every 𝑡 ≥ 0, (recall |𝛼 |2 =
∑𝑛
𝑖=1 𝛼𝑖 (𝑥)2)

P ( | 𝑓 −M 𝑓 | ≥ 𝑡) ≤ 4𝑒−𝑡
2/𝐾2

where 𝐾 = 2 sup
𝑥∈Ω

|𝛼(𝑥) | .

Remark 9.5.15. By considering − 𝑓 instead of 𝑓 , we can change the hypothesis on 𝑓

to
𝑓 (𝑦) ≤ 𝑓 (𝑥) +

∑︁
𝑖:𝑥𝑖≠𝑦𝑖

𝛼𝑖 (𝑥) for all 𝑦 ∈ Ω.

Note that 𝑥 and 𝑦 play asymmetric roles.

Remark 9.5.16. The vector 𝛼(𝑥) measures the resilience of 𝑓 (𝑥) under changing
some coordinates of 𝑥. It is important that we can choose a different weight 𝛼(𝑥) for
each 𝑥. In fact, if we do not let 𝛼(𝑥) change with 𝑥, then Theorem 9.5.14 recovers the
bounded differences inequality Theorem 9.1.3 up to an unimportant constant factor in
the exponent of the bound.

Proof. Let 𝑟 ∈ R. Let 𝐴 = {𝑦 ∈ Ω : 𝑓 (𝑦) ≤ 𝑟 − 𝑡}. Consider an 𝑥 ∈ Ω with 𝑓 (𝑥) ≥ 𝑟 .
By hypothesis, there is some 𝛼(𝑥) ∈ R𝑛≥0 such that

𝑑𝛼(𝑥) (𝑥, 𝑦) ≥ 𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑡 for all 𝑦 ∈ 𝐴.

Taking infimum over 𝑦 ∈ 𝐴, we find

|𝛼(𝑥) | 𝑑𝑇 (𝑥, 𝐴) ≥ 𝑡.

So
𝑑𝑇 (𝑥, 𝐴) ≥

𝑡

|𝛼(𝑥) | ≥
2𝑡
𝐾
.

And hence by Talagrand’s inequality Theorem 9.5.11,

P( 𝑓 ≤ 𝑟 − 𝑡)P( 𝑓 ≥ 𝑟) ≤ P(𝑥 ∈ 𝐴)P
(
𝑑𝑇 (𝑥, 𝐴) ≥

2𝑡
𝐾

)
≤ 𝑒−𝑡

2/𝐾2
.
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Taking 𝑟 = M 𝑓 + 𝑡 yields

P( 𝑓 ≥ M 𝑓 + 𝑡) ≤ 2𝑒−𝑡
2/𝐾2

,

and taking 𝑟 = M 𝑓 yields

P( 𝑓 ≤ M 𝑓 − 𝑡) ≤ 2𝑒−𝑡
2/𝐾2

.

Putting them together yields the final result. □

Largest eigenvalue of a random matrix

Theorem 9.5.17
Let 𝐴 = (𝑎𝑖 𝑗 ) be an 𝑛 × 𝑛 symmetric random matrix with independent entries in
[−1, 1]. Let 𝜆1(𝑋) denote the largest eigenvalue of 𝐴. Then

P( |𝜆1(𝐴) −M𝜆1(𝐴) | ≥ 𝑡) ≤ 4𝑒−𝑡
2/32.

Proof. We shall verify the hypotheses of Theorem 9.5.14. We would like to come up
with a good choice of a weight vector 𝛼(𝐴) for each matrix 𝐴 so that for any other
symmetric matrix 𝐵 with [−1, 1] entries,

𝜆1(𝐵) ≥ 𝜆1(𝐴) −
∑︁

𝑖≤ 𝑗 :𝑎𝑖 𝑗≠𝑏𝑖 𝑗
𝛼𝑖, 𝑗 . (9.1)

Note that in a random symmetric matrix we only have 𝑛(𝑛 + 1)/2 independent random
entries: the entries below the diagonal are obtained by reflecting the upper diagonal
entries.

Let 𝑣 = 𝑣(𝐴) be the unit eigenvector of 𝐴 corresponding to the eigenvalue 𝜆1(𝐴).
Then, by the Courant–Fischer characterization of eigenvalues,

𝑣⊺𝐴𝑣 = 𝜆1(𝐴) and 𝑣⊺𝐵𝑣 ≤ 𝜆1(𝐵).

Thus

𝜆1(𝐴) − 𝜆1(𝐵) ≤ 𝑣⊺ (𝐴 − 𝐵)𝑣 ≤
∑︁

𝑖, 𝑗 :𝑎𝑖 𝑗≠𝑏𝑖 𝑗

|𝑣𝑖 | |𝑣 𝑗 |
��𝑎𝑖 𝑗 − 𝑏𝑖 𝑗 �� ≤ ∑︁

𝑖, 𝑗 :𝑎𝑖 𝑗≠𝑏𝑖 𝑗

2|𝑣𝑖 | |𝑣 𝑗 |.

Thus (9.1) holds for the vector 𝛼(𝐴) = (𝛼𝑖 𝑗 )𝑖≤ 𝑗 defined by

𝛼𝑖 𝑗 =

{
4|𝑣𝑖 | |𝑣 𝑗 | if 𝑖 < 𝑗

2|𝑣𝑖 |2 if 𝑖 = 𝑗 .
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We have ∑︁
𝑖≤ 𝑗

𝛼2
𝑖 𝑗 ≤ 8

∑︁
𝑖, 𝑗

|𝑣𝑖 |2 |𝑣 𝑗 |2 = 8

(∑︁
𝑖

|𝑣𝑖 |2
)2

= 8.

So Theorem 9.5.14 yields the result. □

Remark 9.5.18. If 𝐴 has mean zero entries, then a moments computation shows that
E𝜆1(𝐴) = 𝑂 (

√
𝑛) (the constant can be computed as well). A much more advanced

fact is that, say for uniform {−1, 1} entries, the true scale of fluctuation is 𝑛−1/6, and
when normalized, the distribution converges to something known as the Tracy–Widom
distribution. This limiting distribution is “universal” in the sense that it occurs in many
naturally occurring problems, including the next example.

Certifiable functions and longest increasing subsequence
An increasing subsequence of a permutation 𝜎 = (𝜎1, . . . , 𝜎𝑛) is defined to be some
(𝜎𝑖1 , . . . , 𝜎𝑖ℓ ) for some 𝑖1 < · · · < 𝑖ℓ.

Question 9.5.19
How well is the length 𝑋 of the longest increasing subsequence of uniform random
permutation concentrated?

While the entries of 𝜎 are not independent, we can generate a uniform random permu-
tation by taking iid uniform 𝑥1, . . . , 𝑥𝑛 ∼ Unif [0, 1] and let 𝜎 record the ordering of
the 𝑥𝑖’s. This trick converts the problem into one about independent random variables.

We leave it as an exercise to deduce that 𝑋 is Θ(
√
𝑛) whp.

Changing one of the 𝑥𝑖’s changes LIS by at most 1, so the bounded differences inequality
tells us that 𝑋 is 𝑂 (

√
𝑛)-subGaussian. Can we do better?

The assertion that a permutation has an increasing permutation of length 𝑠 can be
checked by verifying 𝑠 coordinates of the permutation. Talagrand’s inequality tells
us that in such situations the typical fluctuation should be on the order 𝑂 (

√
M𝑋), or

𝑂 (𝑛1/4) in this case.

Definition 9.5.20
Let Ω = Ω1 × · · · × Ω𝑛. Let 𝐴 ⊆ Ω. We say that 𝐴 is 𝒔-certifiable if for every 𝑥 ∈ 𝐴,
there exists a set 𝐼 (𝑥) ⊆ [𝑛] with |𝐼 | ≤ 𝑠 such that for every 𝑦 ∈ Ω with 𝑥𝑖 = 𝑦𝑖 for all
𝑖 ∈ 𝐼 (𝑥), one has 𝑦 ∈ 𝐴.

For example, for a random permutation as earlier, having an increasing subsequence
of length ≥ 𝑠 is 𝑠-certifiable (namely by the indices of the length 𝑠 increasing subse-
quence).
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Theorem 9.5.21 (Talagrand’s inequality for certifiable functions)
Let Ω = Ω1 × · · · × Ω𝑛 be equipped with a product measure. Let 𝑓 : Ω → R be
1-Lipschitz with respect to Hamming distance on Ω. Suppose that { 𝑓 ≥ 𝑟} is 𝑠-
certifiable. Then, for every 𝑡 ≥ 0,

P( 𝑓 ≤ 𝑟 − 𝑡)P( 𝑓 ≥ 𝑟) ≤ 𝑒−𝑡2/(4𝑠) .

Proof. Let 𝐴, 𝐵 ⊆ Ω be given by 𝐴 = {𝑥 : 𝑓 (𝑥) ≤ 𝑟 − 𝑡} and 𝐵 = {𝑦 : 𝑓 (𝑦) ≥ 𝑟}. For
every 𝑦 ∈ 𝐵, let 𝐼 (𝑦) ⊆ [𝑛] denote a set of ≤ 𝑠 coordinates that certify 𝑓 ≥ 𝑟. Due to
𝑓 being 1-Lipschitz, we see that every 𝑥 ∈ 𝐴 disagrees with 𝑦 on ≥ 𝑡 coordinates of
𝐼 (𝑦).

For every 𝑦 ∈ 𝐵, let 𝛼(𝑦) be the indicator vector for 𝐼 (𝑦) normalized in length to a
unit vector. Then for any 𝑥 ∈ 𝐴,

𝑑𝛼 (𝑥, 𝑦) =
|{𝑖 ∈ 𝐼 (𝑦) : 𝑥𝑖 ≠ 𝑦𝑖}|√︁

|𝐼 |
≥ 𝑡

√
𝑠
.

Thus 𝑑𝑇 (𝑦, 𝐴) ≥ 𝑡/
√
𝑠. Thus

P( 𝑓 ≤ 𝑟 − 𝑡)P( 𝑓 ≥ 𝑟) ≤ P(𝐴)P(𝐵) ≤ P(𝑥 ∈ 𝐴)P(𝑑𝑇 (𝑥, 𝐴) ≥ 𝑡/
√
𝑠) ≤ 𝑒−𝑡2/(4𝑠)

by Talagrand’s inequality (Theorem 9.5.11). □

Corollary 9.5.22 (Talagrand’s inequality for certifiable functions)
Let Ω = Ω1 × · · · × Ω𝑛 be equipped with a product measure. Let 𝑓 : Ω → R be
1-Lipschitz with respect to Hamming distance on Ω. Suppose { 𝑓 ≥ 𝑟} is 𝑟-certifiable
for every 𝑟. Then for every 𝑡 ≥ 0,

P( 𝑓 ≤ M 𝑓 − 𝑡) ≤ 2 exp
(
−𝑡2

4M 𝑓

)
and

P( 𝑓 ≥ M 𝑓 + 𝑡) ≤ 2 exp
(

−𝑡2
4(M 𝑓 + 𝑡)

)
.

Proof. Applying the previous theorem, we have, for every 𝑟 ∈ R and every 𝑡 ≥ 0,

P( 𝑓 ≤ 𝑟 − 𝑡)P(𝑋 ≥ 𝑟) ≤ exp
(
−𝑡2
4𝑟

)
.
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Setting 𝑟 = M 𝑓 , we obtain the lower tail.

P( 𝑓 ≤ M 𝑓 − 𝑡) ≤ 2 exp
(
−𝑡2

4M 𝑓

)
.

Setting 𝑟 = M 𝑓 + 𝑡, we obtain the upper tail

P(𝑋 ≥ M 𝑓 + 𝑡) ≤ 2 exp
(

−𝑡2
4(M 𝑓 + 𝑡)

)
. □

We can apply the above corollary to [0, 1]𝑛 with 𝑓 being the length of the longest
subsequence. Then 𝑓 ≥ 𝑟 is 𝑟-certifiable. It is also easy to deduce thatM 𝑓 = 𝑂 (

√
𝑛).

The above tail bounds give us a concentration window of width 𝑂 (𝑛1/4).

Corollary 9.5.23 (Longest increasing subsequence)
Let 𝑋 be the length of the longest increasing subsequence of a random permutation of
[𝑛]. Then for every 𝜀 > 0 there exists 𝐶 > 0 so that

P( |𝑋 −M𝑋 | ≤ 𝐶𝑛1/4) ≥ 1 − 𝜀.

Remark 9.5.24. The distribution of the length 𝑋 of longest increasing subsequence
of a uniform random permutation is now well understood through some deep results.

Vershik and Kerov (1977) showed that E𝑋 ∼ 2
√
𝑛.

Baik, Deift, and Johansson (1999) showed that the correct scaling factor is 𝑛1/6, and
furthermore, 𝑛−1/6(𝑋 − 2

√
𝑛) converges to the Tracy–Widom distribution, the same

distribution for the top eigenvalue of a random matrix.

9.6 Euclidean traveling salesman problem
Given points 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1]2, let 𝐿 (𝑥1, . . . , 𝑥𝑛) = 𝐿 ({𝑥1, . . . , 𝑥𝑛}) denote the
length of the shortest tour through all given points and returns to its starting point.
Equivalently, 𝐿 (𝑥1, . . . , 𝑥𝑛) is the minimum of

|𝑥𝜎(1) − 𝑥𝜎(2) | + |𝑥𝜎(2) − 𝑥𝜎(3) | + · · · + |𝑥𝜎(𝑛) − 𝑥𝜎(1) |

as 𝜎 ranges over all permutations of [𝑛]. This Euclidean traveling salesman problem
is NP-hard to solve exactly, although there is a (1 + 𝜀)-factor approximation algorithm
with running polynomial time for any constant 𝜀 > 0 (Arora 1998).

Let
𝐿𝑛 = 𝐿 (𝑥1, . . . , 𝑥𝑛) with i.i.d. 𝑥1, . . . , 𝑥𝑛 ∼ Unif( [0, 1]2)
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The Mona Lisa TSP challenge. A tour of 1000 random points.

Exercise: E𝐿𝑛 = Θ(
√
𝑛)

Beardwood, Halton, and Hammersley (1959) showed that whp 𝐿𝑛/
√
𝑛 converges to

some constant as 𝑛→ ∞ (the exact value of the constant is unknown).

We shall focus on the concentration of 𝐿𝑛.

We will present two methods that illustrate different techniques from this chapter.

Martingale methods
The following simple monotonicity property will be important for us: for any 𝑆 and
𝑥 ∈ [0, 1]2,

𝐿 (𝑆) ≤ 𝐿 (𝑆 ∪ {𝑥}) ≤ 𝐿 (𝑆) + 2 dist(𝑥, 𝑆).

Here is the justification for the second inequality. Let 𝑦 be the closest point in 𝑆 to
𝑥. Consider a shortest tour through 𝑆 of length 𝐿 (𝑆). Let us modify this tour by first
traversing through it, and when we hit 𝑦, we take a detour excursion from 𝑦 to 𝑥 and
then back to 𝑦. The length of this tour, which contains 𝑆 ∪ {𝑥}, is 𝐿 (𝑆) + 2 dist(𝑥, 𝑆),
and thus the shortest tour through 𝑆 ∪ {𝑥} has length at most 𝐿 (𝑆) + 2 dist(𝑥, 𝑆).

If we simply apply the bounded difference inequality, we find that changing a single
𝑥𝑖 might change 𝐿 (𝑥1, . . . , 𝑥𝑛) by 𝑂 (1) in the worse case, and so 𝐿𝑛 is 𝑂 (

√
𝑛)-

subGaussian about its mean. This is a trivial result since 𝐿𝑛 is typically Θ(
√
𝑛).

To do better, we apply Azuma’s inequlality to the Doob martingale. The key obser-
vation is that the initially revealed points do not affect the conditional expectations by
much even in the worst case.
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Theorem 9.6.1 (Rhee and Talagrand 1987)
𝐿𝑛 is 𝑂 (

√︁
log 𝑛)-subGaussian about its mean. That is,

P( |𝐿𝑛 − E𝐿𝑛 | ≥ 𝑡) ≤ exp
(
−𝑐𝑡2
log 𝑛

)
for all 𝑡 > 0,

where 𝑐 > 0 is some constant.

We need the following estimate.

Lemma 9.6.2
Let 𝑆 be a set of 𝑘 random points chosen independently and uniformly in [0, 1]2. For
any (non-random) point 𝑦 ∈ [0, 1]2, one has

E dist(𝑦, 𝑆) ≲ 1
√
𝑘
.

Proof. We have

E dist(𝑦, 𝑆) =
∫ √

2

0
P(dist(𝑦, 𝑆) ≥ 𝑡) 𝑑𝑡

=

∫ √
2

0

(
1 − area

(
𝐵(𝑦, 𝑡) ∩ [0, 1]2

)) 𝑘
𝑑𝑡

≤
∫ √

2

0
exp

(
−𝑘 area

(
𝐵(𝑦, 𝑡) ∩ [0, 1]2

))
𝑑𝑡

≤
∫ ∞

0
exp

(
−Ω(𝑘𝑡2)

)
𝑑𝑡 ≲

1
√
𝑘
. □

Proof of Theorem 9.6.1. Let

𝐿𝑛,𝑖 (𝑥1, . . . , 𝑥𝑖) = E [𝐿𝑛 (𝑥1, . . . , 𝑥𝑛) | 𝑥1, . . . , 𝑥𝑖]

be the expectation of 𝐿𝑛 conditional on the first 𝑖 points (and averaging over the
remaining 𝑛 − 𝑖 points).

Claim. 𝐿𝑛,𝑖 is 𝑂
(

1√
𝑛−𝑖+1

)
-Lipschitz with respect to Hamming distance.

We have

𝐿 (𝑥1, . . . , 𝑥𝑖, . . . 𝑥𝑛) ≤ 𝐿 (𝑥1, . . . , 𝑥
′
𝑖 , . . . 𝑥𝑛) + 2 dist(𝑥𝑖, {𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛})

≤ 𝐿 (𝑥1, . . . , 𝑥𝑖, . . . 𝑥𝑛) +
{

2 dist(𝑥𝑖, {𝑥𝑖+1, . . . , 𝑥𝑛}) if 𝑖 < 𝑛
𝑂 (1) if 𝑖 = 𝑛.

164

https://mathscinet.ams.org/mathscinet-getitem?mr=882849


MIT OCW: Probabilistic Methods in Combinatorics — Yufei Zhao

9.6 Euclidean traveling salesman problem

Taking expectation over 𝑥𝑖+1, . . . , 𝑥𝑛, and applying the previous lemma, we find that

𝐿𝑛,𝑖 (𝑥1, . . . , 𝑥𝑖) ≤ 𝐿𝑛,𝑖 (𝑥1, . . . , 𝑥𝑖−1, 𝑥
′
𝑖) +𝑂

(
1

√
𝑛 − 𝑖 + 1

)
.

This proves the claim. Thus the Doob martingale

𝑍𝑖 = E [𝐿𝑛 (𝑥1, . . . , 𝑥𝑛) | 𝑥1, . . . , 𝑥𝑖] = 𝐿𝑛,𝑖 (𝑥1, . . . , 𝑥𝑖)

satisfies
|𝑍𝑖 − 𝑍𝑖−1 | ≲

1
√
𝑛 − 𝑖 + 1

for each 1 ≤ 𝑖 ≤ 𝑛.

Now we apply Azuma’s inequality (Theorem 9.2.8). Since

𝑛∑︁
𝑖=1

(
1

√
𝑛 − 𝑖 + 1

)2
= 𝑂 (log 𝑛),

we deduce that 𝑍𝑁 = 𝐿𝑛 is 𝑂 (
√︁

log 𝑛)-subGaussian about its mean. □

Talagrand’s inequality
Using Talagrand’s inequality, we will prove the following stronger estimate.

Theorem 9.6.3 (Rhee and Talagrand 1989)
𝐿𝑛 is 𝑂 (1)-subGaussian about its mean. That is,

P( |𝐿𝑛 − E𝐿𝑛 | ≥ 𝑡) ≤ 𝑒−𝑐𝑡
2

for all 𝑡 > 0,

where 𝑐 > 0 is some constant.

Remark 9.6.4. Rhee (1991) showed that this tail bound is sharp.

The proof below, following Steele (1997), applies the “space-filling curve heuristic.”

A space-filling curve is a continuous surjection from [0, 1] to [0, 1]2. Peano (1890)
constructed the first space-filling curve. Hilbert (1891) constructed another space-
filling curve known as the Hilbert curve. We will not give a precise description of the
Hilbert curve here. Intuitively, the Hilbert curve is the pointwise limit of a sequence of
piecewise linear curves illustrated in Figure 9.2. I recommend this 3Blue1Brown video
on YouTube for a beautiful animation of the Hilbert curve along with applications.

We will only need the following property of the Hilbert space filling curve.
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Figure 9.2: The Hilbert space-filling curve is the limit of discrete curves illus-
trated.

Definition 9.6.5 (Hölder continuity)
Given two metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ), we say that a map 𝑓 : 𝑋 → 𝑌 is Hölder
continuous with exponent 𝜶 if there is some constant 𝐶 (depending on 𝑓 ) so that

𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝐶𝑑𝑋 (𝑥, 𝑥′)𝛼 for all 𝑥, 𝑥′ ∈ 𝑋.

Remark 9.6.6. Hölder continuity with exponent 1 is the same as Lipschitz continuity.
Often 𝑋 has bounded diameter, in which case if 𝑓 is Hölder continuous with exponent
𝛼, then it is so with any exponent 𝛼′ < 𝛼.

Theorem 9.6.7
The Hilbert curve 𝐻 : [0, 1] → [0, 1]2 is Hölder continuous with exponent 1/2.

Proof sketch. The Hilbert space-filling curve 𝐻 sends every interval of the form
[(𝑖 − 1)/4𝑛, 𝑖/4𝑛] to a square of the form [( 𝑗 − 1)/2𝑛, 𝑗/2𝑛] × [(𝑘 − 1)/2𝑛, 𝑘/2𝑛].
Indeed, for each fixed 𝑛, the discrete curves eventually all have this property.

Let 𝑥, 𝑦 ∈ [0, 1], and let 𝑛 be the largest integer so that 𝑥, 𝑦 ∈ [(𝑖 − 1)/4𝑛, (𝑖 +
1)/4𝑛] for some integer 𝑖. Then |𝑥 − 𝑦 | = Θ(4−𝑛), and |𝐻 (𝑥) − 𝐻 (𝑦) | ≲ 2−𝑛. Thus
|𝐻 (𝑥) − 𝐻 (𝑦) | ≲ |𝑥 − 𝑦 |1/2. □
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Remark 9.6.8. If a space filling space is Hölder continuous with exponent 𝛼, then
𝛼 ≤ 1/2. Indeed, the images of the intervals [(𝑖 − 1)/𝑘, 𝑖/𝑘], 𝑖 = 1, . . . , 𝑘 , cover the
unit square, and thus one intervals must have image diameter ≳ 1/

√
𝑘 .

Lemma 9.6.9 (Space-filling curve heuristic)
Let 𝑥1, . . . , 𝑥𝑛 ∈ [0, 1]2. There is a permutation of 𝜎 of [𝑛] with (indices taken mod
𝑛)

𝑛∑︁
𝑖=1

��𝑥𝜎(𝑖) − 𝑥𝜎(𝑖+1)
��2 = 𝑂 (1).

Proof. Order the points as they appear on the Hilbert space filling curve 𝐻 : [0, 1] →
[0, 1]2 (since 𝐻 is not injective, there is more than one possible order). Then, there
exist 0 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 ≤ 1 so that 𝐻 (𝑡𝑖) = 𝑥𝜎(𝑖) for each 𝑖. Using that 𝐻 is
Hölder continuous with exponent 1/2, we have

𝑛∑︁
𝑖=1

��𝑥𝜎(𝑖) − 𝑥𝜎(𝑖+1)
��2 =

𝑛∑︁
𝑖=1

|𝐻 (𝑡𝑖) − 𝐻 (𝑡𝑖+1) |2 ≲
𝑛∑︁
𝑖=1

|𝑡𝑖 − 𝑡𝑖+1 | ≤ 2. □

Remark 9.6.10. We leave it as an exercise to find an elementary proof of the lemma
without invoking the existence of a space-filling curve. Hint: consider a finite approx-
imation of the Hilbert curve.

Using Talagrand’s inequality in the form of Theorem 9.5.14, to prove Theorem 9.6.3
that 𝐿𝑛 is 𝑂 (1)-subGaussian, it suffices to prove the following lemma.

Lemma 9.6.11
Let Ω = ( [0, 1]2)𝑛 be the space of 𝑛-tuples of points in [0, 1]2. There exists a map
𝛼 : Ω → R𝑛≥0 so that for all 𝑥 ∈ Ω, 𝛼(𝑥) = (𝛼1(𝑥), . . . , 𝛼𝑛 (𝑥)) ∈ R𝑛≥0 satisfies

𝐿 (𝑥) ≤ 𝐿 (𝑦) +
∑︁
𝑖:𝑥𝑖≠𝑦𝑖

𝛼𝑖 (𝑥) for all 𝑥, 𝑦 ∈ Ω (9.1)

and

sup
𝑥∈Ω

𝑛∑︁
𝑖=1

𝛼𝑖 (𝑥)2 = 𝑂 (1). (9.2)

Proof. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω, and let 𝜎 be the permutation of [𝑛] given by
Lemma 9.6.9, the space-filling curve heuristic. Then 𝜎 induces a tour of 𝑥1, . . . , 𝑥𝑛.
Let 𝛼𝑖 (𝑥) equal twice the sum of the lengths of the two edges incident to 𝑥𝑖 in this tour
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(indices taken mod 𝑛):

𝛼𝑖 (𝑥) = 2
(��𝑥𝑖 − 𝑥𝜎(𝜎−1 (𝑖)+1)

�� + ��𝑥𝑖 − 𝑥𝜎(𝜎−1 (𝑖)−1)
��) .

Intuitively, this quantity captures “difficulty to serve” 𝑥𝑖.

Now we prove (9.1). First we take care of the first case when 𝑥𝑖 ≠ 𝑦𝑖 for all 𝑖: (9.1)
follows from

𝐿 (𝑥) ≤
𝑛∑︁
𝑖=1

��𝑥𝜎(𝑖) − 𝑥𝜎𝑖+1

�� = 1
2

𝑛∑︁
𝑖=1

𝛼𝑖 (𝑥).

Now suppose that 𝑥𝑖 = 𝑦𝑖 for at least one 𝑖. Suppose we have a tour through 𝑦 of length
𝐿 (𝑦). Consider, for each 𝑖 with 𝑥𝑖 ≠ 𝑦𝑖, the point 𝑥𝑖 along with the two segments
incident to 𝑥𝑖 in the 𝜎-induced tour through 𝑥 (these are the “new edges”). Starting
with an optimal tour through 𝑦, and by making various detours/excursions on the new
edges, we can reach all the points of 𝑥, traversing each new edge at most twice. The
length of the new tour is at most 𝐿 (𝑦) + ∑

𝑖:𝑥𝑖≠𝑦𝑖 𝛼𝑖 (𝑥). This proves (9.1).

Finally, it remains to prove (9.2). By Lemma 9.6.9,

𝑛∑︁
𝑖=1

𝛼𝑖 (𝑥)2 ≤ 4
𝑛∑︁
𝑗=1

(��𝑥𝜎( 𝑗) − 𝑥𝜎( 𝑗+1)
�� + ��𝑥𝜎( 𝑗) − 𝑥𝜎( 𝑗+1)

��)2

≲
𝑛∑︁
𝑗=1

��𝑥𝜎( 𝑗) − 𝑥𝜎( 𝑗+1)
��2 = 𝑂 (1). □

Exercises
1. Sub-Gaussian tails. For each part, prove there is some constant 𝑐 > 0 so that,

for all 𝜆 > 0,
P( |𝑋 − E𝑋 | ≥ 𝜆

√
Var 𝑋) ≤ 2𝑒−𝑐𝜆

2
.

a) 𝑋 is the number of triangles in 𝐺 (𝑛, 1/2).

b) 𝑋 is the number of inversions of a uniform random permutation of [𝑛] (an
inversion of 𝜎 ∈ 𝑆𝑛 is a pair (𝑖, 𝑗) with 𝑖 < 𝑗 and 𝜎(𝑖) > 𝜎( 𝑗)).

2. Prove that for every 𝜀 > 0 there exists 𝛿 > 0 and 𝑛0 such that for all 𝑛 ≥ 𝑛0
and 𝑆1, . . . , 𝑆𝑚 ⊂ [2𝑛] with 𝑚 ≤ 2𝛿𝑛 and |𝑆𝑖 | = 𝑛 for all 𝑖 ∈ [𝑚], there exists a
function 𝑓 : [2𝑛] → [𝑛] so that (1 − 𝑒−1 − 𝜀)𝑛 ≤ | 𝑓 (𝑆𝑖) | ≤ (1 − 𝑒−1 + 𝜀)𝑛 for
all 𝑖 ∈ [𝑚].

3. Simultaneous bisections. Fix Δ. Let 𝐺1, . . . , 𝐺𝑚 with 𝑚 = 2𝑜(𝑛) be connected
graphs of maximum degree at most Δ on the same vertex set 𝑉 with |𝑉 | = 𝑛.
Prove that there exists a partition𝑉 = 𝐴∪𝐵 so that every𝐺𝑖 has (1+𝑜(1))𝑒(𝐺𝑖)/2
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edges between 𝐴 and 𝐵.

4. ★Prove that there is some constant 𝑐 > 0 so that for every graph𝐺 with chromatic
number 𝑘 , letting 𝑆 be a uniform random subset of 𝑉 and 𝐺 [𝑆] the subgraph
induced by 𝑆, one has, for every 𝑡 ≥ 0,

P(𝜒(𝐺 [𝑆]) ≤ 𝑘/2 − 𝑡) ≤ 𝑒−𝑐𝑡2/𝑘 .

5. ★ Prove that there is some constant 𝑐 > 0 so that, with probability 1 − 𝑜(1),
𝐺 (𝑛, 1/2) has a bipartite subgraph with at least 𝑛2/8 + 𝑐𝑛3/2 edges.

6. Let 𝑘 ≤ 𝑛/2 be positive integers and 𝐺 an 𝑛-vertex graph with average degree
at most 𝑛/𝑘 . Prove that a uniform random 𝑘-element subset of the vertices of 𝐺
contains an independent set of size at least 𝑐𝑘 with probability at least 1 − 𝑒−𝑐𝑘 ,
where 𝑐 > 0 is a constant.

7. ★ Prove that there exists a constant 𝑐 > 0 so that the following holds. Let 𝐺 be a
𝑑-regular graph and 𝑣0 ∈ 𝑉 (𝐺). Let 𝑚 ∈ N and consider a simple random walk
𝑣0, 𝑣1, . . . , 𝑣𝑚 where each 𝑣𝑖+1 is a uniform random neighbor of 𝑣𝑖. For each
𝑣 ∈ 𝑉 (𝐺), let 𝑋𝑣 be the number times that 𝑣 appears among 𝑣0, . . . , 𝑣𝑚. For that
for every 𝑣 ∈ 𝑉 (𝐺) and 𝜆 > 0

P
©«
������𝑋𝑣 − 1

𝑑

∑︁
𝑤∈𝑁 (𝑣)

𝑋𝑤

������ ≥ 𝜆 + 1ª®¬ ≤ 2𝑒−𝑐𝜆
2/𝑚

Here 𝑁 (𝑣) is the neighborhood of 𝑣.

8. Prove that for every 𝑘 there exists a 2(1+𝑜(1))𝑘/2-vertex graph that contains every
𝑘-vertex graph as an induced subgraph.

9. ★ Tighter concentration of chromatic number

a) Prove that with probability 1− 𝑜(1), every vertex subset of 𝐺 (𝑛, 1/2) with
at least 𝑛1/3 vertices contains an independent set of size at least 𝑐 log 𝑛,
where 𝑐 > 0 is some constant.

b) Prove that there exists some function 𝑓 (𝑛) and constant 𝐶 such that for all
𝑛 ≥ 2,

P( 𝑓 (𝑛) ≤ 𝜒(𝐺 (𝑛, 1/2)) ≤ 𝑓 (𝑛) + 𝐶
√
𝑛/log 𝑛) ≥ 0.99.

10. Show that for every 𝜀 > 0 there exists 𝐶 > 0 so that every 𝑆 ⊆ [4]𝑛 with
|𝑆 | ≥ 𝜀4𝑛 contains four elements with pairwise Hamming distance at least
𝑛 − 𝐶

√
𝑛 apart.
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11. Concentration of measure in the symmetric group. Let 𝑈 ⊆ 𝑆𝑛 be a set of
at least 𝑛!/2 permutations of [𝑛]. Let 𝑈𝑡 denote the set of permutations that
can be obtained starting from some element of 𝑈 and then applying at most 𝑡
transpositions. Prove that

|𝑈𝑡 | ≥ (1 − 𝑒−𝑐𝑡2/𝑛)𝑛!

for every 𝑡 ≥ 0, where 𝑐 > 0 is some constant.

Hint:ApplyAzumatoaDoobmartingalethatrevealsarandompermutation

For the remaining exercises in this section, use Talagrand’s inequality

12. Let 𝑄 be a subset of the unit sphere in R𝑛. Let x ∈ [−1, 1]𝑛 be a random vector
with independent random coordinates. Let 𝑋 = supq∈𝑄 ⟨x, q⟩. Let 𝑡 > 0. Prove
that

P( |𝑋 −M𝑋 | ≥ 𝑡) ≤ 4𝑒−𝑐𝑡
2

where 𝑐 > 0 is some constant.

13. First passage percolation. Prove that there are constants 𝑐, 𝐶 > 0 so that the
following holds. Let 𝐺 be a graph, and let 𝑢 and 𝑤 be two distinct vertices with
distance at most ℓ between them. Every edge of 𝐺 is independently assigned
some random weight in [0, 1] (not necessarily uniform or identically distributed).
The weight of a path is defined to be the sum of the weights of its edges. Let 𝑋
be the minimum weight of a path from 𝑢 to 𝑤 using at most ℓ edges. Prove that
there is some 𝑚 ∈ R so that

P( |𝑋 − 𝑚 | ≥ 𝑡) ≤ 𝐶𝑒−𝑐𝑡2/ℓ .

14. ★ Second largest eigenvalue of a random matrix. Let 𝐴 be an 𝑛 × 𝑛 random
symmetric matrix whose entries on and above the diagonal are independent and
in [−1, 1]. Show that the second largest eigenvalue 𝜆2(𝐴) satisfies

P( |𝜆2(𝐴) − E𝜆2(𝐴) | ≥ 𝑡) ≤ 𝐶𝑒−𝑐𝑡
2
,

for every 𝑡 ≥ 0, where 𝐶, 𝑐 > 0 are constants.

Hint in white: use the Courant–Fischer characterization of the second eigenvalue

15. Longest common subsequence. Let (𝑎1, . . . , 𝑎𝑛) and (𝑏1, . . . , 𝑏𝑚) be two random
sequences with independent entries (not necessarily identically distributed). Let
𝑋 denote the length of the longest common subsequence, i.e., the largest 𝑘 such
that there exist 𝑖1 < · · · < 𝑖𝑘 and 𝑗1 < · · · < 𝑗𝑘 with 𝑥𝑖1 = 𝑦 𝑗1 , . . . , 𝑥𝑖𝑘 = 𝑦 𝑗𝑘 .
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9.6 Euclidean traveling salesman problem

Show that, for all 𝑡 ≥ 0,

P(𝑋 ≥ M𝑋 + 𝑡) ≤ 2 exp
(

−𝑐𝑡2
M𝑋 + 𝑡

)
and P(𝑋 ≤ M𝑋 − 𝑡) ≤ 2 exp

(
−𝑐𝑡2
M𝑋

)
where 𝑐 > 0 is some constant.
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