
1. Generalities on quantum field theory

1.1. Classical mechanics. In classical mechanics, we study the mo-
tion of a particle (say, of mass 1) in a Euclidean space V . This motion
is described by a function of one variable, q = q(t) ∈ V , representing
the position of the particle at a time t. This function must satisfy the
Newton equation of motion,

q̈ = −U ′(q),
where U is the potential energy.

Another way to express this law of motion is to say that q(t) must
be a solution of a certain variational problem. Namely, one introduces
the Lagrangian

L(q) :=
q̇2

2
− U(q)

(the difference of kinetic and potential energy), and the action func-
tional

S(q) :=

∫ b

a

L(q)dt

(for some fixed a < b). Then the law of motion can be expressed as the
least action principle: q(t) must be a critical point of S on the space
of all functions with given q(a) and q(b), i.e., the Newton equation is
the Euler-Lagrange equation for a solution of the variational problem
defined by S. Indeed, using integration by parts, for ε ∈ C1[a, b] with
ε(a) = ε(b) = 0 we have

d
ds
|s=0

∫ b

a

L(q + sε)dt =

∫ b

a

(∂L
∂q
ε+ ∂L

∂q̇
ε̇)dt =∫ b

a

(−U ′(q)ε+ q̇ε̇)dt = −
∫ b

a

(U ′(q) + q̈)εdt,

and this vanishes for all ε iff q satisfies the Newton equation q̈ = −U ′(q).

Remark 1.1. The name “least action principle” comes from the fact
that in some cases (for example when U ′′ ≤ 0) the action is not only
extremized but also minimized at the solution q(t). In general, however,
this is not the case, and the trajectory of the particle may be not a
(local) minimum, but only a critical point of the action. Therefore,
the law of motion is better formulated as the “extremal (or stationary)
action principle”; this is the way we will think of it in the future.

Exercise 1.2. (i) Consider the motion of a particle in a Euclidean
space V . Show that if the potential is concave (U ′′(q) ≤ 0) then for
any a,b ∈ V and a < b ∈ R there exists at most one solution of the

8



Newton equation with q(a) = a and q(b) = b, and it is the strict global
minimum for the action with these boundary conditions (if exists).

(ii) Show that the conclusion of (i) holds if U ′′(q) < π2

(b−a)2 (prove

and use Wirtinger’s inequality: if ε ∈ C1[a, b] and ε(a) = ε(b) = 0 then∫ b
a
ε′(t)2dt ≥ π2

(b−a)2

∫ b
a
ε(t)2dt).

(iii) Compute the unique solution in (i) if U(q) = −1
2
B(q, q), where

B is a nonnegative definite symmetric bilinear form on V .
(iv) Show that the statements of (i) fail for dimV = 1, U(q) = 1

2
q2

and b− a ≥ π.
(v) Let dimV = 1 and U be a smooth potential on R. Suppose that

lim sup|x|→∞
U(x)
x2 ≤ 0. Show that a solution in (i) (possibly non-unique)

exists for any a, b, a,b. Give an example of a smooth potential U for
which a solution in (i) does not always exist.1

Remark 1.3. Physicists often consider solutions of Newton’s equation
on the whole line rather than on a fixed interval [a, b]. In this case, the
naive definition of an extremal does not make sense, since the action
integral S(q) =

∫
R L(q)dt is improper and in general diverges. Instead,

one makes the following “corrected” definition: a function q(t) on R is
an extremal of S if the expression

d
ds
|s=0

∫
R
L(q + sε)dt :=

∫
R
(∂L
∂q
ε+ ∂L

∂q̇
ε̇)dt,

where ε(t) is any compactly supported perturbation, is identically zero.
With this definition, the extremals are exactly the solutions of Newton’s
equation (which, as before, is easily seen by integration by parts).

Remark 1.4. Note that this formalism also describes the motion of
a system of n particles, if we combine the vectors representing their
positions in a Euclidean space V into a single vector in V n. More
generally, we may consider a particle moving on a Riemannian manifold
M . In this case q(t) is a path on M , and the motion is described by
the same equation, where q̈ means the covariant derivative ∇q̇ q̇ of q̇
with respect to the Levi-Civita connection. For example, if U = 0, this
is the geodesic flow, whose trajectories are the geodesics on M . The
same applies to a system of n particles on M , in which case q(t) is a
path on the configuration space Mn. Finally, a similar analysis applies
to more general Lagrangians, which are arbitrary smooth functions of
(finitely many) derivatives of q.

1One can show using calculus of variations that for any dimV , if U(q) ≤ 0 for
all q then the solution always exists.
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1.2. Classical field theory. In classical field theory, the situation is
similar, but with infinitely many particles. Namely, in this case we
should think not of a single particle or a finite system of particles,
but rather of a “continuum of particles” (e.g. a string, a membrane,
a jet of fluid); so in a d + 1-dimensional classical field theory the mo-
tion is described by a classical field – a (vector-valued) function φ(x, t)
depending on both space and time coordinates (x ∈ Rd, t ∈ R). Con-
sequently, the equation of motion is a partial differential equation. For
example, for a string or a membrane the equation of motion is the wave
equation �φ = 0, where � is the D’Alembertian ∂2

t − v2∆ (here ∆ is
the Laplacian with respect to the space coordinates, and v the velocity
of wave propagation, e.g. for the string v2 is proportional to the string
tension).

As in classical mechanics, in classical field theory there is a La-
grangian L(φ) (a smooth function of finitely many partial derivatives
of φ), whose integral

S(φ) =

∫
D

L(φ)dxdt

over a compact region D in the spacetime Rd+1 is called the action. The
law of motion can be expressed as the condition that the action must be
extremized over any such region D with fixed boundary conditions; so
the equations of motion (also called the field equations) are the Euler-
Lagrange equations for this variational problem. For example, in the
case of string or membrane, the Lagrangian is

L(φ) = 1
2
(φ2

t − v2(∇φ)2).

Remark 1.5. Like in mechanics, in field theory solutions of the equa-
tions of motion on the whole space-time (rather than a compact region
D) are extremals of the action in the sense that

d
ds
|s=0

∫
Rd+1

L(u+ sε)dxdt = 0,

where ε is a compactly supported perturbation.

1.3. Brownian motion. One of the main differences between classical
and quantum mechanics is, roughly speaking, that quantum particles
do not have to obey the classical equations of motion, but can randomly
deviate from their classical trajectories. Therefore, given the position
and velocity of the particle at a given time, we cannot determine its
position at a later time, but can only determine the density of proba-
bility that at this later time the particle will be found at a given point.
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In this sense quantum particles are similar to random (Brownian) par-
ticles. Brownian particles are a bit easier to understand conceptually,
so let us begin with them.

The motion of a Brownian particle in Rk in a potential field

U : Rk → R

is described by a stochastic process q = q(t), q = (q1, . . . , qk) ∈ Rk.
That is, for each real t we have a random variable q(t) ∈ Rk (the
position of the particle at a time t), such that the dependence of t is
regular in some sense. Namely, for a,b ∈ Rk the random dynamics
of the particle conditioned to have q(a) = a, q(b) = b is “defined” as
follows:2 if y : [a, b]→ Rk is a continuously differentiable function with
y(a) = a, y(b) = b, then the density of probability that q(t) = y(t) for
t ∈ [a, b] is proportional to e−S(y)/κ, where

S(y) :=

∫ b

a

(1
2
y′

2
+ U(y))dt

is the action and κ > 0 is the diffusion coefficient. Thus, the likeliest
q(t) is the one that minimizes S (in particular, solves the classical
equations of motion q̈ = U ′(q)), while the likelihood of the other paths
decays exponentially with the deviation of the action of these paths
from the minimal possible.

Remark 1.6. 1. This discussion thus assumes that the extremum of
S at q is actually a minimum, which we know is not always the case,
but is so when U is convex, i.e., U ′′(q) ≥ 0 for all q (see Exercise 1.2).

2. The reader must have noticed that compared to the discussion
of classical mechanics, the sign in front of the potential U has been
changed to the opposite one. This is not a misprint! It has to do
with the fundamental fact discussed below that statistical mechanics
is related to usual (quantum) mechanics by the Wick rotation t 7→ it,
where i =

√
−1. In particular, this means that Brownian motion is

well defined in the physically important case of convex potential, such
as the multidimensional harmonic oscillator potential 1

2
B(q, q) where

B is a positive definite bilinear form.

All the information we can hope to get about the stochastic process
q(t) is contained in the correlation functions

〈qj1(t1) . . . qjn(tn)〉,

2We put the word “defined” in quotation marks because this definition is obvi-
ously heuristic and not rigorous; see below for more explanations.
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which by definition are the expectation values of the products of ran-
dom variables qj1(t1), . . . , qjn(tn), (more specifically, by Kolmogorov’s
theorem the stochastic process q(t) is completely determined by these
functions). So such functions should be regarded as the output, or
answer, of the theory of the Brownian particle.

Thus the main question is how to compute the correlation functions.
Physicists write down the following “answer” motivated by the above
definition: given points t1, . . . , tn ∈ [a, b],

(1.1) 〈qj1(t1) . . . qjn(tn)〉 =

∫
Pa,b

qj1(t1) . . . qjn(tn)e−
S(q)
κ Dq,

where integration is carried out over the space Pa,b of paths

q : [a, b]→ Rn, q(a) = a, q(b) = b,

and Dq is a Lebesgue measure on this space such that∫
Pa,b

e−
S(q)
κ Dq = 1.

Alternatively, when they do not want to normalize the Lebesgue mea-
sure, they write

(1.2) 〈qj1(t1) . . . qjn(tn)〉 =
1

Z

∫
Pa,b

qj1(t1) . . . qjn(tn)e−
S(q)
κ Dq,

where

Z :=

∫
Pa,b

e−
S(q)
κ Dq

is the partition function. Such an integral is called a path integral, since
it is an integral over the space of paths.

It is clear, however, that such definition and answer are a priori
not satisfactory from the mathematical viewpoint, since the infinite
dimensional integration requires justification. In the case of Brownian
motion, such a justification is actually possible within the framework of
the Lebesgue measure theory, and the corresponding integration theory
is called the theory of Wiener integral. (To be more precise, one cannot

define the measure Dq, but one can define the measure e−
S(q)
κ Dq for

sufficiently nice potentials U(q)).

Remark 1.7. As κ→ 0, the non-optimal trajectories become increas-
ingly less likely relatively to the optimal one, so in the limit we recover
the deterministic system:

〈qj1(t1) . . . qjn(tn)〉 → qj1(t1) . . .qjn(tn),
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where q(t) is the classical trajectory with q(a) = a,q(b) = b (note
that if U ≥ 0 then this trajectory is unique by Exercise 1.2).

1.4. Quantum mechanics. Now let us turn to a quantum particle.
Quantum mechanics is notoriously difficult to visualize, and the ran-
domness of the behavior of a quantum particle is less intuitive and more
subtle than that of a Brownian particle; nevertheless, it was pointed
out by Feynman that the behavior of a quantum particle in a potential
field U(q) is correctly described by the same model, with the real pos-
itive parameter κ replaced by the imaginary number −i~ where ~ > 0
is the Planck constant, and the time t is replaced by it. In other words,
the dynamics of a quantum particle can be expressed (we will discuss
later how) via the correlation functions

(1.3) 〈qj1(t1) . . . qjn(tn)〉 =

∫
Pa,b

qj1(t1) . . . qjn(tn)e
iS(q)

~ Dq,

where Dq is normalized so that

(1.4)

∫
Pa,b

e
iS(q)

~ Dq = 1,

and S(q) is now given by the same formula as in classical mechanics
(and differing by sign from Brownian motion):

S(q) =

∫ b

a

( q̇
2

2
− U(q))dt.

As before, we have to make sense of this path integral, and now the
theory of Wiener integrals unfortunately does not work any more: for
instance, the absolute value of the integrand in (1.4) does not decay
as the path q(t) deviates from the classical trajectory (in fact, it iden-
tically equals to 1!). So we will be able to make sense of (1.3) only
partially, and an effective mathematically rigorous approach to quan-
tum mechanics is, in fact, based on different techniques (Hamiltonian
formalism); this is discussed in more detail below. Still, formula (1.3) is
extremely helpful for motivational purposes and with appropriate care
can be used for computation.

Remark 1.8. Similarly to Brownian motion (cf. Remark 1.7), in the
limit ~→ 0 we are supposed to recover the classical system:

〈qj1(t1) . . . qjn(tn)〉 → qj1(t1) . . .qjn(tn).

However, now this is achieved not because individual non-optimal tra-
jectories become less likely, but rather due to cancellation in the oscil-
latory integral (1.3) which corresponds to the physical phenomenon of
quantum interference. We will observe how this cancellation occurs in
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finite-dimensional oscillatory integrals when we discuss the stationary
phase formula below.

1.5. Quantum field theory. The situation is the same in field theory,
but with infinitely many particles. Namely, a useful theory of quan-
tum fields (used in the study of interactions of elementary particles) is
obtained when one considers correlation functions
(1.5)

〈φj1(x1, t1) . . . φjn(xn, tn)〉 =

∫
φj1(x1, t1) . . . φjn(xn, tn)e

iS(φ)
~ Dφ,

where Dφ is normalized so that
∫
e
iS(φ)

~ Dφ = 1.
Of course, from the mathematical point of view, this setting is a pri-

ori even less satisfactory than the one for a quantum particle, since it in-

volves integration with respect to the complex-valued measure e
iS(q)

~ Dq
on functions of ≥ 2 variables which nobody knows how to define in gen-
eral (even after the Wick rotation). Nevertheless, physicists imagine
that certain integrals of this type exist and come to correct and interest-
ing conclusions (both physical and mathematical). Therefore, making
sense of such integrals is an interesting problem for mathematicians,
and will be one of our main occupations.3

3To be more precise, we will make sense of path integrals as power series in ~.
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